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Abstract. The Tree Evaluation Problem (TreeEval) (Cook et al. 2009) is a central candidate
for separating polynomial time (P) from logarithmic space (L) via composition. While space lower
bounds of Ω(log2 n) are known for multiple restricted models, it was recently shown by Cook and
Mertz (2020) that TreeEval can be solved in space O(log2 n/ log logn). Thus its status as a candidate
hard problem for L remains a mystery.

Our main result is to improve the space complexity of TreeEval to O(logn · log logn), thus greatly
strengthening the case that Tree Evaluation is in fact in L.

We show two consequences of these results. First, we show that the KRW conjecture (Karchmer,
Raz, and Wigderson 1995) implies L ̸⊆ NC1; this itself would have many implications, such as
branching programs not being efficiently simulable by formulas. Our second consequence is to increase
our understanding of amortized branching programs, also known as catalytic branching programs; we
show that every function f on n bits can be computed by such a program of length poly(n) and
width 2O(n).

1. Introduction. In complexity theory, many fundamental questions about time
and space remain open, including their relationship to one another. We know that
TIME(t) is sandwiched between SPACE(log t) and SPACE(t/ log t) [HPV77], and both
containments are widely considered to be strict, but we have made little progress in
proving this fact for any t.

1.1. Tree Evaluation and composition. The Tree Evaluation Prob-
lem [CMW+12], henceforth TreeEval, has emerged in recent years as a candidate for a
function which is computable in polynomial time (P = TIME(nO(1))) but not in loga-
rithmic space (L = SPACE(O(log n))). This would resolve one of the two fundamental
questions of time and space, showing that TIME(t) strictly contains SPACE(log t) in
at least one important setting.

TreeEval is parameterized by alphabet size k and height h. The input is a rooted
full binary1 tree of height h, where each leaf is given a value in [k] and each internal
node is given a function from [k] × [k] to [k] represented explicitly as a table of k2

values. This defines a natural bottom-up way to evaluate the tree: inductively from
the leaves, the value of a node is the value its function takes when given the labels
from its two children as input. The output of a TreeEvalk,h instance is the value of its
root node.

A TreeEvalk,h instance has size 2h · poly(k). The description of the problem as
given defines a polynomial time algorithm for TreeEvalk,h: evaluate each node starting
from the bottom and going up, spending poly(k) time at each of the 2h nodes.

But what about space? Evaluating the output node requires us to have the values
of both of its children, which themselves are obtained by computing their respective
children, and so on. Now imagine we have computed one of the children of the output
node and are moving to the other. This seems to require remembering the value we
have computed on one side, using log k bits of memory, and then on the other side
computing a whole new TreeEvalk,h−1 instance, for which the same logic applies. This
would inductively give a space Ω(h log k) algorithm, while TreeEvalk,h ∈ L would mean
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case and its relationship to lower bounds for other computational models in Section 6.
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giving an algorithm using only O(h+ log k) bits of memory.
Thus if our intuition is correct, this should be a problem that is in P but not L.

This led Cook, McKenzie, Wehr, Braverman, and Santhanam [CMW+12] to define
TreeEval and hypothesize that Ω(h log k) space is optimal, leading them to conjecture
that TreeEval separates L—in fact, even NL—from P. The hypothesis was supported
by multiple subsequent works, which showed it holds in restricted, but also non-
uniform, settings such as thrifty algorithms [CMW+12]—a TreeEval-specific restriction
wherein algorithms are not allowed to read “unnecessary” input bits, i.e. locations in
the internal function tables that do not correspond to the true inputs to the node—
and read-once programs [EMP18]. Later works extended both of these results to the
non-deterministic setting [Liu13, IN19].

This idea, of using what is known as composition or direct product theorems to
prove strong lower bounds from weak lower bounds, is not only studied in the context
of space. The KRW conjecture of Karchmer, Raz, and Wigderson [KRW95] states
that a similar logic holds for formula depth, with the upshot being that TreeEval
separates P from the class of logarithmic depth formulas, known as NC1. Even more
so than space, the study of the KRW conjecture has yielded many partial results (see
e.g. [dRMN+20, CFK+21]) as well as encouraging useful parallel lines of work such
as lifting theorems [RM99, GPW18].

Thus the study of composition, and by extension TreeEval, is a very fruitful and
well-founded line of study, and it is of great interest as to when this logic holds and
when it fails.

1.2. Known upper bounds. Nevertheless, the consensus and central compo-
sition logic of the space hardness of TreeEval has faced a challenge ever since its
inception. Buhrman, Cleve, Koucký, Loff, and Speelman [BCK+14] defined a new
model of space-bounded computation called catalytic computing in order to challenge
a crucial assumption in our lower bound strategy: that the space used for remember-
ing old values in the tree cannot be useful for computing new values. Building on the
work of Barrington [Bar89] and Ben-Or and Cleve [BC92], they show that the pres-
ence of full memory can in fact assist in space-bounded computation in a particular
setting (unless L can compute log-depth threshold circuits, which would imply many
things which are widely disbelieved, e.g. NL = L).

The catalytic computing model later received attention from a variety of works
[BKLS18, GJST19, DGJ+20, BDS22, Pyn24, CLMP25, GJST24, FMST25, KMPS25,
PSW25, BDRS24, AM25, BFM+25, AFM+25], but while it was in part motivated to
challenge the hypothesis of [CMW+12], it did not immediately lead to any results
about TreeEval. However, after a period of quiet on both the upper and lower bound
fronts, their objection was validated by Cook and Mertz [CM20, CM21], who showed
that the Ω(h log k) argument does not hold. They proved that for any k and h,
TreeEvalk,h can be computed in space O(h log k/ log h), which translates to an algo-
rithm using space at most O(log2 n/ log logn), shaving a logarithmic factor off of the
straightforward O(log2 n) space algorithm.

This is a far cry from showing TreeEval ∈ L, but both the statement and proof of
the result undermine the central compositional logic behind the approach [CMW+12]
proposed to separate L from P.

1.3. Our results. We now move to discussing the contributions of this paper.
Because there are many different theorems pertaining to specific variants of TreeEval
and implications therein, a full list of theorems appears in Appendix C to help readers
compare and keep track.
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1.3.1. Main result. Our primary contribution is to give an exponential im-
provement on the central subroutine of [CM20, CM21], which yields the following
result.

