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Abstract12

We obtain a streamlined proof of an important result by Alekhnovich and Razborov [2], showing that it is13

hard to automatize both tree-like and general Resolution. Under a different assumption than [2], our simplified14

proof gives improved bounds: we show under ETH that these proof systems are not automatizable in time15

nf(n), whenever f(n) = o(log1/7−ε logn) for any ε > 0. Previously non-automatizability was only known for16

f(n) = O(1). Our proof also extends fairly straightforwardly to prove similar hardness results for PCR and17

Res(r).18
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1 Introduction26

Proof complexity first and foremost aims to understand, for a given propositional formula τ , how27

long of a proof is needed to verify that τ is unsatisfiable. To understand the expressiveness of a proof28

system, we need to understand what formulas can and cannot be efficiently proven in that system.29

However, for algorithmic applications where formulas often have fairly short proofs, what is perhaps30

more important than knowing the worst-case proof length of a given τ is actually finding proofs of τ .31

In particular, even if we’re promised that τ has proofs of small size, say polynomial in the size of τ ,32

can we hope to find one that’s not too much larger?33

This question, of finding optimal proofs in a given system, is known as automatizability, introduced34

by Bonet, Pitassi, and Raz [11]. A proof systemQ is automatizable if there exists an algorithm which,35

given an unsatisfiable formula τ on n variables, returns a Q-refutation of τ in time poly(n, |τ |, S)36

where S := SQ(τ) is the size of the shortest Q-refutation of τ . Twenty years later no reasonable37

proof systems are known to be polynomially automatizable, and little is known even for the more38

general notion of f -automatizability, where the algorithm can run in time f(n, |τ |, S).39

Understanding the automatizability of various proof systems is a major tool in algorithm design;40

two well known examples are SAT solvers, where the best algorithms are highly optimized version of41

the Resolution (Res) proof system (see e.g. [32]) and celebrated algorithmic versions of the Sum-of-42

Squares (SoS) proof system for approximation [37] and learning (see e.g. [38] for a survey on recent43

developments in this very active field of research). We especially draw attention to the question of44
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23:2 Short Proofs are Hard to Find

automatizing Res. Resolution is a simple and fairly weak proof system, and yet Res proofs are the45

objects at the heart of the best known SAT solvers, with a long line of research connecting Res size46

to notions such as conflict driven clause learning and restarts [29, 30, 35, 42]. Automatizing Res is47

also key to the best known automated theorem provers for propositional and first order logics [16, 17].48

Therefore, the tractability of finding short Res proofs lies at the heart of understanding the frontiers49

and limitations of SAT solving algorithms and automated theorem proving.50

Despite the importance of automatizability for Res and other proof systems, our understanding51

of this question is limited at best. In terms of upper bounds, the best automatizing algorithm for Res52

runs in slightly subexponential time. In terms of lower bounds, until recently the main hardness result53

was the landmark paper of Alekhnovich and Razborov [2], who prove that under the assumption54

FPT 6= W[P],1 Res (as well as tree-like Res, denoted TreeRes) is not polynomially-automatizable.55

Using similar ideas, Galesi and Lauria [20] adapted Alekhnovich and Razborov’s proof in order to56

obtain the same result for the Polynomial Calculus (PC) system, an extension of Res which is the57

proof complexity model for the Groebner basis algorithm [15].258

For all other well-studied practical systems almost nothing is known. To give a short list of59

other well-known proof systems used in algorithm design, we have Cutting Planes (CP), widely60

used for optimization algorithms (see e.g. [28]); Sherali-Adams (SA), which underlies a general61

family of linear programming algorithms [41]; and the aforementioned Sum-of-Squares (SoS)-based62

semi-definite programming algorithms. For these systems we have no extension of the argument63

of [2], and therefore no notable lower bounds on automatizability.64

1.1 Our Contributions65

Our motivation for this work is to adapt the techniques of [2], first to move past polynomial automatiz-66

ability lower bounds for Res (and PC), and second to hopefully shed light on the automatizability of67

proof systems such as CP, SA, and SoS. The starting point of our contribution is in switching to the68

exponential time hypothesis (ETH) as opposed to the FPT 6= W[P] assumption in [2, 20]. A central69

limitation in starting from the assumption that some problem has no FPT algorithm is that FPT70

algorithms run in time f(k)nO(1), and so the best lower bound one can get from such an assumption,71

without a careful analysis of f and the range of k, is nω(1). In the past decade a line of work by Chen72

and Lin [14] showed how to obtain fixed parameter lower bounds beyond f(k)nO(1) for gap versions73

of NP-hard problems, such as dominating set and hitting set, by starting not from an assumption74

about FPT but from ETH. Analyzing these reductions we can derive a hardness result for a fixed75

f and k, which allows us to go beyond the nω(1) barrier in [2, 20], albeit starting from the slightly76

stronger ETH assumption. We state our main theorem precisely now.77

I Theorem 1 (Main Theorem). Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}. Assuming ETH78

holds Q is not nf -automatizable for any f = o(log1/7−ε logn) (where ε > 0 is any constant).79

Equally important as extending the results of [2, 20] is our second goal, namely simplifying80

the presentation of the construction and proofs. Moving to the stronger ETH assumption allows us81

to change the central formula in a way that, while still using the core machinery of [2], leads to a82

conceptually simpler formula and proof. The basis of the formula in [2] is the monotone minimum83

circuit satisfying assignment (MMCSA) problem, which takes as input a poly-size monotone circuit.84

The natural encoding of their formula as a CNF formula requires extra variables to represent the85

1 The original result of [2] uses FPR, a randomized version of FPT, in place of FPT in the assumption. This was
improved to the stated assumption by [19].

2 While the most well-studied and widely used SAT solvers are based on Res, there have been some implementations
that use the Groebner basis algorithm to utilize the more expressive power of PC, see e.g. [12].
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internal gates of the monotone circuit, leading to many technicalities involved in proving a Res width86

lower bound, namely an indirect and highly redundant encoding of the circuit. Our proof starts from87

the hitting set problem, which is a special case of MMCSA where the circuit is a CNF. Since the88

formula is already a CNF, the input can be encoded directly as the formula rather than indirectly89

having variables for each of the gates, and as a result the upper and lower bound proofs in our paper90

are highly streamlined.91

While we do start from a stronger assumption than [2, 20], there are few additional advantages to92

our new formula beyond presentation. First, going beyond superpolynomial hardness for Res allows93

us to obtain hardness results on the automatizability of Res(r), a proof system generalizing Res by94

allowing lines to be disjunctions of size r conjunctions. Prior to our paper nothing was known for95

Res(r) for any r ≥ 2, and the formula from [2] would not be able to go past Res(r) for constant r.96

I Theorem 2 (Main Theorem for Res(r)). Let Q = Res(r). Assuming ETH holds then for any97

ε > 0, Q is not nf/ exp(r2)-automatizable for any f = o(log
1
7−ε logn) if r ∈ O(

√
log f).98

Second, our technique has a direct, and in our view achievable, path to further improvement: if99

the reduction of [14] were to be improved to allow a lower bound against gap hitting set for larger100

parameters, it would immediately translate to a stronger non-automatizability result. We discuss101

this idea in detail in Section 6. Third, our results are also immediately strengthened if, instead of102

using ETH, one uses a slightly stronger assumption known as the gap exponential time hypothesis103

(GapETH), as introduced in [18, 27]. We formally define GapETH along with ETH in Section 2,104

but these results require no change in our formula nor our proofs. As with starting from [14] for our105

ETH results, the work required to use GapETH is analyzing a reduction of Chalermsook et al. [13],106

so we defer the results and analysis to Appendix B.107

1.2 Related Work108

Table 1 lists the known results for Res and PC. An early result [1] shows that it is NP-hard to find109

proofs whose size is a constant factor of optimal, and this holds for all standard proof systems.110

For stronger proof systems we have more lower bounds, although these bounds still only rule out111

polynomial automatizabiliy and require cryptographic assumptions. Krajíček and Pudlák showed non-112

automatizability of the Extended Frege system under the hardness of discrete log [25], with subsequent113

works proving the same lower bounds for Frege and AC0-Frege under similar assumptions [10, 11].114

Conceptually these more expressive classes should be harder to automatize because there exist many115

more short proofs than for say Res, but a nice upshot of these results is that they hold for a much116

weaker notion of automatizability, aptly named weak automatizability. Weak automatizability of a117

proof systemQ only requires that the automatizing algorithm return a proof of τ in some proof system,118

so long as it’s close in length to the shortestQ-proof of τ .3 Clearly hardness of weak automatizability119

implies hardness of automatizability, and hardness of weak automatizability is closely related to120

feasible interpolation [36], which was the tool used in the Frege nonautomatizability results listed121

above.122

Turning to upper bounds, there are a class of width/degree based automatizability algorithms for123

Res, PC, SA, and SoS. The width of a Res refutation is the maximal number of literals appearing124

in any line of the refutation, and the width of a CNF formula τ , denoted w(τ), is the minimum125

width of any Res refutation refuting τ . It is not hard to see that exhaustive search allows us to126

find a Res refutation for τ in time nO(w(τ)) [8]. A non-trivial fact is that the same upper bound127

3 This can be seen as analogous to the two notions of of learning, proper versus nonproper, where the former is required
to produce a hypothesis from the original concept class, whereas the latter may produce any hypothesis.

