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Abstract

A catalytic machine is a model of computation where a traditional space-bounded machine is
augmented with an additional, significantly larger, “catalytic” tape, which, while being available
as a work tape, has the caveat of being initialized with an arbitrary string, which must be
preserved at the end of the computation. Despite this restriction, catalytic machines have been
shown to have surprising additional power; a logspace machine with a polynomial length catalytic
tape, known as catalytic logspace (CL), can compute problems which are believed to be impossible
for L.

A fundamental question of the model is whether the catalytic condition, of leaving the
catalytic tape in its exact original configuration, is robust to minor deviations. This study was
initialized by Gupta et al., who defined lossy catalytic logspace (LCL[e]) as a variant of CL where
we allow up to e errors when resetting the catalytic tape. They showed that LCL[e] = CL for any
e = O(1), which remains the frontier of our understanding.

In this work we completely characterize lossy catalytic space (LCSPACE[s, c, e]) in terms of
ordinary catalytic space (CSPACE[s, c]). We show that

LCSPACE[s, c, e] = CSPACE[Θ(s+ e log c),Θ(c)]

In other words, allowing e errors on a catalytic tape of length c is equivalent, up to a constant
stretch, to an equivalent errorless catalytic machine with an additional e log c bits of ordinary
working memory.

As a consequence, we show that for any e, LCL[e] = CL implies SPACE[e logn] ⊆ ZPP, thus
giving a barrier to any improvement beyond LCL[O(1)] = CL. We also show equivalent results
for non-deterministic and randomized catalytic space.
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1 Introduction

1.1 Catalytic computation

Within space-bounded computation, the catalytic computing framework, first introduced by Buhrman,
Cleve, Koucký, Loff, and Speelman [BCK+14], models the question of whether or not full memory
can be a computational resource. Their main object of study is a catalytic logspace (CL) machine,
in which a traditional logspace-bounded Turing machine is given access to a second work tape,
polynomial in length, called the catalytic tape; while this tape is exponentially longer than the
logspace work tape, it is already full with some string τ at the outset, and this string τ must be
preserved by the overall computation.

Surprisingly, [BCK+14] show that CL can be much more powerful than L, with the catalytic
tape being at least as powerful a resource as non-determinism (NL ⊆ CL), randomness (BPL ⊆ CL),
and more (TC1 ⊆ CL). They also showed that its power is nevertheless limited and falls far short
PSPACE, namely CL ⊆ ZPP.

This work spawned a long sequence of explorations of the power of catalytic space. Given the
base model of CL there are many possible variations and structural questions to be asked, such as
the power of randomness [DGJ+20, CLMP24], non-determinism [BKLS18], non-uniformity [Pot17,
RZ21, CM22, CM24], and other variants [GJST19, BDS22]. There have also been many works
connecting the catalytic framework to broader questions in complexity theory, such as space-bounded
derandomization [Pyn24, DPT24, LPT24], as well as adaptations of catalytic techniques to solve
longstanding open questions such as compositional upper bounds for space [CM20, CM21, CM24]
(see [Kou16, Mer23] for surveys on the topic).

1.2 Lossy catalytic computation

Besides these more standard structural questions, there are also catalytic variants which are more
specific to the catalytic space restriction. In particular, Gupta et al. [GJST24] initiated the study
of lossy catalytic computing, wherein the catalytic tape need not be exactly reset to its initial
configuration. This model, which we refer to as LCSPACE, essentially asks how robust the core
definition of catalytic space is to seemingly small relaxations; for example, in the quantum setting
some computation error (albeit of a different form) is necessary for converting between different
definitions based on allowed operations.

To begin, note that CL with e ≤ poly(n) errors trivially contains the class SPACE[e] by simply
erasing the first e bits of the catalytic tape and using them as free memory. Because we have not
managed to prove that any space-bounded class beyond L which is contained in ZPP, we should not
expect to be able to prove CL is the same as CL with e = ω(log n) errors. The question, then, is to
understand where, in the range of e = 0 to e = O(log n), is the acceptable number of errors that CL
can provably tolerate.

As an initial answer to the previous question, [GJST24] show that CL gains no additional power
from allowing any constant number of errors on the catalytic tape, i.e., LCL[O(1)] = CL. This remains
the frontier of our knowledge, and Mertz [Mer23] posed it as an open question to improve this result
to any superconstant number of errors, or, alternatively, to provide evidence against being able to
prove such a collapse.1 Recently, Cook et al. [CLMP24] showed that a different error-prone model,
namely randomized CL, is no more powerful than the base CL model, indicating that perhaps such
an improvement is possible.

1We cannot expect an unconditional separation between CL and any LCL, as even separating PSPACE from e.g.
TC1(⊆ CL) remains wide open.
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1.3 Our results

In this work we completely characterize lossy catalytic space in terms of ordinary catalytic space. Let
CSPACE[s, c] denote catalytic machines with free space s and catalytic space c, and let LCSPACE[s, c, e]
be the same with up to e errors allowed in resetting the catalytic tape. We show that these e errors
are equivalent to an additional e log c free bits of memory, up to constant factor losses.

Theorem 1. Let s := s(n), c := c(n), e := e(n) be such that e ≤ c1−Ω(1). Then

LCSPACE[s, c, e] = CSPACE[Θ(s+ e log c),Θ(c)]

Besides characterizing LCSPACE[s, c, e], this allows us to understand the lay of the land for
LCL[e], i.e., CL with e errors. In particular, this recovers the result of [GJST24], which says that
LCL[O(1)] = CL. Furthermore, it gives intuition that this theorem is the best we can hope for with
respect to e, again assuming SPACE[e log n] cannot be shown to be in ZPP for any e = ω(1).

Corollary 2. For any e := e(n),

LCL[e] = CL implies SPACE[O(e log n)] ⊆ ZPP

We also show that our proof extends to catalytic machines with additional power beyond errors,
namely non-deterministic and randomized catalytic space.

Theorem 3. Let C ∈ {NCSPACE,BPCSPACE}, and let s := s(n), c := c(n), e := e(n) be such that
e ≤ c1−Ω(1). Then

LC[s, c, e] = C[Θ(s+ e log c),Θ(c)]

We briefly remark that the e ≤ c1−Ω(1) restriction in all our results is only needed to get the
constant stretch in the catalytic tape; we discuss the unrestricted setting in Section 3.2.

1.4 Open problems

Errors in expectation. A related question asked in [Mer23] is whether or not CL is equivalent
to CL with O(1) errors allowed in expectation over all starting catalytic tapes. This represents a
different notion of distance between catalytic tapes, in opposition to Hamming distance, that may
be more applicable to settings such as quantum computation. However, no results are known for
expected errors, and all techniques in this paper fail to restore the tape in pathological cases where a
few starting tapes end up with potentially many errors.