Theorem 1.1. TreeEval can be computed in space O(log n · log log n).

Compared to having only a logarithmic factor improvement given by [CM20,
CM21], we are now only a logarithmic factor improvement away from showing that
TreeEval ∈ L.

We describe our algorithm as a register program over a finite field. We define
these in Section 2. In Section 3, we discuss roots of unity over finite fields, which
are a fundamental part of our technique (though Goldreich [Gol24a] later showed it
can be reframed in terms of polynomial interpolation). We prove Theorem 1.1 in
Section 4. In Section 5, we improve and generalize our main subroutine and discuss
what that implies.

As observed in [CM20, CM21], our techniques avoid the restrictions for which
strong lower bounds are known. First, our algorithms avoid the read-once restriction
by repeatedly recomputing values throughout the tree. Second, and perhaps more
interesting, is that our algorithm avoids the “thrifty” restriction by relying on every
value in the table of any internal node, not only the one corresponding to the true
inputs.

1.3.2. Implications. Our improvement has immediate consequences outside of
studying space upper bounds on TreeEval. All models and statements will be formally
defined in Sections 5, 6, and 7.

Other parameterizations of TreeEval. As an extension of Theorem 1.1, we study
Tree Evaluation in settings besides general TreeEvalk,h. First, in Section 5 we show
that our results can be improved to logspace for low height instances of TreeEval.

Theorem 1.2. Let h := h(k) be such that h = O( log k
log log k ). Then TreeEvalk,h can

be computed in L.

In Section 6 we move to the more general setting of TreeEvalk,d,h, where we
additionally vary the fan-in d of internal nodes. In this case we extend our results for
fan-in 2, showing an O(log n · log log n) space upper bound as before.

Theorem 1.3. TreeEvalk,d,h can be computed in space O(h log(d log k) + d log k).

We also show a similar result to Theorem 1.2 for the case of large d, and in
Appendix B (see discussion below) we see a third version for the case of small k.
Together these results suggest that the traditionally studied case, i.e. fan-in two trees
where both log k and h are approximately Θ(log n), are the most likely to yield space
lower bounds.

The KRW conjecture. Moving beyond space bounds for TreeEval, we return to our
brief discussion of the KRW conjecture, which implies that TreeEval /∈ NC1. [CM20,
CM21] gave a space upper bound of O(log2 n/ log log n) for TreeEval, asymptotically
the same as the lower bound on formula depth implied by the KRW conjecture; thus
it was possible for the KRW conjecture and L ⊆ NC1 to both be true. This is no
longer possible, as Theorem 1.1 makes these two hypotheses incompatible.

Theorem 1.4. If the KRW conjecture holds, then L ̸⊆ NC1.

We have not formally stated the KRW conjecture, and refrain from doing so until
Section 6; in fact one can define it in a variety of ways, some stronger than others.
We should note, however, that Theorem 1.4 is quite robust with respect to choosing
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weaker versions of the conjecture; any statement that implies TreeEval with alphabet
size k = 2 requires formula depth ω(log n) is sufficient for Theorem 1.4. As we show,
the strongest (and most widely studied) version implies that L requires formulas of
depth Ω(log2 n/ log log n), which nearly meets the upper bound of O(log2 n) given by
L ⊆ NC2.

There are multiple important takeaways. First, the KRW conjecture now implies
a much sharper separation than P ̸⊆ NC1. Second, the KRW conjecture would give a
superpolynomial size separation between non-uniform formulas and uniform branch-
ing programs; no such separation is known even when the uniformity, or lack thereof,
is the same for both classes. Third, proving formula lower bounds for TreeEval via
KRW is formally no easier than proving the same lower bounds for e.g. st-connectivity,
even in the undirected case. And fourth, and most philosophically, is that any con-
tinued belief in the KRW conjecture now represents a bet that the ability to handle
composition is the factor that separates space and formulas.

Catalytic branching programs. For our last result, we consider the question of
catalytic branching program size, also called amortized branching program size.

Branching programs are a syntactic model used to analyze space in the non-
uniform setting: we have a directed acyclic graph (DAG) with one source node and
two sinks, one for each potential output of the function f . Computation follows a
path which starts at the source and follows edges according to the results of querying
one bit of x at each node encountered, until it reaches a sink, which must be labeled
with f(x).

Drawing a connection to the catalytic space model as discussed above, Girard,
Koucký, and McKenzie [GKM15] introduced a model known as m-catalytic branching
programs, which essentially asks whether we can find smaller branching programs for
computing an arbitrary function f if we only want to do so in an amortized sense.
In their model, we consider a DAG with m source nodes and 2m sink nodes, one for
each (source, output) pair, and require that running the program from source i on
input x leads to the unique sink labeled (i, f(x)).

While one obvious solution is to simply have m disjoint copies of the optimal
branching program for f , the question is whether a different program, one which is
not so disjoint in the interior of the program, can have size much less than sm, where
s is the size of the optimal single-source branching program for f , and preferably with
the smallest value of m, i.e. the least amount of amortization, possible.

Potechin [Pot17] showed that, given enough amortization, this is possible in the
strongest way: every function f has m-catalytic branching programs of size O(mn),
regardless of the complexity of f with respect to ordinary branching programs; the
only catch is that m must be at least 22

n

. Reinterpreting and building on work
of Potechin [Pot17] and an improvement by Robere and Zuiddam [RZ21], Cook and
Mertz [CM22] used the TreeEval argument of [CM20, CM21] in the non-uniform setting
to show that the amount of amortization can be reduced to m = 22

ϵn

for arbitrarily
small constants ϵ > 0.

By improving (a generalization of) the central subroutine of [CM20, CM21] in
Theorem 1.1, and applying the framework of [CM22], we show that a slight sacrifice
in the length gives a near-optimal improvement in the amount of amortization.

Theorem 1.5. Every function f : {0, 1}n → {0, 1} has m-catalytic branching
programs of the following size:

• size O(m · n3/ log2 n) with m = 2(2+o(1))n

• size O(m · n2+ϵ) with m = 2O(n), for any constant ϵ > 0

4



• size O(m · n2) with m = O(2(2+ϵ logn)n), for any constant ϵ > 0

Theorem 1.5 may be compared to the best possible2 amortized size of Θ(n)
(achieved in [Pot17, RZ21, CM22]), and an overall size lower bound of Ω(2n/n) by
the same counting argument as for ordinary branching programs.