CVIT 2016
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Proof system Assumption Result Reference
all systems P 6= NP ω(1) · n [1]
Res, TreeRes W[P] 6= FPT nω(1) [2]
Nullsatz, PC, PCR W[P] 6= FPT nω(1) [20]
Res, TreeRes, Nullsatz, PC, PCR ETH nΩ(log1/7 logn) this work
Res(r) ETH nΩ(log1/7 logn/ exp(r2)) this work

Figure 1 Lower bounds on automatizabillity of weak proof systems

holds for PC (due to the Groebner basis paper of Clegg, Impagliazzo, and Edmonds [15]), SA [40],128

and SoS [26, 34], where the degree of the polynomials appearing in the proofs is used in place of129

width. These algorithms are known to be tight for width/degree based automatizability, as there exist130

tautologies τ with proof size S(τ) = nΩ(d) for Res, PC, SA, and SoS4 [6].131

A groundbreaking work of Ben-Sasson and Wigderson [9] showed that w(τ) ≤ logS(τ) for the132

special case of TreeRes and w(τ) ≤
√
n logS(τ) for general Res. Combined with the nO(w(τ))

133

upper bound for both systems gives automatizability for TreeRes and Res in time nO(logS(τ))
134

and nO(
√
n logS(τ)), respectively. Perhaps even more surprisingly, a result of [15] gives the same135

degree/size tradeoff for PC as [9] gave for Res; d(τ) ≤
√
n logS(τ) for the case of PC, and136

d(τ) ≤ logS(τ) for a static version of PC called Nullstellensatz (Nullsatz).5 Combining these137

degree bounds with the degree based algorithms gives automatizability for Nullsatz and PC in time138

nO(logS(τ)) and nO(
√
n logS(τ)), respectively. While these upper bounds are very strong for TreeRes139

and Nullsatz, for Res and PC they are still weakly exponential, and the results of [9, 15] are tight.140

Thus non-width/degree based techniques are needed to improve these upper bounds, if indeed they141

can be improved.142

1.2.1 Recent Developments143

Since the publication of this paper, Atserias and Müller [4] achieved a major breakthrough by all144

but resolving the question of automatizability for Res. In particular they show that it is NP-hard145

to distinguish whether τ has Res refutations of size n1+ε or none of size 2n1/(2+ε)
for any ε > 0,146

which implies that assuming ETH, Res is not 2n1/2−ε
automatizable for any ε > 0. The proof is147

elegant and uses a meta-tautology which could possibly be adapted for other proof systems such as148

TreeRes and PC in the future. As of now these results only apply to Res however, and because of149

the quasipolynomial automatizability of TreeRes the technique will require some notable changes150

before getting more general results. Thus our results (and technique) are still at the frontier for all151

other systems discussed.152

2 Preliminaries153

Let τ = {C1, C2, . . . , Cm} be an unsatisfiable CNF formula over X = {x1 . . . xn}. We denote by154

|τ | the size of τ , and likewise for a proof π refuting τ let |π| denote the size of π. For a proof system155

Q let S := SQ(τ) be the size of the shortest Q-proof refuting τ . A proof system Q is said to be156

f(n, |τ |, S)-automatizable if there exists an algorithm A such that for every unsatisfiable τ A runs157

4 The degree-automatizability of SoS is not established definitely due to the bit-complexity of the underlying
polynomials, which can be exponential [33].

5 This result of [15] actually preceded [9].
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in time f(n, |τ |, S) and outputs a valid Q-proof refuting τ . A proof system Q′ p-simulates Q if for158

every Q-proof π refuting τ there is a corresponding Q′-proof π′ refuting τ such that |π′| = |π|O(1).159

A Resolution (Res) refutation of τ is a sequence of clauses π = {D1, D2, . . . , DS} such that160

DS = ∅, and each line Di is either some initial clause Cj ∈ τ or is derived from two previous lines161

using the resolution rule: from (E ∨ x), (F ∨ x) we derive (E ∨ F ), where x ∈ X , E and F are162

clauses, and E ∨ F is their disjunction with repeated literals removed. We can view a Res proof π as163

a directed acyclic graph with a unique clause Di at every vertex, with initial clauses Cj ∈ τ at the164

leaves, ∅ at the root, and having an edge from Di to Dj if Di was used to derive Dj . With this view,165

a TreeRes refutation requires that all non-leaf vertices of the underlying graph have outdegree 1 (so166

the underlying graph of any TreeRes proof is tree-like).167

Given a Res or TreeRes refutation π = {D1, D2, . . . , DS}, the size of π is the number of lines168

in π, in this case S. The width of a clause Di is the number of literals in it, and the width of π is the169

maximum width of a clause in the proof. We denote the width of a clause Di or proof π by w(Di)170

and w(π), respectively. Clearly Res can p-simulate TreeRes with respect to size and width, as every171

TreeRes-proof is also a Res-proof.172

An r-Resolution (Res(r)) refutation6 is similar to a Res refutation, but each line Di is an r-DNF173

instead of a clause, and the resolution rule is adapted as follows: from (E∨(∨j∈Jxj)), (F∨(∧j∈Jxj))174

we derive (E ∨ F ), where J ⊆ [n] such that |J | ≤ r, E and F are r-DNFs, and E ∨ F is their175

disjunction with repeated conjunctions removed (note that ∨j∈Jxj is a DNF with |J | terms while176

∧j∈Jxj is a single term). Note that Res(1) = Res. The size of a Res(r) proof is the number of177

r-disjunctions in it. (See [39] for more details.)178

An algebraic proof system for refuting CNF τ = {C1 . . . Cm′} over variable set X is a proof179

system where each of the clauses Ci is converted into a polynomial equality or inequality Pi over180

X , such that any assignment of all xj to {0, 1}n satisfies Ci iff it satisfies Pi. For this paper the181

conversion is done is by sending every positive literal xj to (1 − xj) and every negative literal xj182

to xj , and Pi is satisfied if the product of all converted literals in Ci is 0. For example, the clause183

Ci = x1 ∨x2 ∨x3 is converted to Pi = (1−x1)(x2)(1−x3) = 0. In addition, we add the equations184

x2
j − xj = 0 for all j ≤ n. Let the resulting m = m′ + n equations corresponding to τ be denoted185

by P = {P1, . . . , Pm}. Since every Pi is of the form pi = 0 we use Pi to refer to pi.186

The Nullstellensatz (Nullsatz) refutation system [7] is an algebraic proof system that uses Hilbert’s187

Nullstellensatz as a certificate of unsatisfiablility. A Nullsatz proof (over a field F) of τ is a set of188

polynomials Q1, . . . , Qm such that
∑
i PiQi is the formal polynomial “1”. Note that this contradicts189

the statement that there exists an assignment such that Pi = 0 for all i. The size of a Nullsatz190

refutation π is the sum over all i ∈ [m] of the number of monomials in the expansion of the term191

PiQi, while the degree of the refutation is the maximum degree deg(PiQi) over all i ∈ [m]. It is192

known that Nullsatz p-simulates TreeRes.193

The Polynomial Calculus (PC) system is a dynamic version of Nullsatz [15], where the lines of a194

PC proof π are all polynomials Q1, Q2, . . . , QS . The lines Qi can be any of the initial polynomial195

equations P or can be derived from previous lines by the following rules: (1) from Qi we can derive196

xjQi or (1− xj)Qi for any variable xj ; (2) from Qi, Qj we can derive aQi + bQj for any a, b ∈ R.197

As with Nullsatz the final line QS is the formal polynomial “1”. Similarly to Nullsatz the degree of198

a PC proof π is the maximal degree of any line Qi, and the size of π is the total number of monomials199

in the refutation, where multiple occurrences of the same monomial are counted for each occurrence.200

PC trivially p-simulates Nullsatz and the simulation is degree-preserving.201

The PCR system is a simple modification to the PC proof system so that it can p-simulate Res202

6 This class is more commonly called k-Resolution, or Res(k), in proof complexity literature, but the parameter k
already plays a central role in our paper.