Randomized error-prone catalytic space. Recent work of Cook et al. [CLMP24] shows that
CSPACE[s, c] = BPCSPACE[O(s),poly(c)], which, in conjunction with Theorem 3, seems to indicate
that our theorems can be unified to show the connection between ordinary CSPACE and CSPACE
which is both randomized and lossy, i.e. CSPACE[s+ e log c, c] = LBPCSPACE[O(s),poly(c), e]. This
would characterize how deterministic catalytic space handles both natural kinds of “error”, namely
both error in the output from the randomness and error in resetting the catalytic tape.

However, the proof of [CLMP24] only works when c = 2Θ(s), and our connection to error-prone
space incurs an e log c blowup in free space, putting us outside this regime. A generalization of their
result, i.e. showing CSPACE[s, c] = BPCSPACE[O(s),poly(c)] for every s and c,2 would tie off this
connection.

2Note that the polynomial blowup allowed in the catalytic tape means this result would not yield novel deran-
domization for ordinary space; even for s, c = O(logn) this would only show that derandomization overheads can be
pushed into a polylogarithmic length catalytic tape, which was already shown by Pyne [Pyn24].
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Lossy catalytic branching programs. Due to the flexibility in the conditions of Theorem 1,
the results of Theorem 3 are likely to extend to other settings catalytic settings; for example, it
is immediate to extend both results to CSPACE with advice. We focus on non-determinism and
randomness simply because these are two of the most well-studied catalytic variants, and future
works are free to adapt these proofs to their own settings.

In terms of notable omissions, however, one setting where one direction does not yet extend, and
which is very related to advice, is the catalytic branching program model, which is a syntactic, and
by extension non-uniform, way of capturing CSPACE. The issue here is simply that such machines
can read and write their entire work tape in one step, which our simulation of CSPACE by LCSPACE
is unequipped to handle. As we will note in Appendix A, showing such branching programs are
reversible would be sufficient to close this off.

Exact Simulation Space Requirements In the current simulation of errors using clean space,
we use 4e log c clean space. By contrast, in our simulation of clean space using errors, we use only
e more errors. If errors can be simulated in clean space e log c instead, then there is only very low
overhead in switching between the two perspectives. This would tighten the correspondence between
errors and space that we establish. However, since the distance between two codewords required to
correct e errors is 2e+ 1, a different error correction code would be necessary to reach clean space
e log c.

2 Preliminaries

We begin by defining catalytic machines as introduced by Buhrman et al. [BCK+14].

Definition 1 (Catalytic space). A catalytic Turing Machine is a space-bounded Turing machine
with two work tapes: 1) a read-write work tape of length s(n) which is initialized to 0s(n), and 2) a
read-write catalytic tape of length c(n) ≤ 2s(n) which is initialized to an arbitrary state τ ∈ {0, 1}c(n).
On any input x ∈ {0, 1}n and initial catalytic state τ , a catalytic Turing machine has the property
that at the end of the computation on input x, the catalytic tape will be in the initial state τ .

In this work we focus on a relaxation of catalytic space by Gupta, Jain, and Sharma [GJST24],
where we are allowed to make some errors in resetting the catalytic tape.

Definition 2 (Lossy catalytic space). A lossy catalytic Turing Machine with e(n) errors is a catalytic
machine where at the end of the computation on any input x ∈ {0, 1}n and initial catalytic state τ ,
instead of requiring that the catalytic tape be in state τ , the catalytic tape can be in any state τ ′

such that τ and τ ′ differ in at most e(n) locations.

Lastly we specify the basic complexity classes arising from our two catalytic definitions, as well
as their specification to the “logspace” setting, where most research interest at the moment lies.

Definition 3. We write

• CSPACE[s, c]: the class of languages which can be recognized by catalytic Turing Machines
with work space s := s(n) and catalytic space c := c(n).

• LCSPACE[s, c, e]: the class of languages which can be recognized by lossy catalytic Turing
Machines with work space s := s(n), catalytic space c := c(n), and e := e(n) errors.

We additionally write

• CL := CSPACE[O(log n),poly n]

• LCL[e] := LCSPACE[O(log n),poly n, e]
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3 Main theorem

In this section we will prove Theorem 1. We will do so via a simulation argument for each direction
in turn.

3.1 Simulating errors with space

First, we show that LCSPACE[s, c, e] ⊆ CSPACE[O(s+ e log c), O(c)]. In fact, we will not need any
increase in the length of our catalytic tape.

Theorem 4. Let s := s(n), c := c(n), e := e(n). Then

LCSPACE[s, c, e] ⊆ CSPACE[s+O(e log c), c]

We note that this was also proven in [GJST24] for the case of LCL[O(1)], but we will pursue a
different proof, based on error-correcting codes, which will allow us to generalize to other catalytic
models in Section 4.

Proof. Let Me be an LCSPACE[s, c, e] machine. We will devise a CSPACE[s+O(e log c), c] machine
M0 which simulates Me. Note that in this section, we will not use our parameter restriction on e;
this direction holds for every setting of s, c, and e. We will presume that e ≤ c

log(c) , otherwise the

inclusion becomes trivial.
Our simulation will go via an error-correcting code. In particular we will use BCH codes3

(BCH), named after Bose, Ray-Chaudhuri, and Hocquenghem [BRC60, Hoc59], which we define as
per [DRS04, DORS06]. We define the mapping BCH and prove the following lemma in Appendix B
(see Corollary 18, Lemma 21 and Lemma 22).

Lemma 5. Let q := 2⌈log(c+e)⌉. There exists a mapping BCH : Fq
q → Fq

q with the following operations:

• Encoding: EncBCH takes as input a string S of length c, plus an additional (2e+1)⌈log(c+ e)⌉
bits initialized in 0, and outputs a codeword Senc:

S + [0](2e+1)⌈log(c+e)⌉ →Enc Senc

Furthermore, all outputs Senc generated this way have minimum distance δ := 2e+ 1 from one
another.

• Decoding: DecBCH takes as input a string S′enc of length c+(2e+1) log(c+e), with the promise
that there exists a string S of length c such that EncBCH(S + [0]2e log(c+e)) differs from S′enc in
at most δ/2− 1 = e locations, and outputs this string S:

S′enc →Dec S + [0](2e+1) log(c+e)

Furthermore, both EncBCH and DecBCH can be computed in space O(e log c).

We now move on to the simulation of our LCSPACE[s, c, e] machine Me. Our CSPACE[s +
O(e log c), c] machine M0 acts as follows:

1. Initialization: use the function EncBCH to encode the initial state τ of the catalytic tape into
a codeword, using (2e+ 1)⌈log(c+ e)⌉ additional bits from clean space,

τ + [0](2e+1)⌈log(c+e)⌉ →Enc τenc.

3Technically because of our parameters, they can even be considered Reed-Solomon codes, which are a special case
of BCH codes; nevertheless we follow the presentation of the more general code form.
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2. Simulation: Run Me using clean space s and the first c bits of τenc as the catalytic tape.
When Me finishes the calculation, we record the answer in a bit of the free work tape. The
catalytic tape is, at this point, in a state τ ′enc which differs in at most e locations from τenc.