1.4. Follow-up work. Since the original publication of this paper [CM24], there
have been two improvements to our main result, one qualitative and one quantitative.
We discuss both results, in turn, in the appendices to this paper.

First, Goldreich [Gol24a] observed that our main technique is a specific instance
of computing a degree d polynomial at a single point via interpolation given by d+1
evaluations along a line. In Appendix A we discuss this framework and how it indicates
a barrier to directly improving our main subroutines. They also showed that our
approach fits neatly into a model known as global storage [Gol08], although we will
not pursue this further.

The second result, due to Stoeckl [Sto23] and later Goldreich [Gol24b], improves
Theorem 1.1, showing that TreeEval can be computed in space O(log n · log log n/
log log log n). Their proof goes via balancing parameters of the tree, including the
fan-in of each node (see Section 6), in order to exploit some slackness in our memory
usage; as a byproduct of their proof, they also show that TreeEval is in logspace
whenever the alphabet size k is sufficiently small. In Appendix B, we present this
result, and discuss how it circumvents the barrier previously mentioned, giving hope
for further improvements.

We also mention a major consequence of our work, which came to light after
our original publication. Using a generalization of Theorem 1.3, Williams [Wil25]
showed that any multi-tape Turing machine running in time t can be simulated
by a machine which only uses space O(

√
t log t), the first quantitative improvement

to the result of Hopcroft, Paul, and Valiant [HPV77] in fifty years. As a conse-
quence, they also obtain a novel separation between space and time, showing that
SPACE[s] ̸⊆ TIME[s2/ poly log s]. This work also gives a tigher connection between
branching programs and circuits, albeit with some quantitative loss that was removed
in subsequent work by Shalunov [Sha25].

1.5. Updates from [CM24]. Besides our two new appendices based on follow-
up work to the conference version of this paper [CM24], there were two other changes
required, which we briefly discuss now. First, our previous proof of Theorem 1.3 gets
the wrong asymptotics when the alphabet size k is negligible compared to the fan-
in d. In this work we fix this issue by employing a case analysis, using a different
“packed” representation in the aforementioned case. Second, the KRW Conjecture
(see Section 6) was stated incorrectly and in too weak a form; it has been updated
accordingly.

2. Preliminaries. In this work the base of logarithms is always 2: log x :=
log2 x.

2.1. Register programs. We use register programs as a convenient abstrac-
tion for describing space-bounded algorithms. Register programs were introduced by
Ben-Or and Cleve [BC92] based on work of Coppersmith and Grossman [CG75] and
explored in a number of follow-up works [Cle89, BCK+14, CM20, CM22].

2One way to obtain a size lower bound of Ω(m ·n) is to consider the parity function. Every com-
putation must query each of the n input bits at least once, and for a fixed input, the m computation
paths corresponding to the m source nodes must be disjoint, since they must all arrive at different
sink nodes.
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Definition 2.1. A register program over an alphabet Σ consists of a collection
of memory locations R = {R1, . . . , Rs}, called registers, each of which can hold one
element from Σ, and an ordered list of instructions in the form of updates to some
register Ri based on the current values of the registers and an input x ∈ {0, 1}n.

We are primarily interested in register programs which can be simulated by space-
bounded algorithms:

Definition 2.2. A family of register programs P = {Pn}n∈N is space c(n) uni-
form if there is an algorithm using space c(n) which, given (t, x) and access to an
array of registers, performs the t-th instruction of Pn on input x ∈ {0, 1}n.

Although it is common to restrict register programs to a small vocabulary of
instructions, in this work we make no restriction beyond Definition 2.2. So, our
programs may include any instruction

Ri ← g(x1, . . . , xn, R1, . . . , Rs)

as long as g can be computed in space c(n).
Following [BCK+14], rather than directly writing their output to a set of registers,

our programs add their outputs to registers using addition over a finite field, a process
called clean computation. This will be useful for making our algorithms space-efficient.

Definition 2.3. Let R be a ring3 and let f be a function whose output can be
represented in R. A register program over alphabet R with s registers cleanly com-
putes f into a register Ro if for all possible x1, . . . , xn ∈ {0, 1}n and τ1, . . . , τs ∈ R,
if the program is run after initializing each register Ri = τi, then at the end of the
execution

Ro = τo + f(x1, . . . , xn)

Ri = τi ∀i ̸= o.

We often want to undo the effect of a register program:

Definition 2.4. If P is a register program that cleanly computes f(x1, . . . , xn),
an inverse to P is any program P−1 which cleanly computes −f(x1, . . . , xn).

For example, one way to construct P−1 is:

1: Ro ← −Ro

2: P
3: Ro ← −Ro

Notice that running P followed by P−1, or vice versa, leaves every register including
Ro unchanged.

We justify our use of uniform register programs and clean computation to describe
space-bounded algorithms with the following connection:

Proposition 2.5. For n ∈ N, let c := c(n), s := s(n), t := t(n) ∈ N, and let
R := Rn be a ring. Let f := fn be a Boolean function on n variables, and let
P := Pn be a space c uniform register program, with s registers over R and which
has t instructions in total, that cleanly computes f . Then f can be computed in space
O(c+ s log |R|+ log t).

3More generally, the definition could be applied to an Abelian or even non-Abelian group R. In
this work, R will always be a finite field.
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Proof. To compute f , allocate O(s log |R|) space for registers and initialize them
to 0. Using space ⌈log t⌉ for a program counter, execute the instructions one at a
time, temporarily using additional space c to execute each one. The output is the
final value of the output register Ro.

2.2. Finite fields. In our programs, the ring R will always be a finite field.
For a prime number p and positive integer a, we define Fpa to be the unique (up to
isomorphism) field with pa elements.

Proposition 2.6. Every element x ∈ Fpa can be represented by a string of length
O(log |Fpa |) = O(a log p), and given any two such strings representing x, y ∈ Fpa ,
the representations of x + y, x × y, and x/y over Fpa can be computed in space
O(log |Fpa |) = O(a log p).