CVIT 2016
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proofs with respect to size. For PCR, polynomials are allowed to use additional variables x1, . . . , xn203

and axioms of the form 1 − xj − xj = 0 for all j ∈ [n]. Furthermore all terms (1 − xj) in the204

input polynomials in P are replaced by the variables xj . Intuitively although the variables xj and205

xj are distinct they stand for the negations of one another, which is enforced by the new axiom206

corresponding to xj . It is not hard to see that PCR can now p-simulate Res with respect to size.207

Let S = {S1, . . . , Sn} be a collection of non-empty sets Sj over [n]. A hitting set H ⊆ [n] is a208

set of elements such that H ∩ Sj 6= ∅ for all j ∈ [n]. Let γ(S) be the size of the smallest hitting set209

for S. The gap hitting set problem is the task of distinguishing, on input (S, k, hk), the following210

two cases: (1) γ(S) ≤ k; (2) γ(S) > hk.211

I Definition 3. The Exponential Time Hypothesis (ETH) states [23] that for sufficiently large212

m and n, no algorithm running in time 2o(n) can decide, for given CNF τ with m clauses and n213

variables, whether all m clauses of τ are satisfiable or not. The Gap Exponential Time Hypothesis214

(GapETH) states [18, 27] that for sufficiently large m and n, no algorithm running in time 2o(n) can215

decide, for given CNF τ with m clauses and n variables and any constant ε ∈ (0, 1), whether all m216

clauses of τ are satisfiable or if at most (1− ε)m of the clauses are satisfiable.217

We state the following hardness results for the hitting set problem under ETH, which can be218

deduced from a construction by Chen and Lin [14]. The actual lemma we prove is slightly more219

technical but actually slightly stronger than the one we state here. A full discussion and proof of the220

lemma is included in Appendix A7.221

I Lemma 4 (ETH-Hardness of Hitting Set). Assuming ETH, for sufficiently large n and222

k = O(log1/7−ε logn) no algorithm can solve the gap hitting set problem (S, k, k2) in time no(k).223

Consider a setA ⊆ {0, 1}m ofm-bit strings such that |A| = m. We say thatA is (m, k)-universal224

if for every subset J ⊆ [m] of up to k distinct positions in [m], the projection A|J (restricting the225

strings in A to these positions) contains all possible 2|J| binary strings of length |J |. Observe that we226

can take the dual of the set A in the following sense: if A = {a1, . . . , am}, and let B ⊆ {0, 1}m be227

the set of all strings bj for j ∈ [m] such that the ith bit of bj is the jth bit of ai. Another way to think228

about B is taking the strings of A to be the columns of an m×m matrix and letting B be the columns229

of that matrix’s transpose. We say A is (m, k)-dual-universal if B is (m, k)-universal. Equivalently230

A is (m, k)-dual-universal if for every ordered subset I ⊆ A of up to k distinct strings in A and231

for every string s ∈ {0, 1}|I|, there exists some position j ∈ [m] such that s is the string formed232

by concatenating the jth bit of all strings in I in order. The existence of efficiently constructible233

(m, logm/4)-universal sets is known. It is also known that there exist efficiently constructible sets234

that are both (m, logm/4)-universal and (m, logm/4)-dual-universal. For a concrete example, [2]235

uses the Paley graph Gm on m vertices 8 For the rest of the paper we will fix an arbitrary A that is236

efficiently computable and is both (m, logm/4)-universal and (m, logm/4)-dual-universal.237

3 Main reduction238

We first state our main lemma from which Theorem 1 is easily proven.239

7 A similar result holds for GapETH, which can be deduced from recent work of Chalermsook et al [13]. See
Appendix B for more details.

8 Many examples of universal sets (including the Paley graph construction) are discussed in [24], as well as [3, 31].
Alternate constructions use properties such as k-wise independent sample spaces and linear codes, and counting
arguments for different parameter regimes exist. Notably the Paley construction fulfills our four essential properties
of being small (of size m), polytime constructable, (m, logm/4)-universal, and (m, logm/4)-dual-universal.
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I Lemma 5. Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}. For sufficiently large n and240

k = O(log1/3 n), let (S, k, k2) be an instance of the gap hitting set problem over [n]. Then there241

exists an unsatisfiable CNF τS which can be computed in time nO(1) such that the following two242

properties hold243

(i) if γ(S) ≤ k then SQ(τS) ≤ nO(1);244

(ii) if γ(S) > k2 then SQ(τS) ≥ nΩ(k).245

Proof of Theorem 1. Assuming thatQ is nf automatizable for some f := f(n) = o(log1/7−ε logn)246

for ε > 0, we describe an efficient algorithm for the gap hitting set problem. Given an instance247

(S, k, k2) of the gap hitting set problem over [n], with n sufficiently large and k = O(log1/7−ε logn),248

we generate the CNF τS , and simulate the automatizing algorithm on τS for nO(f) timesteps. If the249

automatizing algorithm outputs a legal Q refutation of τS within the allotted time, then we output250

“γ(S) ≤ k” and otherwise output “γ(S) > k2”. Because f = o(k) the correctness is guaranteed by251

Lemma 5. Thus we can decide the gap hitting set problem in time nO(f) = no(k), which by Lemma252

4, contradicts ETH. J253

The rest of the paper is devoted to the proof of Lemma 5. In this section we give the reduction τS ,254

and prove the upper and lower bounds needed for the case of Res in Sections 4 and 5. This also gives255

the upper bound for PC and Res(r); the lower bounds are deferred to Appendices C and D. We briefly256

note that the strength of the result in Theorem 1 relies solely on the largest value we can set k to. We257

choose k = O(log1/7−ε logn) because this is the largest value we can use and still get a contradiction258

with Lemma 4, but for Lemma 5 to hold we can tolerate up to k = O(log1/3 logn), meaning that259

if the reduction in [14] were improved, a stronger version of Theorem 1 would immediately follow.260

Likewise, starting from the GapETH assumption we could use Lemma 17 (see Appendix B) in place261

of Lemma 4 and immediately get the stronger result claimed in Section 1.262

Hereafter, fix k = O(log1/7−ε logn) and define m := n1/k. Observe that k logm = logn and263

k2 < logm for large enough n. In what follows we will abuse notation and xi, yj will denote a tuple264

of Boolean variables (rather than a single Boolean variable). The tuple size of xi, yj will be clear265

from context, but generally xi will be a O(logm)-tuple and yj will be a O(logn)-tuple. Additionally266

~x = x1, . . . , xn, ~y = y1, . . . , ym will denote vectors of the tuples xi and yj . αi and βj will denote a267

0/1 assignment to the tuples xi and yj respectively, and ~α, ~β will each denote a 0/1 assignment to the268

vector of tuples ~x, ~y respectively.269

3.1 The Formula ψS270

Given a hitting set instance S we will define an unsatisfiable formula ψS . Recall that A is a set of271

m-bit strings such that |A| = m and A is both (m, (logm)/4)-universal and (m, (logm)/4)-dual-272

universal. We also define the characteristic vector of a set S ⊆ [n] to be the binary vector s ∈ {0, 1}n273

such that si = 0 for all i /∈ S and si = 1 for all i ∈ S.274

The formula ψS will have variables ~x and ~y that will respectively encode n-by-m matricies M275

and N . The variables of ~x will define M such that each of the n rows of M is some vector in A,276

and the variables ~y will define N such that each of the m columns of N is the characteristic vector277

for some set S from the hitting set instance S. In particular, xi will indicate a vector in A to serve278

as the ith row of M , while yj will indicate a set in S whose characteristic vector will serve as the279

jth column of N , with each xi and yj being chosen separately. For the remainder of the section,280

we restrict our attention to matricies M and N defined this way. We say that M and N intersect if281

M [i, j] = N [i, j] = 1 for some pair (i, j). ψS will be defined so that it is falsified whenever M and282

N intersect and satisfied otherwise.283

Notice that when some column of M is the characteristic vector of a hitting set, ψS is falsified284

because there is no way to pick the corresponding column in N so that the two columns do not285
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intersect. Conversely, if none of the columns in M represent a hitting set, then there is always a way286

to pick N so that ψS is satisfied (for each column we simply pick the set that was not hit). Therefore287

proving that ψS is unsatisfiable boils down to proving that for any choice of M , some column of M288

represents a hitting set.289

B Claim 6. ψS is unsatisfiable when γ(S) ≤ logm
4 .290

Proof sketch. Let H be any hitting set of size at most logm
4 , which we interpret of as a set of row291

indicies into M . By the (m, (logm)/4)-dual-universality of A, any set I of at most (logm)/4 strings292

from A has a location such that all the strings in I contain a 1 at that location. Since rows of M are293

strings in A, taking I = H there must exist a column j∗ such that M [i, j∗] = 1 for every i ∈ H .294