3. Cleanup: use the function DecBCH to detect and correct our resulting catalytic tape τ ′enc:

τ ′enc →Dec τ + [0](2e+1)⌈log(c+e)⌉

Once we finish this process, we output our saved answer and halt.

The correctness of M0 is clear, as it gives the same output as Me. By our error guarantee on Me

and the correctness of Dec, our catalytic tape is successfully reset to τ . Our catalytic memory
is c as before, while for our free work space we require s bits to simulate Me, an additional
(2e+ 1)⌈log(c+ e)⌉ = (2 + o(1))e log c zero bits for our codewords, and O(e log c) space for EncBCH
and DecBCH, for s+O(e log c) space in total.

Note 3.1. There is an alternative proof of this point, one which gets better parameters and relies on
an interesting characterization of space, namely the reversibility of space. This proof is a simplification
and extension of the one originally provided in [GJST24], and we provide it in Appendix A for those
interested.

3.2 Simulating space with errors

We now show the other direction of Theorem 1, i.e. CSPACE[s+e log c, c] ⊆ LCSPACE[O(s), O(c), O(e)].

Theorem 6. Let s := s(n), c := c(n), e := e(n), and ϵ > 0 be such that e = o(cϵ/(1+ϵ)). Then

CSPACE[s+ e log c, c] ⊆ LCSPACE[s+ log c, (1 + o(1))c, (1 + ϵ)e]

Since s ≥ log c by the definition of a catalytic machine, this achieves the reverse direction of
Theorem 1 with very small blowups in s and c, and for e bounded by a small polynomial in c we
get a negligible error blowup as well. Note that we allow ϵ > 1, and so our proof is not limited to
e < c1/2; however, we will pay for larger values of e in the error blowup, and for e = c1−o(1) this
factor becomes superconstant.

To understand our construction, we will first prove a version with looser space parameters. This
result is incomparable to Theorem 6; although we lose a factor of e in our catalytic space, in exchange
we have no restrictions on e and no loss in e either.

Theorem 7. Let s := s(n), c := c(n), e := e(n) be such that c is a power of 2. Then

CSPACE[s+ e log c, c] ⊆ LCSPACE[s+ (log e+ log c+ 2), (e+ 1)c, e]

Proof. Let M0 be a CSPACE[s + e log c, c] machine. We will devise a LCSPACE[s + (log e + log c +
2), (e+1)c, e] machine Me which simulates M0. By the definition of a Turing machine, we will assume
that in any time step M0 only reads and writes at most one bit on the work tape.

For any string σ and set of indices S, let σ⊕S denote σ after flipping the bits in the locations in
S; we abuse notation for singleton sets S and use σ⊕j in place of σ⊕{j}. Our key construction will
use the following folklore4 construction:

4This construction is based on the solution to the so-called “almost impossible chessboard puzzle”; interested
readers can find the setup and solution in videos on the YouTube channels 3Blue1Brown (https://www.youtube.com/
watch?v=wTJI_WuZSwE) and Stand-up Maths (https://www.youtube.com/watch?v=as7Gkm7Y7h4). It can also be seen
as the syndrome of the Hamming code.

6

https://www.youtube.com/watch?v=wTJI_WuZSwE
https://www.youtube.com/watch?v=wTJI_WuZSwE
https://www.youtube.com/watch?v=as7Gkm7Y7h4


Lemma 8. For every k, there exists a mapping mem : {0, 1}2k → {0, 1}k, computable in space k + 1,

such that the following holds: for any τ ∈ {0, 1}2k and any S ⊆ [k],

mem(τ)⊕S = mem(τ⊕val(S))

where val(S) =
∑

i∈S 2i is the value in [2k] given by the characteristic vector of S.

Intuitively, Lemma 8 gives us an easily computable mapping where any transformation of the
k-bit output string can be achieved by flipping one bit of the 2k-bit input string, with the location of
this single bitflip being determined only by the locations where the current and target output strings
differ.

Proof of Lemma 8. For each J ∈ [2k], consider the bitstring bin(J) ∈ {0, 1}k corresponding to the

binary representation of J . We will define our mapping mem for each input τ ∈ {0, 1}2k as

mem(τ)j =
⊕

J∈[2k]

bin(J)j · τJ

This is clearly computable in space k + 1, as we need only store J and our current sum. Now note
that for any S, flipping the value τval(S) flips every mem(τ)j value where bin(val(S))j = 1, which are
exactly the values j ∈ S, and leaves all other mem(τ)j values unchanged.

At a high level, our LCSPACE[s+ (log e+ log c+ 2), (e+ 1)c, e] machine Me works as follows. Me

will use its s bits of free memory and the first c bits of catalytic memory to represent their equivalent
blocks in M0, i.e. s bits of free memory and c bits of catalytic memory. We will break the remaining
e · c bits of our catalytic tape of Me into e blocks B1 . . . Be of size c each, and we denote by τi the
memory in block Bi. We apply Lemma 8 with k = log c—recall that we assume c is a power of
2—and use each memi := mem(τi) to represent an additional log c bits of free memory, giving us an
additional e log c bits of memory in total. Our additional workplace memory will be used to compute
the mapping, serve as pointers, and other assorted tasks.

Before formally stating Me, we mention a special case of the construction of Lemma 8, which will
allow us to use it in a reversible operational manner.

Claim 9. Let τ0, τ1, τ2 . . . τt−1, τt ∈ {0, 1}2
k

be such that 1) τi and τi−1 differ in exactly one coordinate
for all i ∈ [t]; 2) mem(τi) and mem(τi−1) differ in exactly one coordinate for all i ∈ [t]; and 3)
mem(τt) = mem(τ0). Then τt = τ0.

Proof. For all i ∈ [t], let bi ∈ [k] be the location where mem(τi) and mem(τi−1) differ, and let βi = 2bi

be the location where τi and τi−1 differ. Since mem(τt) = mem(τ0), each value j ∈ [k] must appear
an even number of times in the list b1 . . . bt, and since flipping any location j ∈ [k] can only be
obtained by flipping a unique location J ∈ [2k], it follows that each value J ∈ [2k] must appear an
even number of times in the list β1 . . . βt. This means that τt is τ0 with each bit flipped an even
number of times, or in other words τt = τ0.

We now concretely define our machine Me:

1. Initialization: for each block Bi, calculate memi and flip the memith element of Bi:

τi → τ
⊕mem(τi)
i ∀i ∈ [e]

Define τenci to be the memory after this process. Note that we now have exactly e errors on
the tape, one in each τenci , and we are guaranteed that

mem(τenci ) = 0log c ∀i ∈ [e]
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2. Simulation: run M0 using s free work bits and c catalytic bits, with the concatenation of the
values memi as the other e log c free work bits. To do this, whenever we read or write a bit in
our e log c bits of memory, we find the Bi responsible for this bit, calculate memi, and update
τi using one bitflip to reflect how memi changes according to the operation of M0:

τenci → (τenci )⊕2
j

update occurs in bit j of block i

If memi is unchanged, we make no updates to τi.