Proof. Fix an irreducible degree-a polynomial f(x) ∈ Fp[x], so that Fpa is iso-
morphic to Fp[x]/(f(x)). Then each element of Fpa is represented by a polynomial of
degree less than a, which we can store as an a-tuple of coefficients in Fp. It is then
straightforward to add, multiply and divide field elements in O(a log p) space. All
this requires finding a suitable f(x) to begin with; this can also be done in O(a log p)
space by exhaustive search.

We sometimes need a smaller field inside a larger finite field:

Proposition 2.7. For every prime number p and positive integers a, b, the field
Fpa is isomorphic to a subfield of Fpab .

Again it is computationally possible to find representations of Fpa and Fpab that
agree4; thus we treat Fpa as a subset of Fpab when performing computations.

It can be useful to view elements of a larger field as tuples of elements from a
smaller field:

Proposition 2.8. Let G be a subfield of a finite field F . Then there exist b ∈ N
and nonzero elements e1, . . . , eb ∈ F such that the mapping (x1, . . . , xb) 7→ x1e1 +
· · ·+ xbeb is a bijection between Gb and F .

Proof. F is a vector space over G. Since its cardinality is finite, it must have a
finite basis e1, . . . , eb.

3. Roots of unity. Our work uses primitive roots of unity, and so we introduce
them and some of their properties before describing our algorithms. All definitions
and statements appearing in this section are standard and have been used many times
before in the literature, but will be crucial to the proof of our main results.

Definition 3.1. An element ω of a field K is a root of unity of order m if ωm = 1.
It is a primitive root of unity if additionally ωk ̸= 1 for every integer 0 < k < m.

Our algorithm relies on some properties of primitive roots of unity—naturally, first
we require that they exist, with the order we need:

Proposition 3.2. Every finite field K has a primitive root of unity of order |K|−
1.

This follows from the fact that the multiplicative group K× of a finite field is always
a cycle. For K = Fpa , such a primitive root of unity can be found in O(a log p) space
through exhaustive search.

4For example, one way to do this is to first find an irreducible polynomial f(x) ∈ Fp[x] such
that Fpa is isomorphic to Fp[x]/(f(x)), and then find g(y) ∈ Fpa [y] such that Fpab is isomorphic to

Fpa [y]/(g(y)), with elements of Fpa being represented as constant (degree-0) polynomials in Fpa [y].
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We use, and for completeness prove, a generalization of the fact that
∑m

j=1 ω
j = 0.

Proposition 3.3. Let K be a finite field, and let ω be a primitive root of unity
of order m in K. Then for all 0 < b < m,

m∑
j=1

ωjb = 0.

Proof. Let s =

m∑
j=1

ωjb. Then

ωbs =

m+1∑
j=2

ωjb = s+ ω(m+1)b − ωb = s+ ωb(ωmb − 1) = s

since ωmb = 1b = 1. So either ωb = 1 or s = 0, but the former is ruled out because ω
is a primitive root of unity and 0 < b < m.

Corollary 3.4. Let K be a finite field, let m = |K| − 1, and let ω be a primitive
root of unity of order m in K. Then for all 0 ≤ b < m,

m∑
j=1

ωjb = −1 · [b = 0]

where [b = 0] is the indicator function which takes value 1 if b = 0 and 0 otherwise.

Proof. The case of b ̸= 0 is handled by Proposition 3.3. For b = 0 we have that
over K,

m∑
j=1

ωj0 =

m∑
j=1

1 = m = −1

where the last equality holds because m = −1 in K.

4. Tree Evaluation in low space. We now move on to the main goal of our
paper, which is to prove Theorem 1.1, i.e. that TreeEval can be computed in space
O(log n · log log n). More specifically, we prove:

Theorem 4.1. TreeEvalk,h can be computed in space O((h+ log k) · log log k).
This implies Theorem 1.1 for any setting of k and h, and is stronger as k gets

smaller with respect to the total input size. The dependence on k can be improved;
see Theorem 5.2.

Our algorithm is recursive, and treats its memory as a collection of registers
over a field K. We encode the value fu ∈ [k] at each node u as a string of bits
fu,1, . . . , fu,⌈log k⌉. Instead of directly writing this string to memory, the main recur-
sive subroutine cleanly computes it in the sense of Definition 2.3: it updates ⌈log k⌉
designated output registers as

Ro,1 ← Ro,1 + fu,1

...

Ro,⌈log k⌉ ← Ro,⌈log k⌉ + fu,⌈log k⌉

where we view the bits fu,i as the elements 0 and 1 of K, and leaves all other reg-
ister values unchanged. Importantly, we have no control over how any registers are
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initialized. This restriction will cause us some trouble, but is the key to using less
space.

Example 4.2. Suppose k = 8, K = F5, the current register values are Ro,1 =
3, Ro,2 = 1, Ro,3 = 4, and fu’s encoding is 101 ∈ {0, 1}3. Then the main subroutine
must update the registers to Ro,1 = 4, Ro,2 = 1, Ro,3 = 0.

In order to do this, we think of each bit fu,i as being a polynomial qu,i in the
2⌈log k⌉ inputs that come from u’s two children. Our goal, then, is to compute

the polynomials (qu,i)
⌈log k⌉
i=1 while only using clean access to their inputs, that is,

by making recursive calls which add the 2⌈log k⌉ input values to some other desig-
nated registers Rℓ,1, . . . , Rℓ,⌈log k⌉, Rr,1, . . . , Rr,⌈log k⌉. We never directly see the values
fℓ,i, fr,i of the child nodes. Instead, each time we make a recursive call, we first
see these registers’ initial values τℓ,1, . . . , τℓ,⌈log k⌉ and, later, their updated values
τℓ,1 + fℓ,1, . . . , τℓ,⌈log k⌉ + fℓ,⌈log k⌉ but not both at once.

To achieve this, we first find a useful equation for evaluating an arbitrary polyno-
mial, given in Lemma 4.4. Then in Lemma 4.5 we turn it into a recursive subroutine,
and then we prove Theorem 4.1 by running the subroutine on the root node and
accounting for the space used.

Before moving to arbitrary polynomials, we consider a very simple polynomial,
namely the product of d inputs.