Because H is a hitting set and the jth column of N is the indicator vector of a set S ∈ S , there must295

be some i∗ ∈ H such that N [i∗, j∗] = 1, and so M and N intersect at (i∗, j∗). J296

Next, we define the formula more formally. The variables of ψS are ~x = {xi | i ∈ [n]} where xi297

is a tuple of logm boolean variables, and ~y = {yj | j ∈ [m]} where yj is a tuple of logn boolean298

variables. Given an assignment ~α = {αi | i ∈ [n]} to the ~x-variables, ~α encodes an n-by-m matrix299

M~α where the i-th row of M~α equals aαi ∈ A (interpreting αi as an index in [m]). Similarly given an300

assignment ~β = {βj | j ∈ [m]} to the ~y-variables, ~β encodes an n-by-m matrix N~β , where column j301

is the characteristic vector of the set Sβj ∈ S (interpreting βj as an index in [n]). We will sometimes302

write M~α[i, j] as Mαi [i, j] to stress that the ith row of M~α is determined by αi. Similarly, we will303

sometimes write N~β [i, j] as Nβj [i, j].304

Lastly, we formally define the clauses in ψS so that it is falsified whenever M~α and N~β intersect305

and satisfied otherwise.306

I Definition 7. For every i ∈ [n] and j ∈ [m], and for every pair of values αi ∈ {0, 1}logm,307

βj ∈ {0, 1}logn such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we have the clause xαii ∧ y
βj
j where308

xαii = ∧t∈[n](xi)
(αi)t
t is the conjunction of all variables in xi, each of which occurs positively when309

the corresponding bit of αi is 1 and negatively when the corresponding bit of αi is 0 (we define yβjj in310

the same way). This axiom is falsified iff xi is assigned value αi and yj is assigned value βj .311

This formula has the property we want because if M~α and N~β intersect at some location i, j, then312

the axiom xαii ∧ y
βj
j exists in ψS and would be falsified. Conversely, if ψS is falsified, then some313

axiom xαii ∧ y
βj
j is falsified, which means M~α[i, j] = N~β [i, j] = 1.314

It is easy to check that the number of variables in ψS is n logm+m logn. The number of clauses315

is at most n2m2, since there are nm(mn) quadruplets of the form (i, αi, j, βj).316

3.2 Redundantly Encoding ψS317

In order to prove our result we will need a way of proving both upper and lower bounds on SQ(ψS),318

but it turns out that the lower bounds are difficult to prove if we use ψS as is. Thus, we will employ319

a standard trick in proof complexity, which is to redundantly encode the variables in the formula;320

more specifically we follow [2] and redundantly code blocks of variables, namely each row and321

column, using error-correcting codes. It is interesting to note that for our formulas, we are unable to322

prove even width lower bounds without the redundant encoding. In contrast, most proof complexity323

applications use this trick solely for the purpose of reducing size lower bounds to width lower bounds.324

I Definition 8. For q, r, s ∈ N, a (q, r, s)-code is a total function f from {0, 1}q to {0, 1}r with the325

property that for any ρ ∈ {0, 1, ∗}q such that ρ fixes at most s values to {0, 1}, f |ρ is surjective on326

{0, 1}r. Efficiently computable constructions using linear codes are known for any r, q = 6r, s = 2r327

(see e.g. [2]). We say that f is r-surjective.328
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Let fx : {0, 1}6 logm → [m] be a (6 logm, logm, 2 logm)-code and let fy : {0, 1}6 logn → [n]329

be a (6 logn, logn, 2 logn)-code. We will have a vector xi ∈ {0, 1}6 logm for each i ∈ [n] and a330

vector yj ∈ {0, 1}6 logn for each j ∈ [m]. Given an assignment ~α to all of the ~x-variables, we will331

associate with ~α an n-by-m matrix M~α, where the ith row of M~α will be the vector afx(αi) ∈ A.332

Similarly given an assignment ~β to all of the ~y-variables, we will associate with ~β an n-by-m matrix333

N~β , where column j is the characteristic vector corresponding to the set Sfy(βj) ∈ S In other words,334

N~β [i, j] is 1 if and only if set Sfy(βj) contains element i.335

We now define our unsatisfiable CNF τS in the same way as ψS using these redundant encodings.336

Note that it is unsatisfiable for exactly the same reason as stated before.337

IDefinition 9. For each j ∈ [m], the clauses of τS are defined as follows. For every i ∈ [n], j ∈ [m]338

and for every pair of assignments (αi, βj) to (xi, yj) such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we339

have the clause xαii ∧ y
βj
j .340

In the redundant encoding we have n · 6 logm x-variables and m · 6 logn y-variables, for a total341

of O(n logm) variables when m = n1/k � n. For each j ∈ [m] the number of clauses in τS is at342

most n7m7 since the total number of pairs (α, β) is at most n6m6.343

The following two lemmas, which will be the focus of the rest of the paper, give tight upper and344

lower bounds on SQ(τS) as a function of γ(S). Since we can clearly construct τS in time polynomial345

in n, proving these two lemmas is all we need to finish Lemma 5.346

I Lemma 10. For sufficiently large n and k = O(log1/3 n), let (S, k, k2) be an instance of the347

gap hitting set problem over [n] such that γ(S) ≤ k. Then SQ(τS) ≤ nO(1) for any Q ∈ {Res,348

TreeRes, Nullsatz, PC, PCR}.349

I Lemma 11. For sufficiently large n and k = O(log1/3 n), let (S, k, k2) be an instance of the350

gap hitting set problem over [n] such that γ(S) > k2. Then SQ(τS) ≥ nΩ(k) for any Q ∈ {Res,351

TreeRes, Nullsatz, PC, PCR}.352

It may be instructive to note that both the upper and lower bounds are exactly nΘ(γ(S)/k) =353

mΘ(γ(S)), which is polynomial in the number of distinct assignments to α1 . . . αγ(S), assuming354

without loss of generality that the minimum hitting set of S is the first γ(S) elements {1 . . . γ(S)} ⊆355

[n]. In Sections 4 and 5 we show how these assignments exactly characterize the shortest proof of τ .356

4 Upper bound in TreeRes357

In this section we prove Lemma 10. Note that it suffices to give an upper bound in TreeRes since all358

of the other proof systems can p-simulate TreeRes.359

Proof of Lemma 10. The proof is just a formalization of the argument given in the proof of Claim360

6. Using the well-known equivalence between TreeRes proofs and decision trees, it suffices to give a361

decision tree solving the search problem for τS ; that is, a decision tree (over the underlying variables362

of τS ), where every leaf l is labeled with a clause of τS that is falsified by the partial assignment that363

labels the path to l.364

We will first show that if γ(S) ≤ k, then there is a height 2 logn decision tree (and therefore365

size n2) for the unencoded formula ψS . Since γ(S) ≤ k, assume without loss of generality that366

H = {1, . . . , k} is a valid hitting set for S. The decision tree for ψS consists of two phases. First,367

the decision tree will branch on all of the Boolean variables in x1, . . . , xk. This will result in a full368

binary tree, call it T , of depth k logm. In the second phase, at each leaf vertex of T we will query all369

of the variables of some yj variable, where the choice of yj will be a function of the path taken in T .370
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Consider some path in T leading to leaf l~α, corresponding to the assignment ~α = α1, . . . αk for371

x1, . . . , xk. The assignment ~α corresponds to an ordered set of strings I ⊆ A, where |I| ≤ k. Since372

k ∈ O(log1/3n) and m = n1/k, k ≤ logm
4 for large n. By the (m, logm/4)-dual-universal property373

of A there is some j ∈ [m] such that I restricted to position j is all 1’s, and thus M~α[i, j] = 1 for all374

i ∈ [k]. In the second phase, at this leaf vertex l~α of T we will then query all of the Boolean variables375

in yj . Let βj be one partial assignment to these variables and consider the path labeled by ~αβj leading376

to the leaf vertex l~αβj . Since {1, . . . , k} is a hitting set for S we are guaranteed that N~βj
[i, j] = 1 for377

at least one i ∈ [k], and since M~α[i, j] = 1 for all i ∈ [k], one of the clauses in τS must be violated378

by the partial assignment ~α, βj , so we label l~αβj with any such clause. The resulting decision tree379

thus solves the search problem associated with ψS and has height k logm+ logn = 2 logn.380

The decision tree for the redundant version τS is essentially the same but instead we query the381

redundant encodings of the variables. First, we query x1, . . . , xk, resulting in a full binary tree of382

height k · 6 logm, and then, we query a particular yj (depending on the path taken in T ), which is383