3. Cleanup: when we reach the end of M0’s computation, record the answer on the free work
tape and set each memi value to 0log c one bit at a time:

τenci → (τenci )⊕2
j

∀i ∈ [e], j : bin(mem(τenci ))j = 1

Once we finish this process, we output our saved answer and halt.

The correctness of Me is clear, as we output the same value as M0. Our catalytic space usage is
c + ec by construction, while our free space usage is s to simulate M0, one extra bit to save the
output, and any additional space required to handle the simulation of the additional e log c work bits.
In particular, we need log e bits for a pointer into Bi and log c+ 1 bits for the computation of memi

by Lemma 8, for a total space usage of s+ log e+ log c+ 2 as claimed.
We also claim that our lossy catalytic condition is satisfied. By the property of M0, we make no

errors on the c catalytic bits used for the simulation of M0’s catalytic space. The initialization step
introduces at most one error per τi, thus giving at most e errors on to the catalytic tape. After the
initialization step, each other update to τi corresponds to changing a single bit in memi, with the
final value being the same as the value after initialization. Thus by Claim 9 we restore the catalytic
tape to its position after the initialization phase, and so our end state corresponds to our original
catalytic tape with at most e errors, i.e. those induced by the initialization phase, as required.

We now return to Theorem 6, which requires only a small modification of the above proof, namely
to break the the catalytic tape into more, smaller blocks, which reduces its required length, at the
cost of a few extra errors. This modification works because the number of pure bits represented is
logarithmic in the length of the block, and so making the blocks smaller barely affects the number of
bits represented (for example, c/2 bits in a block still lets you represent log(c)− 1 bits, so half the
size only loses one bit per block).

Proof of Theorem 6. Let M0 be a CSPACE[s + e log c, c] machine. We will devise a LCSPACE[s +
log c, (1 + o(1))c, (1 + ϵ)e] machine Me which simulates M0, where ϵ satisfies e = o(cϵ/(1+ϵ)).

An easy manipulation gives us c = ω(e1+1/ϵ), and so there exists a function δ = ω(1) such that
c ≥ (δe)1+1/ϵ. We will have the same approach as Theorem 7, but now we use (1 + ϵ)e blocks of
length 2⌈log c/(δe)⌉ each, i.e., using Lemma 8 for k = ⌈log c/(δe)⌉. Since we introduce one error per
block, the number of errors the machine makes is at most (1 + ϵ)e, while our total catalytic tape has
length

c+ (1 + ϵ)e · 2⌈log c/(δe)⌉ ≤ c+ (1 + ϵ)e · 2c
δe

= c · (1 + o(1))

Lastly, we can use our additional catalytic memory to simulate a work tape of length

(1 + ϵ)e · log 2⌈log(c/δe)⌉ ≥ e · (1 + ϵ) log
c

δe

and by manipulating our starting assumption we get that

c ≥ (δe)1+1/ϵ

(c/δe)ϵ ≥ δe
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ϵ log(c/δe) ≥ log δe

log c− log δe+ ϵ log(c/δe) ≥ log c

e · (1 + ϵ) log(c/δe) ≥ e log c

thus giving us a simulation of e log c work bits as claimed. The correctness and lossy catalytic condition
can then be argued as above, and our free space usage is s plus an additional log(c · o(1)) + 2 ≤ log c
bits, for a total space usage of s+ log c as claimed.

4 Further consequences

With this, we have concluded our main theorem and proof. We now move to corollaries and extensions.

4.1 Lossy catalytic logspace with superconstant errors

As stated in the introduction, it immediately follows from Theorem 1 that proving LCL[e] = CL is
likely difficult, if not false, for superconstant values of e.

Proof of Corollary 2. This follows immediately from the fact that

LCSPACE[O(log n),poly n, e] = CSPACE[O(log n+ e log(poly n)),poly n]

= CSPACE[O(e log n),poly n]

⊇ SPACE[O(e log n)]

combined with the fact that CL ⊆ ZPP by [BCK+14].

4.2 Lossy catalytic space with other resources

As mentioned in Section 1, there are many extensions of the base catalytic model besides LCSPACE,
such as randomized, non-deterministic, and non-uniform CSPACE. So far, however, there has been
little discussion of classes where more than one such external resource has been utilized. In this section,
we will discuss two of the aforementioned models—randomized and non-deterministic CSPACE—in
the presence of errors.

Definition 4. Let f be a Boolean function on n inputs.

• A non-deterministic catalytic Turing machine for f is a catalytic machine M which, in addition
to its usual input x, has access to a read-once witness string w, of length at most exponential
in the total space of M , based on x, which has the following properties:

– if f(x) = 1, then there exists a witness w such that M(x,w) = 1

– if f(x) = 0, then for every witness string w, M(x,w) = 0

Furthermore, for every witness string w, M(x,w) restores the catalytic tape to its original
configuration.

• A randomized catalytic Turing machine for f is a catalytic machine M which, in addition
to its usual input x, has access to a read-once uniformly random string r, of length at most
exponential in the total space of M , such that

Prr[M(x, r) = f(x)] ≥ 2/3.

Furthermore, for every witness string w, M(x,w) restores the catalytic tape to its original
configuration.

9



We write

• NCSPACE[s, c]: the class of languages which can be recognized by non-deterministic catalytic
Turing Machines with work space s := s(n) and catalytic space c := c(n).

• BPCSPACE[s, c]: the class of languages which can be recognized by randomized catalytic Turing
Machines with work space s := s(n) and catalytic space c := c(n).

Furthermore, for C ∈ {NCSPACE,BPCSPACE}, we define LC[s, c, e] to be the class C[s, c] with the
catalytic resetting definition replaced by the LCSPACE resetting definition, i.e., where e errors are
allowed to remain on the catalytic tape at the end of any computation.

Note that we allow the errors to depend on the witness and randomness, respectively. Without
delving too deep into these models, however, it is clear that our proof of Theorem 1 carries over to
all the above definitions.

Proof sketch of Theorem 3. As earlier, we need to show both directions. We will prove the same two
equivalences as in Theorems 4 and 6, namely

1. LC[s, c, e] ⊆ C[s+O(e log c), c]

2. C[s+ e log c, c] ⊆ LC[s+ log c, (1 + o(1))c, (1 + ϵ)e]

Both directions will follow immediately via the same simulation as before. For the forward direction,
we simulate our LC machine by a C machine as usual, and then at the last step we correct the changes
using our BCH code as before; this works just as before because the code allow us to correct any e
errors on the catalytic tape, regardless of how they came about.

For the reverse direction, again our C machine will only read or write one bit per time step, and
so we use the same memi approach to simulating our additional e log c bits of free memory, which
does not change based on the operation of the rest of the machine. As in the forward direction,
simulating the actual workings of the C machine via the LC machine, given our method of simulating
the e log c additional bits of memory, is straightforward, and our resetting step at the end again
resets our extra catalytic tape regardless of the computation path the C machine takes.
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A Simulating errors with space via reversibility

In this section we give an alternate proof of simulating LCSPACE via CSPACE, with sharper parameters
than those in Theorem 4.