Lemma 4.3. Let K be a finite field, let m = |K| − 1, and let ω be a primitive root
of unity of order m in K. Let d < m, and let τi, xi be elements of K for i ∈ [d]. Then

m∑
j=1

d∏
i=1

(ωjτi + xi) = −1 ·
d∏

i=1

xi.

Proof. For a fixed j, expanding the product on the left hand side gives

d∏
i=1

(ωjτi + xi) =
∑
S⊆[d]

(∏
i∈S

ωjτi

) ∏
i∈[d]\S

xi


=
∑
S⊆[d]

ωj|S|

(∏
i∈S

τi

) ∏
i∈[d]\S

xi

 .

If we sum over all j and switch the sums we get

m∑
j=1

d∏
i=1

(ωjτi + xi) =

m∑
j=1

∑
S⊆[d]

ωj|S|

(∏
i∈S

τi

) ∏
i∈[d]\S

xi


=
∑
S⊆[d]

 m∑
j=1

ωj|S|

(∏
i∈S

τi

) ∏
i∈[d]\S

xi

 .

By Corollary 3.4 we have
m∑
j=1

ωj|S| = −1 · [|S| = 0]
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and thus the outer sum simplifies to the |S| = 0 term, which only has S = ∅:

m∑
j=1

d∏
i=1

(ωjτi + xi) = −1 ·

(∏
i∈∅

τi

) ∏
i∈[d]\∅

xi

 = −1 ·
∏
i∈[d]

xi.

The next step is to move from individual products to general polynomials. This
is accomplished by a simple corollary to Lemma 4.3.

Lemma 4.4. Let K be a finite field, let d,m, n ∈ N be such that m = |K| − 1 > d,
and let ω be a primitive root of unity of order m in K. Let q : Kn → K be a degree-d
polynomial over K, and let τ := (τi)

n
i=1 ∈ Kn, x := (xi)

n
i=1 ∈ Kn. Then

m∑
j=1

−1 · q(ωjτ1 + x1, . . . , ω
jτn + xn) = q(x).

Proof. Writing q as a sum of monomials we have

q(y1, . . . , yn) =
∑
α∈Nn

|α|≤d

cα

n∏
i=1

yαi
i

for some coefficients cα ∈ K and formal variables y1, . . . , yn, where |α| :=
∑n

i=1 αi.
Then by substituting ωjτi + xi for each yi and summing over all j, we have

m∑
j=1

−1 · q(ωjτ1 + x1, . . . , ω
jτn + xn) =

m∑
j=1

−1 ·
∑
α∈Nn

|α|≤d

cα

n∏
i=1

(ωjτi + xi)
αi

=
∑
α∈Nn

|α|≤d

cα ·

−1 · m∑
j=1

n∏
i=1

(ωjτi + xi)
αi


=
∑
α∈Nn

|α|≤d

cα

n∏
i=1

xαi
i .

The last equality follows from Lemma 4.3, since
∏n

i=1(ω
jτi + xi)

αi is a product of at
most |α| ≤ d factors (ωjτi + xi). The last line is q(x1, . . . , xn) by definition.

Next, we show how to use Lemma 4.4 in a register program to compute our
polynomial fu in the way we described above, given an appropriate choice of K.

Lemma 4.5. Let K be a finite field such that m := |K| − 1 > 2⌈log k⌉. Let u be a
non-leaf node in our TreeEvalk,h instance. Let Pℓ, Pr be register programs which cleanly
compute the values vℓ, vr ∈ {0, 1}⌈log k⌉ at u’s children into registers Rℓ, Rr ∈ K⌈log k⌉,
respectively, and let P−1

ℓ , P−1
r be their inverses. Let fu : {0, 1}2⌈log k⌉ → {0, 1}⌈log k⌉

be the function at node u.
Then there exists a register program Pu which cleanly computes vu = fu(vℓ, vr) ∈

{0, 1}⌈log k⌉ into registers Ru ∈ K⌈log k⌉, as well as an inverse program P−1
u . Both

Pu and P−1
u consist of m copies each of Pℓ, Pr, P

−1
ℓ , and P−1

r , plus 5m⌈log k⌉ other
instructions. Additionally, both programs only use the registers Ru plus any additional
registers used by Pℓ, Pr.
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Proof. Our goal is to use Lemma 4.4 in order to compute the output of fu using
only clean access to the values of its children. In order to do this, we first need to
convert fu into a tuple of polynomials. We can write the i-th bit of fu as:

(fu(y, z))i =
∑

(α,β,γ)∈[k]3

[αi = 1][fu(β, γ) = α][y = β][z = γ].

We turn this into a polynomial whose 2⌈log k⌉ variables are the bits of y and z by
replacing [y = β] and [z = γ] with polynomials. [y = β] becomes the polynomial

e(y, β) =

⌈log k⌉∏
i=1

(1− yi + (2yi − 1)βi)

where βi is the ith bit of the binary representation of β; this equals [y = β] when all
yi ∈ {0, 1}. Similarly replacing [z = γ] with e(z, γ), this gives the polynomial

qu,i(y, z) =
∑

(α,β,γ)∈[k]3

αi=1

[fu(β, γ) = α]e(y, β)e(z, γ).

We note that qu,i is multilinear, and thus has degree at most 2⌈log k⌉.
Now that we have converted fu to polynomials qu,i, we use Lemma 4.4 to compute

the values qu,i(y, z) for inputs y, z coming from Pℓ and Pr respectively. Let ω be a
primitive root of unity of order m = |K| − 1 in K (Proposition 3.2). For all c ∈ {ℓ, r}
and i ∈ [⌈log k⌉], let τc,i be the initial value of Rc,i. Our goal is to compute

Ru,i ← Ru,i +

m∑
j=1

−1 · qu,i(ωjτℓ + y, ωjτr + z) ∀i ∈ [⌈log k⌉]

where ωjτℓ + y and ωjτr + z are shorthand for tuples of ⌈log k⌉ values each. We do
so using the following register program Pu:

1: for j = 1, . . . ,m do
2: for c ∈ {ℓ, r}, i = 1, . . . , ⌈log k⌉ do
3: Rc,i ← ωj ·Rc,i

4: Pℓ, Pr

5: for i = 1, . . . , ⌈log k⌉ do
6: Ru,i ← Ru,i − qu,i(Rℓ, Rr)

7: P−1
ℓ , P−1

r

8: for c ∈ {ℓ, r}, i = 1, . . . , ⌈log k⌉ do
9: Rc,i ← ω−j ·Rc,i

The program P−1
u is the same, except line 6 becomes Ru,i ← Ru,i + qu,i(Rℓ, Rr),

replacing − with + to so that the program instead computes

Ru,i ← Ru,i −
m∑
j=1

−1 · qu,i(ωjτℓ + y, ωjτr + z) ∀i ∈ [⌈log k⌉].