6 logn variables, and thus the height is k · 6 logm+ 6 logn = 12 logn. J384

5 Nonautomatizability of Res and TreeRes385

In this section we prove Lemma 11 for the case ofQ = Res, which implies the result for TreeRes as386

well. We begin by proving a wide clause lemma for τS , which alone is enough to prove lower bounds387

for TreeRes (using the size-width relationship for TreeRes due to Ben-Sasson and Wigderson [9]);388

for general Res, we apply a standard application of random restrictions to reduce to width.389

Our notion of “wide” will be a bit richer than the usual definition. For a clause D, let I0(D) be390

the set of all i ∈ [n] for which there are at least logm literals in D that correspond to variables from391

xi. Likewise let J0(D) be the set of all j ∈ [m] for which there are at least logn literals in D that392

correspond to variables from yj .393

I Lemma 12 (Wide Clause Lemma). For sufficiently large n, if γ(S) > k2 and fx (fy) is394

logm-surjective (logn-surjective, respectively), then for any Res refutation π refuting τS there exists395

a clause D ∈ π such that |I0(D)| ≥ k2 or |J0(D)| ≥ k.396

Proof. We follow the prover-delayer game of [5, 36] in the style of [6]. The width-w game on397

an unsatisfiable formula τ is played between a Delayer, who is asserting that she has a satisfying398

assignment for τ , and a Prover, who is trying to force the Delayer into a contradiction by asking her399

values of the underlying variables. However, the Prover has limited memory and can only remember400

the values of up to w of the variables at a time.401

Both players know τ and the contents of the Prover’s memory, which is initially empty. At the402

start of each round there are at most w−1 values in memory. The Prover asks the Delayer the value of403

some variable whose value is not currently in memory. The Delayer responds with an answer (either404

0 or 1), and upon receiving the answer, the Prover adds this assignment to his memory (increasing405

the number of stored values by 1). He can then erase (forget) any existing values from memory,406

possibly decreasing the number of stored values. The Prover declares victory if at some point, the407

partial assignment written in his memory falsifies one of the clauses of τ . The Delayer has a winning408

strategy for the width-w game on τ if no matter how the Prover plays the game, he cannot win. It was409

shown [5, 36] that the Delayer has a winning strategy for the width-w game if and only if the Res410

width of τ is at least w − 1.411

For our formula τS , the game proceeds as above, but now let D be the set of literals in the Prover’s412

memory, and we demand instead of only holding w variables total in memory that |I0(D)| ≤ k2
413

and |J0(D)| ≤ k. By the transformation from [36], the Prover has a winning strategy for this game414

if there is a Res refutation such that |I0(D)| ≤ k2 − 1 and |J0(D)| ≤ k − 1 for every clause D.415
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Therefore the Delayer has a winning strategy for this game if and only if the lemma holds. The416

Delayer’s winning strategy is as follows.417

If the Prover asks about a variable in xi:418

If i /∈ I0(D) and after adding this bit there are still less than logm variables from xi in419

memory, the Delayer can answer with either 0 or 1 arbitrarily.420

If i /∈ I0(D) but after adding this bit to memory there are now logm variables from xi421

in memory, the Delayer uses the fact that |J0(D)| ≤ k ≤ logm/4 and the (m, logm/4)-422

universal property of A to find a string a0 ∈ A such that a0|J0(D) is the all-zeros string, and423

uses the surjective property of fx to find an assignment αi consistent with the assignment to424

the xi variables in memory such that fx(αi) = a0. The Delayer will remember the assignment425

αi for xi from now on, and note that I0(D) now contains i.426

Finally if i ∈ I0(D) then the Delayer is maintaining an assignment αi for xi, so she answers427

according to αi.428

If the Prover asks about a variable in yj :429

If j /∈ J0(D) and after adding this bit there are still less than logn variables from yj in430

memory, the Delayer can answer with either 0 or 1 arbitrarily.431

If j /∈ J0(D) but there are now logn variables from yj in memory, the Delayer uses the fact432

that |I0(D)| ≤ k2 < γ(S) and finds a set S0 that doesn’t contain any element i ∈ I0(D), and433

uses the surjective property of fy to find an assignment βj consistent with the assignment to434

the yj variables in memory such that fy(βj) = S0. The Delayer will remember the assignment435

βj for xj , and note that J0(D) now contains j.436

Finally if j ∈ J0(D) then the Delayer is already maintaining an assignment βj for yj , so she437

answers according to βj .438

Whenever the Prover erases a variable from xi from his memory, if i ∈ I0 and now there are less439

than logm variables from xi in memory, the Delayer forgets αi. (note that i is no longer in I0)440

Similarly, whenever the Prover erases a variable from yj from his memory, if j ∈ J0 and now441

there are less than logn variables from yj in memory, the Delayer removes βj from J0. (note that442

j is no longer in J0)443

Assume for contradiction the game ends with the Prover winning. Consider when the game ends,444

and say the Prover claims the axiom xαii ∧ y
βj
j was falsified, and thus that M~α[i, j] = N~β [i, j] = 1.445

First, consider the case when either i /∈ I0 or j /∈ J0. In either case there are is at least one variable in446

the axiom that is not in memory, which means that it has not been falsified, which is a contradiction.447

So assume that i ∈ I0 and j ∈ J0, and consider the last time that i was added to I0 and the last time448

that j was added to J0. Assume that i was added after j. Since j was in J0 at the time we defined αi,449

Mαi [i, j] = 0 by our choice of αi, which is a contradiction. Finally assume that j was added after450

i. Then since i was in I0 at the time we defined βj , fy(βj) does not contain i, and so Nβj [i, j] = 0,451

which is also a contradiction. J452

Before proceding on to the proof of Lemma 11, we need to change Lemma 12 slightly, in order to453

be able to apply a restriction argument to turn width lower bounds into size lower bounds for τS . We454

use the notation f |ρ to denote the restriction of the function f over x1 . . . xs by ρ ∈ {0, 1, ∗}s, which455

is the function f over the variables xi for all i ∈ ρ−1(∗) obtained by setting all other variables xj to456

ρ(j). Likewise we use the notation τ |ρ to denote the restriction of the tautology τ by ρ.457

I Definition 13. Let ρxi ∈ {0, 1, ∗}xi and let ρyj ∈ {0, 1, ∗}yj . Furthermore, letR be the set of458

all ~ρ = {ρx1 . . . ρxn , ρy1 . . . ρym}, such that for all i ∈ [n] and j ∈ [m], |ρ−1
xi (∗)| = 5 logm and459

|ρ−1
yj (∗)| = 5 logn. Let f ix be the function fx on the variables ρ−1

xi (∗) after restricting all other inputs460

to ρxi , and likewise for f jy .461
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I Lemma 14 (Wide Clause Lemma under restrictions). For sufficiently large n and ρ ∈ R,462

if γ(S) > k2 then for any Res refutation π refuting τS |~ρ there exists a clause D ∈ π such that463

|I0(D)| ≥ k2 or |J0(D)| ≥ k.464

We omit the proof of Lemma 14, as it is essentially identical to Lemma 12. The only difference is465

that in each row i the Delayer chooses αi based on f ix instead of fx, and likewise for the columns.466

Note that fx was 2 logm surjective before the restriction, and since only logm variables are fixed in467

every row f ix is still logm surjective (and similarly for f jy ).468

Proof of Lemma 11. Let π be a Res refutation of τS and assume for contradiction that |π| <469

nk/16. First, consider a clause D ∈ π such that |I0(D)| ≥ k2. For each i ∈ I0(D), the chance that470

a randomly chosen ~ρ ∈ R doesn’t set one of the xi literals in D to 1 is less than (1− ( 3
4 ·

1
2 ))logm.471

Thus the probability that no i ∈ I0(D) sets D to 1 is at most ( 5
8 )k2 logm = ( 5

8 )k logn < 1
nk/8 . By472

a union bound the probability that some clause D in π satisfying |I0(D)| ≥ k2 survives a random473

restriction is less than nk/16

nk/8 = 1
nk/16 , using the fact that |π| < nk/16.474

Similarly the probability that some clause D ∈ π satisfying |J0(D)| ≥ k survives a random475

restriction is at most 1
nk/16 . Thus with probability at least 1 − 2

nk/16 , all clauses D satisfying476

|I0(D)| ≥ k2 or |J0(D)| ≥ k are set to 1 by a random restriction, and thus there exists a restriction477

~ρ = {ρx1 . . . ρxn , ρy1 . . . ρym} setting all such clauses to 1. However, this contradicts Lemma 14, as478

τS |~ρ must still have at least one such clause. Thus SQ(τS) ≥ nclk for cl = 1
16 . J479