Theorem 10. Let s := s(n), c := c(n), e := e(n). Then

LCSPACE[s, c, e] ⊆ CSPACE[s+ (e+ 1) log c, c].

For this proof, we need to invoke a property of space-bounded machines known as reversibility,
which we define now.

Definition 5. A Turing machine M is (strongly) reversible if the following conditions hold:

1. For any input x, every node v in its configuration graph Gx has both in-degree and out-degree
at most one. Let forx(v) indicate the unique node with a directed edge (v, forx(v)), and let
backx(v) indicate the unique node with a directed edge (backx(v), v).

2. There exist machines M→ and M← such that for every node v in the configuration graph of M ,
M→(x) sends v to forx(v) and M← sends v to backx(v).

A classical result of Lange, McKenzie, and Tapp [LMT00] shows that every SPACE[s] machine
can be made reversible with no additional space. Dulek [Dul] showed the same result for catalytic
machines, while Gupta et al. [GJST24] extended this to catalytic machines with error; both of the
latter results use a very similar Eulerian tour argument to [LMT00].
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Lemma 11. Let M be a CSPACE[s, c] (resp. LCSPACE[s, c, e]) machine recognizing language L. Then
there exists a reversible CSPACE[s, c] (resp. LCSPACE[s, c, e]) machine M ′ which recognizes L.

In light of Lemma 11, it seems that there is nothing interesting to be said about LCSPACE; after
all, can we not simply reverse our machine to the starting point, wherein there are no errors on the
catalytic tape? While this is technically true, there may be many different starting configurations
which reach the same halting state (τ, v). All such start states can and will be reached by running
M← from (τ, v) for long enough, but without knowledge of which particular start state we began
with, this näıve reversing procedure cannot reset our catalytic tape free of error.

Nevertheless, a small tweak on this idea, using our additional (e+1) log c bits, immediately works.

Proof of Theorem 10. Let Me be a LCSPACE[s, c, e] machine, and by Lemma 11 we will assume Me

is reversible. We will devise a CSPACE[s+ (e+ 1) log c, c] machine M0 which simulates Me.
We will assume without loss of generality that all start and end states of a catalytic machine M

are distinguished; for example, we traditionally assume any state with an all-zeroes work tape is a
start state. We write start(τ) to indicate the unique start state of M with initial catalytic tape τ ,
while we write endx(τ) to indicate the unique end state reached by M from initial state start(τ) on
input x.

Now let Sx,(τ,v) := {start(τi)}i be the set of start states such that endx(τi) = (τ, v). Since Me is
an LCSPACE[s+ log c, c, e] machine, each τi can differ from τ in at most e locations, and thus

|Sx,(τ,v)| ≤
(
c

≤ e

)
≤ ce+1

2

Our machine M0 thus works as follows:

1. initialize a counter num start with log
(

c
≤e

)
bits to 0

2. simulate Me using s log c work bits and c catalytic bits, incrementing num start each time we
encounter a start state start(τi), until we reach an end state (τ, v)

3. record our answer and run Me in reverse, decrementing num start each time we encounter a
start state

4. halt when we reach a start state and num start = 0, and return our recorded answer

Clearly our algorithm outputs the correct answer, resets the catalytic tape exactly, and uses at most
s+ 1 + (e+ 1) log c− 1 bits of work memory plus c bits of catalytic memory.

We also note that reversibility can be used for Theorem 6, taking the place of the one-bit write
condition.

Proof sketch of Theorem 6. We will construct an LCSPACE machine Me to simulate our CSPACE
machine M0. By Lemma 11 we will assume M0 is reversible. We will act as in the old proof of
Theorem 6, but instead of relying on Claim 9, i.e. resetting via flipping each bit an even number of
times, we will simply run M0 backwards at the end of our simulation. More formally our machine
Me works as follows:

1. initialization: for each block Bi, calculate memi and flip the memith element of Bi. Note that
after this procedure, each memi is the string 0log c and we have exactly e errors on the tape.

2. simulate M0 using s free work bits and c catalytic bits, with the concatenation of the values
memi as the other e log c free work bits. To do this, whenever we read or write to memory
in Bi, we calculate the memi value containing this bit and update memi according to the
operation of M0, using one bitflip to τi if memi is changed and doing nothing otherwise.
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3. when we reach the end of M0’s computation, we record our answer on the free work tape and
run M0 in reverse, outputting our saved answer when we finish.

By the construction in Lemma 8, it is clear that if we flip a bit b in τ to transform mem(τ) into
mem(τ)′, flipping the same bit b causes us to transform back into mem(τ). Therefore, the reversing
procedure exactly resets the catalytic tape used to simulate our e log c bits of memory as before.

We defer these discussions to the appendix for two reasons. First, the error-correcting approach
more directly applies in both directions of Theorem 1; while Lemma 11 connects to Theorem 6, the
Hamming code connection via Lemma 8 is still the driving force behind the construction. Second,
the reliance on reversibility makes the proof unsuitable to our later generalizations from Section 4.2;
in particular, both randomized and non-deterministic catalytic computations are only reversible in a
limited sense, one which rules out using Lemma 11. However, as discussed in Section 4, if some other
model, such as the catalytic branching program model, is amenable to reversing, these proofs may
provide a direct way to extend Theorem 1.

B Space Efficient Linear Algebra on Finite Fields

B.1 The Space Complexity of Solving Linear Systems

We prove the space efficiency of various common arithmetic and linear algebra operations necessary
in order to encode and decode BCH codes. First, we introduce the concept of well-endowed rings
[BCP83]. This allows us to use earlier results to argue about the efficiency of various operations
on rings without having to reprove those ourselves. The fields of interests are fields of the form
GF (prn) for a fixed prime p and a sequence rn. Our results will apply to a field whose size increases
asymptotically. Hence the uniformity of the calculations involved is important. But we assume that
p is fixed for all fields.

All these results are expressed in their asymptotic complexity in terms of the size of the ring or a
length function, which may be seen as a measure of the number of bits necessary to write down a
value in a ring.

Definition 6. A length function ρ for a ring R is a function satisfying that for any x, y ∈ R

1. ρ(x+ y) ≤ max{ρ(x), ρ(y)}+O(1)

2. ρ(xy) ≤ ρ(x) + ρ(y) +O(logmax{ρ(x), ρ(y)})

An example is the number of bits of an integer.

From here we can define well-endowed rings as those with efficient implementations of addition,
negation and multiplication.

Definition 7. A ring R with length function ρ is well endowed if there is a succinct uniform
representation in which it has efficient implementations of addition, negation and multiplication.
Addition and negation are considered efficient if they can be implemented in (logspace uniform) NC0

and multiplication is considered efficient if it can be implemented in (logspace uniform) NC1. The
parameter for NC1 functions is always the length function of the ring.