We use for . . .do as shorthand for concatenating several copies of a block of
instructions with varying parameters. So, for example, lines 2–3 describe a sequence of
2⌈log k⌉ register program instructions with a different pair (c, i) associated to each, and

11



the block from lines 2–9 is repeated m times with different values of j. Lines 4 and 7
are shorthand for inserting complete copies of the register programs Pℓ, Pr, P

−1
ℓ , P−1

r .
On the other hand, each of lines 3, 6, and 9 represents a single instruction (to

be repeated several times due to the surrounding for loops), even though computing
line 6 involves poly(k) field arithmetic operations. Recall from Section 2 that a single
instruction of a space c uniform register program may compute any function comput-
able in space c. See the end of the proof of Theorem 4.1 for an account of the space
c required for these instructions.

We now analyze the correctness of the program. At the start of an iteration of the
loop, we have Rc,i = τc,i, and since lines 7–9 are the inverse of lines 2–4, this invariant
is maintained at the end of the iteration; this additionally implies that Rc,i = τc,i at
the end of the program, a requirement of clean computation (Definition 2.3). Going
into lines 5 and 6, we have that

Rc,i = ωjτc,i + vc,i ∀c ∈ {ℓ, r}, i ∈ [⌈log k⌉]

where m is larger than the degree of each qu,i, and so correctness follows from
Lemma 4.4 and the fact that qu,i(y, z) = (fu(y, z))i when all yi, zi ∈ {0, 1}.

The above program can be made more efficient, as we will show in Lemma 5.1 in
Section 5, but even as stated Lemma 4.5 is sufficient to serve as our main TreeEval
subroutine.

Proof of Theorem 4.1. We show that our TreeEvalk,h instance can be cleanly com-
puted by a register program of length at most (9|K|)h⌈log k⌉ and using 3⌈log k⌉ reg-
isters over K, and that the register program is space O(h log |K|+ log k) uniform. By
Proposition 2.5, our space usage is ultimately

O(h log |K|+ log k + log k · log |K|)

which is O((h+ log k) log log k) if we choose K to be a field of size O(log k).
We build our register program by induction, showing that for every node u of

height h′ ≤ h such a program of length (9|K|)h′⌈log k⌉ computing fu exists. For
h′ = 0, i.e. a leaf node, both Pu and P−1

u can be computed by reading the node’s
value directly from the input, which gives register programs of length

⌈log k⌉ = (9 · |K|)0⌈log k⌉

since one instruction is needed for each of the ⌈log k⌉ output registers.
Now for a node u at height h′+1, we inductively assume we have register programs

Pℓ, Pr for the children ℓ, r of u, each of length (9 · |K|)h′⌈log k⌉ and which use 3⌈log k⌉
registers. We organize our registers into tuples Rℓ, Rr, Ru, where Pℓ computes fℓ into
Rℓ and Pr computes fr into Rr; our goal then is to compute fu into Pu.

Assuming |K| − 1 > 2⌈log k⌉, we apply Lemma 4.5 to u, inductively giving us a
program of length

(|K| − 1) · [4 · (9 · |K|)h
′
⌈log k⌉+ 5⌈log k⌉] ≤ (9 · |K|)h

′+1⌈log k⌉.

This completes the induction. We choose

K = F2⌈log(2⌈log k⌉+2)⌉

which satisfies our two conditions5: 1) K has size O(log k), ensuring efficiency; and 2)
|K| − 1 > 2⌈log k⌉, ensuring correctness.

5Any other K satisfying these constraints would work: for example, Fp where p is a prime number
between 2⌈log k⌉+ 2 and 4⌈log k⌉+ 4.
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It remains only to show that our register program is space O(h log |K| + log k)
uniform. Recall this means (Definition 2.2) that on input (t, x), we can perform the
t-th step of the program in space O(h log |K|+ log k).

The first task is to figure out what the t-th instruction is. The register program
given by Lemma 4.5 has an outer loop with m = |K|− 1 iterations, so the first step is
to figure out which iteration the instruction lies within—i.e. the value of j—and which
instruction number t′ it is within that iteration: t = Tj + t′ where T is the length
of each iteration. Then based on t′ we must determine where within the iteration
the instruction lies; for example, if t′ ≤ 2⌈log k⌉, then we are in line 3 with the
values of c ∈ {ℓ, r} and i ∈ [⌈log k⌉] determined by t′. If the instruction lies within
one of the recursive calls to Pℓ, Pr, P

−1
ℓ , P−1

r , then we must figure out where within
that recursive call the instruction lies, and so on. This can all be done with simple
arithmetic; since the length of the program is at most (9|K|)h⌈log k⌉, this requires
space O(h log |K|+ log k).6

Finally the instruction itself must be performed. Lines 3 and 9 can be performed in
space O(log k+log |K|), because field operations can be performed in space O(log |K|)
(Proposition 2.6), and log j ≤ log k bits suffice to create a loop to compute ωj .

It remains to compute line 6. We do this using the definition of qu,i. Taking the
outer sum means storing three values in [k], for 3⌈log k⌉ bits in total, plus O(log |K|)
bits to keep track of the total thus far. Each coefficient [fu(β, γ) = α] appears
explicitly in the input to TreeEval and can be addressed using O(log n) = O(h+log k)
bits. We can compute the product one value at a time, using one counter for the
index and one field element for the product thus far, giving ⌈log k⌉ and O(log |K|)
bits, respectively. Lastly, by taking into account the O(log |K|) space of computing
operations over K (again by Proposition 2.6), the total space usage is at most O(log k+
h+ log |K|).

5. Improvements and generalizations. In the rest of this paper we adapt
the techniques used to other questions in complexity theory. To do so, we first state
Lemma 4.5, which is our main subroutine, in a more general and efficient form.