6 Conclusions480

In terms of optimality of our results, the constructions in [13,14] are not known to be optimal, and any481

hardness results against approximating the gap hitting set problem in time no(k) for a larger value of482

k immediately gives a lower bound of no(k) against automatizability. While their results are “optimal”483

in terms of fixed-parameter tractability guarantees, there is nothing limiting a different reduction484

from getting the same (or even a weaker) result that works for larger values of the fixed parameter.485

In fact classically the hitting set problem has no o(logn) approximations; the obstacle to using this486

classical hardness is that it only rules out algorithms that get o(logn) approximation for all hitting487

set sizes, whereas [14] rules out algorithms for any fixed hitting set size. Nevertheless it’s believed488

that Ω(logn) hardness holds even for fixed hitting set sizes, and getting a reduction that achieves this489

result would strengthen our argument.490

On the flip side, all of our hardness results also work for TreeRes and Nullsatz, and therefore this491

reduction is limited to quasipolynomial hardness. This is in line with the details of the reduction; by492

the crucial fact that k2 ≤ logm
4 = logn

4k , this technique can’t be strengthened past the k = o(log1/3 n)493

threshold.9 Thus, the upper limit of improving the reductions of [13, 14] coincides almost exactly494

with the upper limit of our argument, and by extension any argument using the machinery of [2].495

A central motivation of this work was to make the techniques clear and simple in hopes that they496

can be made to work for stronger systems such as SA and SoS, where no lower bounds are known.497

A degree lower bound matching our results for Res and PC would shed light on the limitations of498

our current approximation algorithms. Similarly it’s possible that this proof can be made to work for499

the case of TreeCP or CP, where instead of arguing lower bounds directly we can hope to leverage500

the power of lifting theorems [21, 22]; in particular a constant-sized lifting gadget would immediately501

give results for TreeCP matching our other results.502

9 If we allow the formula to be satisfiable in the case where γ(S) > k2 we only need k ≤ logm
4 since we only ever

allow the proof to query k columns. This can also be made to work in the base setting where the formula must always
be unsatisfiable by standard tricks. However this still yields a barrier of k = o(log1/2 n).
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Appendix A: Hardness of Hitting Set under ETH598

In this section we give an overview of how to prove our results under the ETH assumption. We599

state and prove an analogue of Lemma 4 for ETH using the result of [14], and then point out the600

(superficial) changes needed to prove nonautomatizability results.601
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I Lemma 15 (Lemma 4 under ETH). Assuming ETH, for sufficiently large n, k = O(
√

logn),602

and h = O(log1/7−ε logn) for any ε > 0, no algorithm can solve the gap hitting set problem603

(S, k, hk) in time no(h).604

Proof. Let K := K(n) be a function such that KO(K3.5) = 1
4

√
n√
K

, and notice that for any605

constant ε > 0, K ∈ ω(log1/3.5−2ε n) . Additionally let h := h(n) =
√
K. Note that while the606

theorems in [14] are phrased for the dominating set problem, there exists a trivial transformation607

from dominating set to hitting set where the sets are indexed by vertices v and Sv contains exactly the608

vertices adjacent to v.609

We start with the 3-color problem, and the fact that under ETH there exist no 2o(n) algorithms to610

solve 3-coloring. First we consider the standard reduction from 3-coloring to K-clique as follows:611

given a graph G on n vertices, partition the vertices into K parts V1 . . . VK , each with exactly n/K612

vertices. We transform G into a new graph G′ whose vertices are split into K groups V ′1 . . . V
′
K each613

of size 3n/K . In each group V ′i we put a vertex for every possible valid 3-coloring of the vertices in614

Vi, and we connect two vertices in different groups V ′i , V
′
j iff their colorings are consistent in induced615

graph of G restricted to the vertices Vi ∪ Vj . We don’t connect any two vertices in the same group616

V ′i . Therefore there exists a K-clique in G′ iff there exist ways to 3-color all the different groups617

of vertices in G consistent with one another, which exists iff G has a 3-coloring. Note that we can618

assume |G′| = 3n/KK = 2Θ(n/K), because if it had size 2o(n/K) then brute force over all K-cliques619

would let us find a K-clique in G′ (and thus 3-coloring in G) in time 2o(n).620

Let d = (30h2(K + 1)2)4K3+3h = KO(K3). Following the proof of Theorem 4.1 of [14]621

we can transform the graph G′ into a hitting set instance S over a universe of size |G′|O(h) =622

(2O(n/K))O(
√
K) = 2O(n/

√
K) such that (1) if G′ has a K-clique then γ(S) < 1.1 · dh; (2) if G′ has623

no K-clique then γ(S) > h ·dh/3. Setting N := 2O(n/
√
K) and k := 1.1dh = KO(K3.5) ≤

√
logN624

we get a hitting set instance (S, k, hk) over [N ]. Note that we have fulfilled the guarantee that625

hk ≤ KO(K3.5) ≤ 1
4
√

logN ≤ 1
4

logN√
logN

≤ 1
4 logN1/k and thus we can set m := N1/K and use626

(m, logm/4)-universality and dual universality as usual. Furthermore we note that the reduction627

of [14] requires that N6/(K+6) be greater than (K + 6)! and d, both of which are guaranteed because628

(K + 6)! < KK � N1/K .629

This construction runs in time f(h,K) · N , where f is some function that is subsumed in630

magnitude by N for our choice of h and K. Thus since N = 2O(n/
√
K) and our reduction runs in631

time poly(N), under ETH no algorithm can decide the gap hitting set problem (S, k, hk) in time632

No(
√
K) = No(h). Since N � 2O(n) we find that h =

√
log1/3.5−2ε n > O(log1/7−ε logN) for633

any ε > 0. J634

We note that by our construction of τS , SQ(τS) = nΘ( γ(S)
k ). As before if γ(S) ≤ k then635

SQ(τS) = nO(1), but now if γ(S) > k we have SQ(τS) = nΩ(h), where before h = k because our636

instances were (S, k, k2). Since h < k all our proofs can be applied with hk in place of k2. Thus we637

can now repeat the proof of Theorem 1 to prove nonautomatizability in time nf for any f = o(h),638

using Lemma 15 and the fact that the gap between the exponents in the two proof sizes is Ω(h).639

Appendix B: Hardness of Hitting Set under GapETH640

In this section we improve Theorems 1 and 2 under the stronger GapETH assumption.641

I Theorem 16 (Main Theorem for GapETH). Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}.642

Assuming GapETH holds Q is not nf -automatizable for any f = õ(log logn). Furthermore for643

Q = Res(r), Q is not nf/ exp(r2)-automatizable for any f = õ(log logn) (where ε > 0 is any644

constant) if r = O(
√

log f).645
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We do this in a black-box way by improving Lemma 4 in the case of GapETH. The proof follows646

the reduction in [13] from the label cover problem to the gap hitting set problem, but the definitions of647

the problem and details of the reduction are omitted as we only need to focus on how the parameters648

change at each step.649

I Lemma 17 (Lemma 4 under GapETH). Assuming GapETH, for sufficiently large n and650

k = Õ(log logn) no algorithm can solve the gap hitting set problem (S, k, k2) in time no(k).651

Proof. Let K(n) be a function such that KKO(K) = 2O(n/K), and note that K ∈ ω( logn
log logn ).652

Following the proof of Theorems 4.3 and 4.4 of [13] consider an arbitrary label cover instance653

Γ = (G = (U, V,E),ΣU ,ΣV ,Π), where:654

|U | = n655

|V | = O(n)656

|ΣU | = O(1)657

|ΣV | = O(1)658

|Π| = O(|ΣU ||ΣV |) = O(1)659

Assuming GapETH it is known that no 2o(|U |)-time algorithm distinguishes between a max660

covering of size |U | and a max covering of size less than (1−ε)|U | for any sufficiently large (constant)661

ε > 0. We can transform this into a new label cover instance Γ′ = (G′ = (U ′, V ′, E′),ΣU ′ ,ΣV ′ ,Π′)662

where663

|U ′| =
( |U |

(K lnK)/ε
)

= nO(K lnK)
664

|V ′| = K665

|ΣU ′ | = |ΣU |(K lnK)/ε = KO(K)
666

|ΣV ′ | = |ΣV |n/K = 2O(n/K)
667

|Π′| = O(|ΣU ′ ||ΣV ′ |) = 2O(n/K)
668

Γ has a max covering of size |U | iff Γ′ has a max covering of size |U ′|669

Γ has no max covering of size (1− ε)|U | iff Γ′ has no max covering of size 1
KK |U ′|670

For our choice of K, it holds that |Γ′| is dominated by |ΣV ′ | = 2O(n/K). So under GapETH it671

is impossible to distinguish between Γ′ having a max covering of size |U ′| and not having a max672

covering of size 1
KK |U ′| in time 2o(n) = |Γ′|o(K). Theorem 4.4 of [13] shows that distinguishing673

these two cases on Γ′ implies distinguishing min-right coverings of size at most |V ′| = K and those674

of size greater than K2 for the same label cover instance |Γ′|. Using this fact and following Theorem675