We now argue that basic arithmetic can be done space efficiently. This is done in the following
steps. First, we argue that the polynomial ring GF (ξ) is well endowed and therefore we can perform
polynomial addition, negation and multiplication efficiently. Then we argue that we can use this
to compute the remainder of polynomial division efficiently. This allows to find an irreducible
polynomial to represent the field GF (prn) in order to perform addition, negation and multiplication
efficiently. We finally show that we can evaluate multiplicative inverses inefficiently and use this to
do division. With inefficiently we mean in space O(log |F |) for a field F whereas addition, negation
and multiplication can be performed in space O(log log |F |).
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Lemma 12. For fixed p, the ring GF (p)[ξ] is well endowed.

Proof. We argue that finite fields are well-endowed rings. First observe that GF (p) for a fixed p
is always well endowed since the size of the ring is independent of n so addition, negation and
multiplication can be performed in NC0. By Proposition 3.9 from [BCP83] this means that polynomials
over GF (p)[ξ] are also well endowed. The length function here is O(d) for a polynomial of degree d.
Since they are well endowed, one can perform addition, negation and multiplication in space O(log d)
for polynomials.

We use this to compute the remainder.

Lemma 13. Given polynomials N(ξ) and D(ξ) in GF (2)[ξ] of degree at most rn, it is possible to
compute the remainder R(ξ) using an additional rn +O(log rn) space. If we can overwrite N(ξ) in
place, the additional space necessary is ⌈log rn⌉+O(1).

Proof. Suppose that χ ∈ GF (p) is the leading coefficient of D(x), we can compute and store χ−1

in constant space since 2 is constant. We perform a kind of Gaussian elimination to compute the
remainder:

1. If the degree of D(ξ) exceeds the degree of N(ξ) then return N(ξ).

2. Let ψ be the leading coefficient of N(ξ). Compute N(ξ) +−ψχ−1D(ξ) overwriting N(ξ) in the
process. Since we use fixed field GF (2), this can be done in constant depth. Repeating this for
each coefficient uses O(log rn) space for a counter. We use O(1) to store ψ and the coefficient
of N(ξ) during the computation. We then compute N(ξ) +−ψ−1D(ξ) coefficient by coefficient.

3. return to step 1.

Overall, we manage to compute the remainder in space rn +O(1) by copying the final remainder to
a new part of the space and then updating it in place during every iteration. If we can overwrite
N(ξ) in the process, then the additional space required is only rn to keep track of a counter.

We can now search for irreducible polynomials.

Lemma 14. Given a sequence of positive integers rn and a constant prime p, it is possible to find a
degree rn irreducible polynomial in GF (p)[ξ] in space 3rn +O(log rn).

Proof. It costs d space to store a polynomial over GF (p) of degree at most d. Therefore, one can
iterate over all such polynomials. If we store two such polynomials and iterate over all pairs, the
first can be a candidate irreducible polynomial, while the second can be a candidate factor of the
first polynomial. By using Lemma 13 to test whether or not the candidate irreducible polynomial
is divisible by the candidate factor in additional space rn +O(log rn), we can test if the candidate
irreducible polynomial is irreducible. This uses an additional d space to store the remainder as it is
calculated. Irreducible polynomials are guaranteed to exist, so we must find one eventually.

Together these results allow us to do division in GF (qr).

Lemma 15. Given a sequence of finite fields Fn = GF (prn) for a constant prime p, it is possible to
compute the multiplicative inverse of an element x ∈ GF (prn) in additional space 4rn + O(log rn)
counting the space needed to store the irreducible polynomial.

Proof. If x = 0 then there is no multiplicative inverse. Otherwise, try multiplying x by every other
possible y and taking the remainder using Lemma 13 in place in space 4rn) until one finds a y such
that xy = 1. It takes rn space to iterate over all possible y. For every x, y, we use another register to
store xy. Storing xy needs an additional 2rn space, since we first need to compute the product as a
product of polynomials and only take the remainder later. Computing xy uses an additional space
O(log rn) since the ring of polynomials over GF (p) is well endowed. Finally, we can use Lemma 13
to take the remainder in place in only ⌈log rn⌉+O(1).
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We can now finally solve linear systems.

Lemma 16. Given a sequence of finite fields Fn = GF (prn) for a constant prime p, it is possible to
solve a linear system of tn equations and tn unknowns in 2tnrn + 5rn +O(log2 rn + log tn) space if
tn = O(|Fn|) and we count the space used to store the irreducible polynomial for our representation
of GF (prn).

Proof. By Proposition 4.2 from [BCP83] it is possible to compute the determinant over a well
endowed ring in NC2. By Lemma 12, we can perform this computation by treating elements of Fn as
polynomials over GF (p) first. By Theorem 4 from [Bor77] this can be done in space O(log2 log |Fn|).
The cost of storing the polynomial representing the remainder is tnrn since each entry of Fn uses
rn bits and the determinant is a sum of the product of at most tn elements. Then we can find an
irreducible polynomial (or preferably access one that has been precomputed) in space 3rn +O(log rn)
by Lemma 14 and take the remainder in place with using additional space ⌈log tnrn⌉ by Lemma 13.
This allows us to calculate determinants of tn × tn matrices over Fn.

We can then use Cramer’s rule to solve our equation. Cramer’s rule gives the solution to our
system as a fraction of determinants. We use Lemma 15 to compute the multiplicative inverse of the
denominator in additional space 3rn +O(log rn). Multiplying the inverse of the denominator with
the numerator using their properties as well-endowed rings and writing into a (double) register used
for the multiplicative inverse in additional space O(log rn). If we then take the remainder in place in
space O(log rn), we can compute the solution to the system in Fn.

B.2 An Overview of BCH Codes

The codes used to correct errors in our catalytic tape are so-called BCH codes (Bose–Chaudhuri–Hocquenghem
codes) as described by [DORS06]. A BCH code has the following components.

1. An alphabet represented by a ‘small’ field GF (q).

2. Codeword length n = qm − 1. Each position of the codeword is represented by a member of
F ∗ where F ∗ is the multiplicative group of F = GF (qm) for a fixed value m. We may call
F = GF (qm) the larger field.

3. Distance δ.

And we make the following choices.

1. We set q = prn for a prime number p and rn that depends on the size of the input tape of the
machine. Here p is fixed and we set it to p = 2 in this work.

2. m = 1, therefore the small field equals the large field F = GF (q).

3. δ = 2e+ 1. It is well known that one needs a distance of at least 2e+ 1 to be able to correct e
errors.

