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In the beginning...

Problem: find the minimum cost path in a graph

New twist: alternative costs (”edge e has weight 10, or 15 if you go
through edge f at some point”)

A weighted automaton returns the smallest value of an accepting path.

...but to calculate this, we need non-determinism, and we still don’t get to
deal with some types of alternative costs.

How do we make this model work?
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Cost Register Automata (CRA)

Definition[Alur, D’Antoni, Deshmukh, Raghothaman, Yuan]

A cost-register automaton is a deterministic finite-state automaton
augmented with a finite set of registers that store elements of an algebraic
domain. A computation step consists of consuming the next input symbol,
transitioning to a new state based on that input symbol, and updating
each register based on a function over the algebra.

µ = x + y + z

x = x + 1
y = x

z = z + 3

x = 0
y = 0
z = 0

x = x
y = x + y
z = 2z + 3y

x = 2z
y = y
z = xyz

x = x + 1
y = x

z = z + 3

x = 5xy
y = y + 3xz

z = z
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We know a lot about CRAs

Equivalence: usually polytime in states and exponential in registers
[Alur, D’Antoni, Deshmukh, Raghothaman, Yuan]

Min-Cost: usually polytime [Alur, Freilich, Raghothaman]

Evaluation: ....................

The punchline: we don’t know how quickly we can even evaluate CRAs.

It is known that some situations give exponential output, while others are
certainly within P, but we don’t know where in P they are.

Our results

Where in P they are.
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The classes

NC1: problems that can be decided by uniform poly-size log-depth boolean
circuits with AND and OR gates having fan-in 2

#NC1: functions that can be represented by uniform poly-size log-depth
arithmetic circuits over N with + and × gates having fan-in 2

GapNC1: functions that can be represented by the difference of two #NC1

functions

L: problems that can be decided by Turing machines with only a log-size
work tape

AC1: problems that can be decided by uniform poly-size log-depth circuits
with AND and OR gates having unbounded fan-in

NC1 ⊆ #NC1 ⊆ GapNC1 ⊆ L ⊆ AC1 ⊆ P
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A natural barrier

µ =
∏k

i=1 ri

ri =
∏k

j=1 rj ∀i

We’ll start with ri = c ∀i for some c > 1

After one step, ri = ck . Then ri = (ck)k = ck
2
. Then ck

3
. Then...

Wait, this is ck
n
! That takes O(kn) bits just to write down; no way we’re

getting that in P.
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Copyless CRAs (CCRAs)

Definition[Alur, Freilich, Raghothaman]

A copyless CRA is a CRA where for any transition, no register can be used
more than once to update the registers on that transition.

µ = x + y + z

x = y + 1

y = x

z = z + 3

x = 0

y = 0

z = xyz

x = 5x

y = y

z = z
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Copyless CRAs (CCRAs)

We claim that this dodges the natural barrier from before.

Again start with all registers holding c . If you multiply them all together,
you get ck again.

But since you used up all your input variables, the rest can only be set to
constants.

So even if you repeat this n times, you just get cnk , which can be written
in O(nk) bits.

If we consider the algebraic degree of the functions we are representing,
then CCRAs have nO(1)-bounded algebraic degree, unlike the problematic
exponential degree functions from before.
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Copyless monoids

Theorem

All functions computable by CCRAs over (Z,+) are computable in NC1

CCRAs over (Z,+) are equivalent to CRAs with register updates of the
form r ← r ′ + c

In NC1 we can build a constant-width graph with n layers, with an arrow
from vi ,j to vi+1,l if on the ith input variable there is a transition of the
form rl ← rj + c .

There is a unique path from the first layer to any chosen vertex vi on the
last layer (given that they all have indegree 1), and we can find it in NC1.
Tracing back along this path gives us all the constants that sum up to give
the final value of ri .

Theorem

All functions computable by CCRAs over (Γ∗, ◦) are computable in NC1
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Copyless over {+,×}

Theorem

All functions computed by CCRAs over (Z,+,×) are computable in
GapNC1

Take a function f that we can compute, and its input x . In NC1 we can
map it to an arithmetic circuit that computes f (x) by having gates that
compute the register updates at every step of our computation.

Note that each outdegree is 1, so we have a formula. Using a nice result
of [Buss et al], we can take such a circuit and turn it into a log-depth
arithmetic formula that contains some boolean gates.

The boolean circuitry can all be replaced since NC1 ⊆#NC1, and so we
get that f ∈GapNC1 (we are working over Z, so negative results are
possible, and so we do not have #NC1)
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Copyless over {max(min),+} and {max, ◦}

Similar tricks can give us two more results:

Theorem

All functions computed by CCRAs over (N∪ {∞},max,+) are computable
in NC1(#NC1

trop) (meaning functions expressible as g(f (x)) for f ∈ NC1,
g ∈ #NC1

trop)

We do the same calculations as above, but since we do not yet know that
#NC1

trop ∈GapNC1, we just have that it is NC1 reducible to #NC1
trop.

Theorem
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Non-copyless CRAs

(N ∪ {∞},max,+):

haven’t been able to beat P

(Z,+,×): completely unbounded

(Γ∗,max, ◦): even more unbounded

(N ∪ {∞},max,+c): trivially L, probably better

(Z,+,×c): GapNC1 (tight)

(Γ∗,max, ◦s): AC1

Moral of the story: replacing copyless with ⊗c often gives the same result.
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A mandatory table and open problems

Copyless {⊗} Copyless {⊕,⊗} {⊕,⊗c}

{Z,+,×} GapNC1 GapNC1

{N ∪ {∞},max,+} NC1 (tight) NC1(#NC1
trop) L

{Γ∗,max, ◦} NC1 (tight) AC1 AC1

As of now, most of the bounds are not necessarily tight.

Goal: keep reducing the complexity of these problems, or prove their
completeness.

(probably the first place to start is anything that is still listed as P, or L)

If you are in computer-aided verification, there’s a whole lot of literature
on regular functions, so maybe these new bounds will make CRAs more
attractive for using in algorithms?
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That’s all Folks!
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