5.4 of the same paper, we transform Γ′ in time poly(|Γ′|) into a hitting set instance H = (U ,S),676

where677

|U| = |U ′||V ′||ΣU′ | = nO(K lnK)KKO(K) = KKO(K)
678

|S| = |V ||ΣV | = K2O(n/K) = 2O(n/K)
679

γ(S) is equivalent to the min-right covering number of |Γ′|680

Define N = |H|, and because KKO(K) = 2O(n/K) we get N = |U||S| = 2O(n/K). We now681

define k(n) to be such that k(N) = K(n), which can be shown to be Õ(log logn) (suppressing682

log log logn factors). Therefore under GapETH there doesn’t exist any algorithm that can distinguish683

between γ(H) ≤ k(N) and γ(H) > k2(N) in time No(k(N)) for hitting set instances H of size684

N . J685
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Appendix C: Nonautomatizability of Res(r)686

In this section we prove the following Lemma, which proves a lower bound for Res(r) refutations of687

τS . Part (2) of Theorem 1 (the nonautomatizability of Res(r)) follows as a corollary.688

I Lemma 18. For sufficiently large n, let (S, k, k2) be an instance of the gap hitting set problem689

over [n] such that γ(S) > k2 and k2 < logm. Then for Q = Res(r), SQ(τS) ≥ nk/ exp(r2).690

Proof. Suppose that π is a small Res(r) refutation of τS ; thus each line of the proof is a disjunction691

of size-r conjunctions (where r � logn). At a high level, we will show that there exists a random692

restriction ρ ∈ R (defined in Definition 13) such that π|ρ is a small-width Res proof refuting τS |ρ,693

which contradicts the Wide Clause Lemma (Lemma 12).694

In order to prove the existence of such a restriction, we will apply the switching lemma proven695

in [39] which is specifically designed to work for Res(r). More specifically, the restriction will leave696

a constant fraction of the variables unset. In contrast, standard switching lemmas such as those used697

to prove bounded-depth circuit lower bounds leave at most 1/ logn variables unset. The fact that the698

restriction is small (sets only a constant fraction of variables) will allow us to maintain that τS |ρ is699

still an encoded version of τS , but where the encoding length is somewhat smaller. Whereas standard700

switching lemmas typically convert disjunctions of r-conjunctions to decision trees of height r (in701

order to apply it repeatedly), in our case, we only need to apply the switching lemma once, and702

therefore we are content with converting disjunctions of r-conjunctions to decision trees of height703

w, where r is much smaller than w. This setting of parameters is what makes it possible to obtain a704

switching lemma that sets only a constant fraction of the inputs. After applying the restriction, the705

proof is a sequence of sound inferences, where each line is a height-w decision tree. [39] show how706

to convert such a refutation into a width w′ refutation, where w′ is not much larger than w, and thus707

we can apply our Wide Clause Lemma in order to obtain a contradiction.708

The switching lemma (showing the existence of the restriction ρ) is argued in stages; in stage i709

we show that for any i-DNF D either there exist many restrictions in R that set D to 1 or we can710

create a small height decision tree with each leaf labeled by D restricted by the path to the leaf leaf,711

and such that the resulting DNF at every leaf is a (i− 1)-DNF. To do this we take the i-DNF from712

the previous round consider its covering number, where the covering number c(D) is the size of713

the smallest set of variables which intersects every term in D. If the covering number is large, then714

many terms are independent and are thus set to 1 by a random restriction with high probability. If the715

covering number is small, then we can query all variables in the cover to turn D into a (i− 1)-DNF.716

Continuing until i = r gives us a small height decision tree for all D ∈ π with small c(D), while717

taking a union bound over all D ∈ π with large c(D) ensures that there exists a restriction ρ ∈ R that718

kills off all such DNFs. The resulting proof π can then be shown to have a small Res proof given719

these two facts, which completes the proof.720

Let s be a parameter to be set later, and assume for contradiction that there exists a Res(r) proof721

π such that |π| < ns. Define sequences s0 . . . sr, p1 . . . pr as follows:722

s0 = (
r∏
i=1

2(6/5)i+1

i
)s logn

si = ( i

2(6/5)i+1 )si−1

pi = 2−2si

Observe that that sk = s logn, and that si � si+1
4 .723

Consider any i-DNF D such that c(D) > si. By the pigeonhole principle there exist si/i terms724

T1 . . . Tsi/i in D which are mutually disjoint. Let ρ ∼ R be defined as in Lemma 11. Then the725
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probability that D is not set to 1 by ρ is at most the probability that no term Tj is set to 1, and since726

they are disjoint this happens with probability (1− ( 5
6 )i)si/i = e−(6/5)isi/i < 2−2si+1 = pi+1.727

Now consider an r-DNF D. We claim that728

Pr
ρ∼R

[DT(F |ρ) >
r−1∑
i=0

si] ≤
r∑
i=1

2(
∑r−1

j=i
sj)pi

where DT(F |ρ) is the height of a minimal decision tree for F |ρ. We prove this claim by induction on729

r. In the case when r = 1, either c(D) ≤ s0, in which case the claim holds trivially, or c(D) > s0, in730

which case it is killed off with probability p1 = p12
∑r−1

j=1
sj for r − 1 = 0.731

Inductively assume the claim holds for all r − 1-DNFs and consider an r-DNF D. Again we732

consider two cases, when c(D) ≤ sr−1 and when c(D) > sr−1. In the former case, let H be the set733

of sr−1 variables needed to cover all terms of D, and note that DT(D) ≤ DT(D/H) + sr−1 as we734

can query all variables in H first. Since D/H is an r-DNF, applying the induction hypothesis along735

with a union bound over all 2sr−1 settings of H gives736

Pr
ρ∼R

[DT(D|ρ) >
r−1∑
i=0

si] ≤ 2sr−1 Pr
ρ∼R

[DT((D/H)|ρ) >
r−2∑
i=0

si]

≤ 2sr−1

r−1∑
i=1

2(
∑r−2

j=i
sj)pi

≤
r∑
i=1

2(
∑r−1

j=i
sj)pi

In the latter case, when c(D) > sr−1, as shown before737

Pr
ρ∼R

[DT(D|ρ) >
r−1∑
i=0

si] ≤ Pr
ρ∼R

[DT(D|ρ) > 0] ≤ pr �
r∑
i=1

2(
∑r−1

j=i
sj)pi

We now use this claim and take a union bound over allD ∈ π to show that there exists a restriction738

ρ which makes all D ∈ π have a small decision tree, which we then connect to the width of any Res739

proof of τS |ρ to get a contradiction.740

Pr
ρ∼R

[∃D ∈ π | DT(D|ρ) >
r−1∑
i=0

si] ≤ ns
r∑
i=1

2(
∑r−1

j=i
sj)pi

≤
r∑
i=1

2(
∑r−1

j=i
sj)+s logn

pi

≤
r∑
i=1

2(
∑r

j=i
sj)pi

≤
r∑
i=1

2 4
3 si2−2si

≤
r∑
i=1

2− 2
3 si

≤ r2− 2
3 sr

≤ 2log r− 2
3 s logn

� 1
2

Thus there exists a ρ ∈ R such that for all D ∈ π,741
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DT(D|ρ) ≤
r−1∑
i=0

si ≤ r · s0 ≤ r((
r∏
i=1

2(6/5)i+1

i
)s logn)� 2r2

r
s logn

Set s = k
2r2 , and thus DT(D|ρ) � k logn

r . So π|ρ is a Res(r) proof where every line can be742

represented by a decision tree of height k logn
r . It was shown (Theorem 5.1 in [39]) that these clauses743

can be made into a Res proof π′ refuting τS |ρ such that w(π′) � r k logn
r = k logn. But as usual744

we can still apply Lemma 12 after restricting τS by ρ, and thus we get a contradiction. J745

We briefly state two special cases of Theorem 1, part (2): the case where r is constant and where746

we show no (weakly) quasipolynomial automatizability, and the case of maximal r where we achieve747

superpolynomial automatizability.748

I Corollary 19. Assuming GapETH, for any constant c, Res(c) is not automatizable in time nk749

for any k = õ(log logn).750

ICorollary 20. Assuming GapETH, Res(r) is not nO(1)-automatizable for any r = õ(
√

log log logn).751

Appendix D: Nonautomatizability of Nullsatz and PC752

Galesi and Lauria [20] extended the argument due to Alekhnovich and Razborov [2] to prove that753

Nullsatz, PC and PCR are also not polynomially automatizable. In this section we similarly extend754

our proof to apply to these systems, obtaining our improved bounds as well. Namely we prove Lemma755