Together these choices form a [prn−1, prn−1−δ, δ]-code over an alphabet of size prn . Ensuring that
p = 2 means that we can interpret the catalytic tape as a sequence of elements in GF (q) = GF (2rn).
Furthermore, we wish to have the property that by extending a word by a small amount we can turn
any word into a codeword. We observe that codewords are defined as words that satisfy the following
property for i = 1, . . . , δ − 1.

si =
∑
x∈F∗

dxx
i = 0 (1)
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Here the dx represents the value of the codeword stored at position x. Now presume we have a
word of length n then we extend the word by adding entries, we call the list of added entries C ⊆ F ∗.
The added values can be set arbitrarily, therefore we obtain the following equations:

si =
∑
x∈F∗

dxx
i =

∑
x∈F∗\C

dxx
i +

∑
x∈C

dxx
i = s′i +

∑
x∈C

dxx
i = 0 (2)

for

−s′i =
∑

x∈F∗\C

dxx
i . (3)

We observe that for every value of i = 1, . . . , δ − 1, we obtain an equation. Each equation is
linear in the dx for x ∈ C. These are the new data points we must calculate in order to turn an
arbitrary word into a codeword. Overall this yields the encoding linear system with parameter δ − 1
and i = 1, . . . , δ − 1 ∑

x∈C
dxx

i = −s′i (4)

In order to argue that a solution to this system always exists, we need the small field to equal the
large field of the BCH code. This means m = 1. This is necessary because the value s′i lies in the
large field of the code while the values of dx lie in the small field of the code. If these are the same,
we can treat this as a linear algebra problem.

Lemma 17. By setting |C| = 2e = δ − 1, adding this many members of the alphabet of a BCH code
with m = 1, it is always possible to turn any string into a codeword.

Proof. As discussed, it is sufficient to show that Equation 4 always has a solution. In order to see
this, observe that Equation 4 forms a linear system over the field GF (q) and that the matrix of this
system is a Vandermonde matrix. Vandermonde matrices are always invertible. Thus a solution to
this system always exists.

Corollary 18. Let S be a data string of n bits and e ≤ 1
2c/ log(c), then there exists a BCH code,

with distance δ = 2e+ 1 and codeword length n+ (2e+ 1)⌈log(n+ e)⌉.

Proof. We set rn = ⌈log(n + e)⌉ therefore q = 2⌈log(n+e)⌉, therefore the alphabet of is of size
2⌈log(n+e)⌉. We break the initial catalytic tape into blocks of length ⌈log(n+ e)⌉, these blocks form
the initial letters of the word. If ⌈log(n+ e)⌉ ∤ n, we pad the last block of the catalytic tape with
additional 0’s of free space, this requires at most ⌈log(n+ e)⌉− 1 bits of free space. This gives a word
consisting of ⌈ n

(⌈log(n+e)⌉)⌉ letters. Now we use Lemma 17 and add 2e letters of size ⌈log(n + e)⌉,
using 2e⌈log(n+ e)⌉ of free space, such that these new members abide by Equation 4. This creates a
codeword of length n+ (2e+ 1)⌈log(n+ e)⌉ as required.

Remark B.1. Note that q in this lemma is taken larger than strictly necessary. There are two
requirements on q, namely q is the total number of letters we can use to construct a code-word, and
that log(q) the number of bits of which one codeword exists. In this work we set rn to the number of
bits required to represent one letter of the word, which gives the following equation for rn:

2rn ≥ 2e+
n

rn
,

which our choice of rn satisfies, but might not always be optimal.

Given that this code exists and has the correct space complexity we will show that it can be space
efficiently computed. Even before doing encoding and decoding, it is required to do an initialization
step:

We now argue the initialization can be done space efficiently.
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Algorithm 1 Initialization

1: Input: r ∈ N
2: Compute an irreducible polynomial of degree 2 in GF (2)[ξ] via the procedure described in the

proof of 14
3: Pick and save an element that is not 0 and not 1 in GF (2r). We can always pick this to be the

polynomial ξ.
4: return An irreducible polynomial of degree 2r and a generator of the multiplicative group of
GF (2r).

Lemma 19. Given a sequence of fields Fn = GF (2rn), Algorithm 1 can be performed in space
3rn +O(log rn).

Proof. We review each step of Algorithm 1 and review their space cost:

1. For step 1, use 14 to find an irreducible polynomial in space 3rn +O(log rn). Only rn is needed
to store the result.

2. For step 2, we can pick and save the element of GF (2)[ξ] corresponding to ξ. This uses O(1)
space if always done the same. This does not work for rn = 1, but we can assume always
rn > 2.

Encoding requires solving the linear equations given by Equation 4, finding the values dx for
x ∈ C, the additional blocks that were appended. Solving these linear equations requires first
calculating the quantities s′i, given by Equation 3. We use the following algorithm to calculate a
specific value si. By stopping prematurely, we can compute s′i.

Algorithm 2 ComputeChecks

1: Input: Integer i for 0 < i < δ, 0 ≤ t < q
2: Open five registers to store elements of GF (2rn) labelled G, I, P,M, S,E for Generator, Index,

Power, Multiplication, Sum and End.
3: Set all registers except G to 0.
4: Open two registers to store elements of {0, 1, . . . , δ − 1} called C and one to store i that never

changes.
5: Assume G stores a generator of the multiplicative group of GF (pr).
6: E ← Gt via iterated multiplication. Use register M as a counter.
7: I ← G
8: P ← Ii via iterated multiplication. Use register C as a counter in this process.
9: M ← P ∗ dx.

10: S ← S +M
11: P,M ← 0.
12: I ← I ∗G
13: Return to step 8 until E = G.
14: return The value si in register S computed on the word.

Now we give the space complexity of Algorithm 2.

Lemma 20. Given a sequence of positive integers rn, the si and s′i can be computed in space
6rn + 2⌈log δ⌉ + O(log rn), counting the rn space used to store the generator of the multiplicative
group of GF (2rn) and an irreducible polynomial to represent GF (2rn). We assume that the generator
is simple so does not use much space.
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Proof. Every element of GF (2rn) uses space rn. We use six of these. We also use two registers of
size ⌈log δ⌉. Multiplication and addition use overhead O(log r).

We present the BCH encoding algorithm, and argue that it is space efficient.

Algorithm 3 EncodeBCH

1: Initialization: We assume that Algorithm 1 has been performed in advance.
2: Compute and store the s′i.
3: Solve Equation 4.
4: Store the solution.
5: return (with the added entries, we have a codeword now)

Lemma 21. It is possible to encode a word of length 2rn − δ with an alphabet Fn = GF (2rn)
and distance δ as a codeword of length 2rn with an additional space overhead of O(e log n) =
(4e+ 6)rn +O(log2 rn), for rn = log(e+ c) ≤ log(c) + 1. This implements the function EncodeBCH .

Proof. We look at the space complexity of every step of the encoding procedure.

1. Initialization costs 3rn +O(log rn) space by Lemma 19.

2. For step 2, use Algorithm 2. This means we store 2ern values and use 6rn+2⌈log(δ)⌉+O(log rn)
space.

3. For step 3, we use Lemma 16 which uses (4e+ 5)rn +O(log2 rn) space.

Overall, this adds up to a space cost (6e+ 11)rn + ⌈log(δ)⌉+O(log2 rn).

That completes encoding. We now move to our analysis of decoding. We review the mathematics
of the decoding.