Lemma 5.1. Let K be a finite field with a subfield F ⊆ K, let f : Fa → Fb be
a function where a(|F| − 1) < |K| − 1, and let Pg be a register program with at least
a + b registers over K which cleanly computes a value g := g(x) ∈ Fa into registers
R1, . . . , Ra.

Then there exists a register program Pf which cleanly computes f(g) into registers
Ra+1, . . . , Ra+b. The length of Pf is (|K|−1)(t(Pg)+2a+b) where t(Pg) is the length
of Pg, and Pf uses the same set of registers as Pg.

The proof is essentially that of Lemma 4.5, and will appear at the end of this
section. To see Lemma 4.5 as a special case7 of Lemma 5.1, take F = F2, a = 2⌈log k⌉
and b = ⌈log k⌉, and let g be the concatenation of the values vℓ, vr, with Pg calling Pℓ

then Pr. Lemma 5.1 saves some time by avoiding the need to call the inverse program
P−1
g .

To get a sense of the utility of this generalization, as a first application we show
how to reduce the space used by our TreeEval algorithm for storing registers. Our
algorithm currently uses space O(log n · log log n) both to keep track of time and to

6Put another way, tracking where we are within the recursive calls requires up to h stack frames,
each storing a number j ∈ [|K| − 1], plus O(log k) bits to store the values of c and i if we are in one
of the loops on lines 2, 5, and 8, for a total of O(h log |K|+ log k) space.

7Strictly speaking, it is not a special case, since Lemma 4.5 encodes values as bit strings (meaning
F = F2 in terms of Lemma 5.1) but does not require F2 to be a subfield of K.
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store the memory in the registers. We can improve this to logspace for one of these
two aspects, namely the register memory.

Theorem 5.2. TreeEvalk,h can be computed in space O(h log log k + log k).

(Theorem 5.2 is subsumed by Theorem 1.3, proved in Section 6.2.) One conse-
quence is Theorem 1.2, repeated here for convenience:

Theorem 1.2. Let h := h(k) be such that h = O( log k
log log k ). Then TreeEvalk,h can

be computed in L.

Another consequence is that if we convert our algorithms into layered branching
programs (see Section 7) computing TreeEvalk,h, we can reduce the width to poly(n)
with only a polynomial increase in length. We will not formally state or prove this
result.

The proof of Theorem 5.2 is similar to that of Theorem 4.1, except that instead
of representing elements of [k] in binary, we represent them as tuples of field elements
in a field F ⊆ K. The number of registers needed to represent elements of [k] will
thus shrink by a factor of log |F|. Our field K will be polynomially larger than before
(because the degree of the polynomial interpolated by Lemma 5.1 grows with |F|),
but since our space usage was O((h + log k) · log |K|), i.e. our space only depends
logarithmically on |K|, this will ultimately not impact our asymptotics.

Proof of Theorem 5.2. Let F = F2r and K = F2rs where r and s will be deter-
mined later. By Proposition 2.7 we may assume F ⊆ K. An element of [k] can be
represented using ⌈(log k)/r⌉ elements of F , but our registers will hold values in the
larger field K.

The induction proof, after converting fu into polynomials qu,i as in the proof
of Lemma 4.5, is the same as for Theorem 4.1, except that instead of Lemma 4.5,
we invoke Lemma 5.1 with the two fields F ⊆ K, and with fu : F2⌈(log k)/r⌉ →
F⌈(log k)/r⌉ working with encodings as elements of F instead of binary; thus we now
have polynomials qu,i over F for each i ∈ [⌈(log k)/r⌉]. The register program Pg is
the concatenation of two register programs for computing the values at the children
of u. Let t(h′) be the length of the program for a node at height h′ ≤ h. Then the
two children of a node at height h′ + 1 can be computed by Pg in time 2t(h′), so by
Lemma 5.1,

t(h′ + 1) ≤ |K|(2t(h′) +O(log k))

and thus t(h) is at most (2|K|)O(h) log k.
Now we are ready to choose F = F2r and K = F2rs . Our algorithm uses

3⌈(log k)/r⌉ registers, each needing rs bits to store, for a total of

3⌈(log k)/r⌉ · rs = O(rs+ s log k)

space devoted to storing registers. As stated above, the register program has length
(2|K|)O(h) log k, and so we need

log
(
(2 · 2rs)O(h) log k

)
= O(hrs+ log log k)

space to track our position in the program. Furthermore, our program is space
O(h log |K|+ log k) = O(hrs+ log k) uniform, which we show at the end of the proof.
By Proposition 2.5, in total we need space

O(hrs+ log log k) +O(rs+ s log k) = O(hrs+ s log k).
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In order to use Lemma 5.1 we require a(|F| − 1) < |K| − 1; that is:

2⌈(log k)/r⌉(2r − 1) < 2rs − 1.

For sufficiently large8 k, choosing r = ⌈log log k⌉ gives us

2⌈(log k)/r⌉(2r − 1) ≤ 4(log k)2/ log log k + 4 log k < 22 log log k − 1

and thus choosing s = 2 satisfies our condition, resulting in an algorithm using space

O(hrs+ s log k) = O(h log log k + log k)

as claimed.
Lastly we show that our register program is space O(h log |K|+ log k) = O(hrs+

log k) uniform. Recall (Definition 2.2) that to show this, we must show that given
(t, x), we can perform the t-th instruction on input x in space O(h log |K| + log k).
Similar to the argument in Theorem 4.1, determining which instruction is the t-th
can be done in space O(log t(h)) = O(h log |K| + log log k). Then, each individual
instruction can be computed in space O(log |K|+log k). Looking ahead to the program
given in the proof of Lemma 5.1, lines 2 and 4 are field arithmetic operations which
require O(log |K|) space (Proposition 2.6). Line 5 requires evaluating the polynomial
pi, which, examining Equation 5.1 (see below), can be done by looping over all kO(1)

values of (z1, . . . , za) in the sum and all a = O(log k) values for ℓ in the product, and
then looping up to |F|−1 to compute the exponent in qzℓ , plus O(log |K|) space to do
field arithmetic and store intermediate results, for a total of O(log |K|+log k) space.

The remaining sections of the paper will focus on applications of Lemma 5.1,
which is stronger and more flexible than Lemma 4.5 as seen above. To end this
section we prove it, with a proof closely mirroring that of Lemma 4.5.