11 for the case of Q = PCR, and by extension Nullsatz and PC.756

The strategy is to prove a degree version of the wide clause lemma for τS in the style of Lemma757

12, and then the same random restriction argument as before will prove the size lower bound needed758

for Lemma 11. Recalling the definitions for I0, J0 in Lemma 12, for any monomial t let I0(t) be the759

set of all i ∈ [n] for which at least logm variables from xi appear in t, and let J0(t) be the set of all760

j ∈ [m] for which at least logn variables from yj appear in t. Recall that for PCR there exist distinct761

variables z and z, both of which we consider to be variables from their respective xi or yj .762

I Lemma 21. If γ(S) ≥ k2, then for any PCR refutation π refuting τS , there exists a monomial763

t ∈ p ∈ π such that |I0(t)| ≥ k2 or |J0(t)| ≥ k.764

Proof. Given a set P = {p1, . . . , pm} of polynomials over F [x1, . . . , xn], we denote by span(P )765

the ideal generated by P – that is the set {
∑
i pifi | fi ∈ F [x1, . . . , xn]}. A set of polynomials766

f1, . . . , fn semantically implies a polynomial g if any assignment that satisfies fi = 0 for all i ∈ [n]767

also satisfies g = 0. Note that p ∈ span(P ) if and only if P semantically implies p, which we write768

as P ` p.769

Recall that P is our set of input clauses converted to polynomial form, and Aj is the set of clauses770

associated with column j. Accordingly let Pj denote the corresponding set of polynomials plus the771

equations {z2 − z = 0} for every variable z in τ . For a subset J ⊆ [m] of columns, let PJ denote772

∪j∈JPj , and thus span(PJ) is the ideal generated by the polynomials PJ .773

We will prove our degree bound for PCR refutations of τS by defining a linear operator K which774

maps polynomials p where |I0(t)| < k2 and |J0(t)| < k for all t ∈ p to polynomials q, and satisfies775

the following conditions:776

1. For all initial polynomials p ∈ ∪j∈[m]Pj , K(p) = 0.777

2. K is linear: K(ap+ bq) = aK(p) + bK(q) for all constants a, b and polynomials p, q.778

3. K(xt) = K(xK(t)) for all x779

4. K(1) 6= 0780
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The existence of such an operator implies our degree bound as follows. Given an alleged PCR781

refutation which contains no monomial t where I0(t) ≥ k2 or J0(t) ≥ k, applying K to every line782

in the proof, we have by the properties of K in conditions 1, 2, and 3 that K(p) = 0 for every783

polynomial in the proof. On the other hand since the final line is 1, by property 4 K(1) 6= 0, which is784

a contradiction.785

We fix the grlex (graded lexicographical) ordering on all polynomials over F [x1, . . . , xn]. Given786

a polynomial q and J ⊆ [m], let RJ(q) be the minimal (with respect to <) polynomial p such787

that q − p ∈ span(PJ). For every monomial t we set K(t) = RJ0(t)(t), and for p =
∑
i citi set788

K(p) =
∑
i ciK(ti). Intuitively K(t) is how “close” t is to being in the span of the axioms in all789

columns with many variables in t. Note that this definition is asymmetric with respect to ~x and ~y.790

We now show the conditions of the linear operator are fulfilled. Consider any initial polynomial,791

p. If p is z2 − z, then since K[z2] = K[z], K[z2 − z] = 0 as required. Otherwise p is of the form792

xαii y
βi
j = 0. Note that p is a single monomial with 4 logn variables of the form yj and no variables793

of the form yj′ for j 6= j′. So J0(p) = {j} and thus RJ0(p)(p) = 0, which fulfills condition 1. By794

definition K is a linear operator, which fulfills 2. Because J0(1) = ∅, 1 /∈ span(PJ0(1)), and so795

condition 4 is satisfied.796

To prove condition 3, let us first prove the intuitive direction of the equality, namely that797

K(xt) ≥ K(xK(t)). We repeatedly make use of the fact that if J ⊆ J ′ then RJ(t) ≥ RJ′(t).798

K(xt) = RJ0(xt)(xt)
= RJ0(xt)(xRJ0(xt)(t))
≥ RJ0(xt)(xRJ0(t)(t)) (1)
= RJ0(xt)(xK(t))
≥ RJ0(xK(t))(xK(t)) (2)
= K(xK(t))

In order to get equality, it is enough to show that (1) and (2) can be made equalities. For (2) note799

that if we expand xK(t) as a polynomial and apply the linear operator RJ0(xt) to each term, we get800

that equality holds iff for all monomials t′ in xK(t),801

RJ0(xt)(t′) = RJ0(xK(t))(t′).

We now observe that J0(xt) ⊆ J0(t) and J0(t′) ⊆ J0(xt), J0(xK(t)). Therefore to finish the802

proof of condition 3 and thus the lemma, we prove the following claim:803

804

B Claim 22. For all t where |I0(t)| < k2 and all J ⊇ J0(t) such that |J | < k, RJ0(t)(t) = RJ(t).805

We need to show that RJ0(t)(t) ≥ RJ(t) and RJ0(t)(t) ≤ RJ(t). The first inequality holds806

trivially because J0(t) ⊆ J , meaning that any p ∈ span(PJ0(t)) is also in span(PJ) as well. Now807

we prove the other direction, RJ0(t)(t) ≤ RJ(t). If we can show that t − RJ(t) ∈ span(PJ0(t)),808

then since RJ0(t) is the smallest polynomial p for which t − p ∈ span(PJ0(t)), it follows that809

RJ(t) ≥ RJ0(t) as desired. This is equivalent to showing that PJ0(t) ` t − RJ(t) by definition of810

span, which is the statement we will now prove.811

Assume for contradiction that there exists an assignment ~α, ~β that satisfies all axioms in PJ0(t)812

but falsifies t−RJ(t). We then prove that there exists an assignment ~α′, ~β′ that satisfies all axioms813

in PJ but doesn’t touch any variables in t − RJ(t), This means that PJ doesn’t imply t − RJ(t),814

which contradicts the fact that by definition of R, t−RJ(t) ∈ span(PJ). For this we note that the815

set of variables in t is a superset of the variables in t − RJ(t), and thus |I0(t − RJ(t))| < k2 and816

|J0(t−RJ(t))| < k as per the claim. For simplicity we will refer to these sets as simply I0 and J0.817
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Consider a row i ∈ [n]− I0. By the (m, logm/4)-universal property of A there exists a string818

a ∈ A which is zero in all positions j ∈ J . Since there are at most logm xi variables in t−RJ(t),819

we can leave αi untouched on those variables and change the rest to give us α′i, such that fx(α′i) = a.820

We do this for all such i, noting that no variables in t−RJ(t) have been changed.821

Now consider a row j ∈ J − J0. Let S0 be a set that doesn’t contain any i ∈ I0, given to us by822

the fact that I0 < k2 < γ(S). Since there are at most logn yj variables in t−RJ(t), we can leave823

βj untouched on those variables and change the rest to give us β′j , such that fy(β′j) = S0. We do this824

for all such β′j , noting again that no variables in t−RJ(t) have been changed.825

We now claim that ~α′, ~β′ satisfies all axioms in PJ . Consider a row j ∈ J0. Assume an axiom for826

row i and column j was violated. If i /∈ I0, we are guaranteed that fx(α′i) is 0 in the jth entry, so it827

must be that i ∈ I0. But then we haven’t changed αi or βj , and since the original assignment satisfied828

all axioms in PJ0 the axiom could not have been violated by ~α′, ~β′. Now consider a row j ∈ J − J0.829

Assume an axiom for row i and column j was violated. Again if i /∈ I0, we are guaranteed that fx(α′i)830

is 0 in the jth entry, so it must be that i ∈ I0. But then we changed βj such that fy(β′j) is 0 in the ith831

row, and so the axiom could not have been violated by ~α′, ~β′. J832

Proof of Lemma 11. Our proof is identical as the restriction argument in Section 5. Assume833

for contradiction that there exists a PCR proof π refuting τS in size less than nk/16. We apply834

the same restriction from Definition 13 to the positive variables ~x, ~y in every line. Then for the835

negative variables we set z to be ∗ if z is set to ∗ and 1 − z otherwise. The same analysis proves836

that there exists a restriction ρ which sets every monomial t with |I0(t)| ≥ k2 or |J0(t)| ≥ k to 0,837

and the remaining proof π|ρ is a refutation of τS |ρ. Defining f ix and f jy as before, each f ix is still a838

(5 logm, logm, logm) code and each f jy is still a (5 logn, logn, logn) code, and so π|ρ still requires839

such a monomial by Lemma 21, which is a contradiction. J840
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