We now describe the theory of the decoding algorithm. Decoding follows the procedure described in
[DRS04, DORS06] with some simplifications since we prioritize space over time. First, the syndrome
syn(p) of a message p is computed. The syndrome is defined as the collection of the si values defined
before. From the syndrome we compute the support of the error, supp(p) = {(x, px)x:px ̸=0} which is
defined as the value of the error px together with its position x. Then the error can be ‘subtracted’
from the word to give back the original codeword. The error correction method only works if the
number of errors is at most (δ− 1)/2 and hence we set δ = 2e+1. It is important for space efficiency
that we store only the support of the error, instead of a full error string which would require too
much space. The support on the other hand uses exactly O(e log c) space.

The decoding algorithm is a variation of Berlekamp’s BCH decoding algorithm. First, define the
following polynomials using M = {x ∈ F∗|px ̸= 0}

σ(z) =
∏
x∈M

(1− xz) ω(z) = σ(z)
∑
x∈M

pxxz

1− xz
(5)

which both have degree at most |M | ≤ (δ − 1)/2. Here σ(z) is known as the error locator
polynomial since the multiplicative inverses of its roots are the locations of the errors. Similarly, ω(z)
is known as the evaluator polynomial since it gives the error since ω(x−1) = px

∏
y∈M,y ̸=x(1− yx−1).

Note that since these polynomials have no common zeroes, gcd(σ(z), ω(z)) = 1.
It turns out that σ(z) and ω(z) are the almost unique solutions to the congruence (with parameter

δ − 1)
S(z)σ(z) ≡ ω(z) (mod zδ) (6)
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where S(z) =
∑δ−1

l=1 rlz
l. Suppose that σ′(z), ω′(z) are other solutions to this congruence then

ω(z)σ′(z) ≡ σ(z)S(z)σ′(z) ≡ σ(z)ω′(z) (mod zδ) . (7)

Therefore if we restrict the degree of both ω(z) and σ(z) to be polynomials of degree at most (δ−1)/2
then as polynomials it is also true that ω(z)σ′(z) = σ(z)ω′(z) and therefore that ω(z)/σ(z) =
ω′(z)/σ′(z). So if we also require that ω(z) and σ(z) are relatively prime and σ(z) has constant
coefficient 1, then ω(z), σ(z) are unique. We call the linear system over GF (q) from Equation 6 the
decoding linear system with parameter δ.

After setting the constant term of σ(z) to be 1, the above congruence gives a linear system with δ
unknowns and δ equations with coefficients in the field GF (qm). We use almost the same procedure
as described in the encoding step and making use of Lemma 16 in order to solve this system. If
less than (δ − 1)/2 errors are made, a solution is guaranteed to exist. However, we cannot force
σ(z) and ω(z) to be coprime in the linear system and as a result the solution may not be unique.
Suppose σ(z) and ω(z) have a common factor τ(z). Since ω(z) must have a constant coefficient
1, the constant coefficient of τ(z) must also be 1. But then τ(z) must have degree at least 1 and
therefore σ(z) and ω(z) both have degree at least 1 too high. Therefore, if more than one solution
to the system exists, some of these solutions will have too high a degree. But we can test whether
or not the system has more than one solution by evaluating the determinant of the matrix of that
system. If the determinant is 0, we can repeat our procedure but now with δ replaced by δ− 2 to get
a smaller linear system. Repeating this procedure, either we find that the determinant is always 0,
meaning that there are no errors to correct, or eventually that the determinant is nonzero and we
can solve for polynomials σ(z), ω(z).

Having solved for polynomials σ(z) and ω(z) we can iterate over all possible values of z ∈ F∗ to
find all roots to σ(z) and then compute their inverses using a similar procedure to that described
in the encoding step. The evaluation of this polynomial can be done space efficiently, similar to
the evaluation of si but much simpler in fact. Afterwards, we can evaluate ω(z) to compute the
errors. This is not necessary when q = 2 and the error is guaranteed to be 1. Once these have been
computed, storing the support of the error is space efficient and the catalytic tape can be corrected.
This completes the decoding step. This procedure is performed by the following algorithm, and we
give it space complexity.

Algorithm 4 DecodeBCH

1: Initialization: We assume that Algorithm 1 has been performed in advance.
2: Compute the syndrome using Algorithm 2
3: Compute the determinant ∆ of linear system 6 with j = δ − 1. Use the method described in the

proof of Lemma 16.
4: while ∆ = 0 and j > 0 do
5: j ← j − 2
6: Compute the determinant ∆ of linear system 6 with parameter j.

7: if ∆ = 0 then
8: Terminate the algorithm (no errors detected).

9: Use Lemma 16 to solve linear system 6 with parameter j.
10: for i← 0; i < j; i← i+ 1 do
11: Find the ith root, x−1i of the error locator polynomial according to some ordering.

12: Compute the quantity α−1xi
=

(∏
y∈M,y ̸=x(1− yx−1)

)−1
13: Evaluate the evaluator polynomials and compute the errors by multiplying ω(x−1) by α−1xi

.
14: Correct the corresponding error.

15: return (up to e errors have now been corrected)
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Lemma 22. Algorithm 4 can be performed with space overhead O(e log n) = (6 + 4e)rn +O(log2 rn),
for rn = log(e+ c) ≤ log(c) + 1, including the cost of the initialization using Algorithm 1.

Proof. We review the cost of Algorithm 4 step-by-step. Steps that use a trivial amount of space are
omitted.

1. Initialization costs 3rn +O(log rn) space by Lemma 19.

2. By Lemma 20, the cost of Algorithm 2 is 5rn + 2⌈log δ⌉ + O(log si) not counting the space
needed to store the irreducible polynomial.

3. Storing and computing a determinant using the method in the proof of Lemma 16 costs
2ern+O(log2 rn+log e) space using access to an irreducible polynomial given in the initialization.
The counter uses space O(log e).

6. Reuse space from step 3.

9. Solving the linear system by Lemma 16 uses space 4ern + 5rn + O(log2 rn + log e). We can
reuse space used in step 3.

11. Evaluating a degree 2e polynomial can be done via Horner’s method. This uses one sum register,
one double sized multiplication output register and one counter register. The multiplication
output register has twice the size since before taking the remainder, the full product as
a polynomial has to be stored. Since the irreducible polynomial has been precomputed,
and we can compute remainders in place, we can evaluate a polynomial in additional space
3rn+ ⌈log 2e⌉+O(log rn). Iterating over all possible solutions uses an additional rn space. This
procedure can recycle the space used in step 11. We use an additional register size ⌈log 2e⌉ to
find the ith root. Counting the space used to store the irreducible polynomial means that this
costs space (4e+ 5)rn +O(log2 rn + log e).

12. We add a (double-sized) multiplication output register for multiplication, a register to maintain
the product, and another set of registers to iterate over all possible roots. Iterating over all
roots not equal to x−1 allows us to then compute αxi . We then take the multiplicative inverse
using Lemma 15. Overall, this uses space (4e+ 6) +O(log rn) by reusing registers.

13. Reusing the space from steps 11 and 12 we can compute the value of the error by multiplying
ω(x−1) by α−1xi

.

This covers all steps of Algorithm 4 with significant space costs. We ignore O(log δ) space terms here,
since these are all O(log n). This adds us to (6 + 4e)rn +O(log2 rn) space.
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