Proof of Lemma 5.1. For each i = 1, . . . , b we define a polynomial pi(y1, . . . , ya)
which computes the i-th coordinate of f(y1, . . . , ya). Our inspiration is the formula

fi(y1, . . . , ya) =
∑

(z1,...,za)∈Fa

fi(z1, . . . , za)

a∏
ℓ=1

[yℓ = zℓ].

To make this a polynomial, we replace each indicator function [yℓ = zℓ] with the
polynomial

qzℓ(yℓ) = 1− (yℓ − zℓ)
|F|−1.

qzℓ(yℓ) has degree |F|− 1, and by the fact that the multiplicative group of F is cyclic
with order |F| − 1 we have qzℓ(yℓ) = [yℓ = zℓ] for any yℓ, zℓ ∈ F . Define

(5.1) pi(y1, . . . , ya) =
∑

(z1,...,za)∈Fa

f(z1, . . . , za)

a∏
ℓ=1

qzℓ(yℓ)

and so pi is a polynomial of degree a(|F| − 1).
Now let m = |K| − 1 and let ω be a primitive root of unity of order m in K. By

assumption, a(|F| − 1) < |K| − 1, so m is greater than the degree of the polynomials
pi. Let τℓ ∈ K be the initial value of each register Rℓ. By Lemma 4.4,

m∑
j=1

−1 · pi(ωjτ1 + y1, . . . , ω
jτa + ya) = pi(y1, . . . , ya).

8Any k ≥ 2256 is sufficiently large, since then 4(log k)2/ log log k + 4 log k ≤ ( 1
2
+ 1

64
)(log k)2 <

(log k)2 − 1 ≤ 22 log log k − 1. If k is smaller than that, take r = log log 2256 = 8.
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This leads to the following algorithm. It replaces the inefficient warm-up version
presented in the proof of Lemma 4.5 which required an extra m copies of P−1

g .

1: for j = 1, . . . ,m do
2: Rℓ ← (ω−1 − 1)−1 ·Rℓ for ℓ = 1, . . . , a
3: Pg

4: Rℓ ← (1− ω) ·Rℓ for ℓ = 1, . . . , a
5: Ra+i ← Ra+i + (−1) · pi(R1, . . . , Ra) for i = 1, . . . , b

We may assume m > 1 (otherwise pi has degree 0, so is a constant), so ω ̸= 1 and
(ω−1 − 1)−1 exists and can be used on line 2.

To analyse this algorithm, define τ ′ℓ = τℓ − gℓ for ℓ = 1, . . . , a. At the start of the
j-th iteration of the loop, the following invariants hold for ℓ ∈ [a], i ∈ [b]:

Rℓ = ωj−1τ ′ℓ + gℓ

Ra+i = τa+i +

j−1∑
j′=1

−1 · pi(ωj′τ ′1 + g1, . . . , ω
j′τ ′a + ga).

It is straightforward to verify this invariant holds after each iteration. After the last
iteration, we have for ℓ ∈ [a]

Rℓ = ωmτ ′ℓ + gℓ

= τℓ − gℓ + gℓ = τℓ

and Lemma 4.4 tells us that for i ∈ [b],

Ra+i = τa+i +

m∑
j=1

−1 · pi(ωjτ ′1 + g1, . . . , ω
jτ ′a + ga)

= τa+i + pi(g1, . . . , ga).

This register program includes m copies of Pg and has a total length of m(2a +
b+ t(Pg)).

6. Application 1: The KRW conjecture separates L and NC1. We now
move on to applications of our space-efficient TreeEval algorithms and the techniques
they are based on. In this section we discuss their implications in the study of lower
bounds against fan-in two formulas with AND, OR, and NOT gates. Our goal is to
prove Theorem 1.4, repeated here for reference:

Theorem 1.4. If the KRW conjecture holds, then L ̸⊆ NC1.

6.1. KRW and TreeEval. To begin, we formally state the KRW conjecture to
fit the discussion from Section 1.

Conjecture 6.1 (KRW Conjecture [KRW95]). For a function f , let depth(f)
denote the smallest depth of any fan-in two formula computing f . For any functions
g1 : {0, 1}n1 → {0, 1} and g2 : {0, 1}n2 → {0, 1}, define their composition g1 ◦ g2 to be

g1 ◦ gn1
2 (x1,1, . . . , xn1,n2) := g1(g2(x1,1, . . . , x1,n2), . . . , g2(xn1,1, . . . , xn1,n2)).

Then for large enough n1, n2, every function g1, and at least a 2/3 fraction of functions
g2, it holds that

depth(g1 ◦ g2) ≥ depth(g1) + depth(g2)−O(1).

We note that this conjecture can be weakened by increasing the O(1) subtractive term.
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To see why this is connected to TreeEval, we need to consider the unbounded
fan-in version of TreeEval.

Definition 6.2. The d-ary Tree Evaluation Problem, denoted TreeEvalk,d,h, is a
generalization of TreeEvalk,h where each internal node has d children.

We can view the KRW conjecture in relation to TreeEvalk,d,h with alphabet size
k = 2, namely as a tool for “composing” lower bounds against each individual node
into a lower bound against instances themselves.

Lemma 6.3. Conjecture 6.1 implies depth(TreeEval2,d,h) = Ω(dh).

Proof. For each layer ℓ ∈ [h], consider a random function fℓ : {0, 1}d → {0, 1},
and note that with non-zero probability we have both 1) fℓ requires formula depth d/2
(which holds with probability 99/100 by a counting argument); and 2) depth(g1◦g2) ≥
depth(g1)+depth(g2)−O(1), where g1 = (f1◦ . . .◦fℓ−1) and g2 = fℓ (which holds with
probability 2/3 by Conjecture 6.1). Fix functions fℓ satisfying these two properties
for each ℓ ∈ [h] and fix each internal TreeEval2,d,h node at height ℓ to fℓ. Thus our
final TreeEval function is the iterated composition of all f1, . . . , fℓ, and by our two
assumptions this function requires depth h · (d/2−O(1)) = Ω(dh).

Since TreeEvalk,d,h has input size n = dhkd log k, fixing k = 2 gives us log n =
O(h log d+d). This implies, for the right setting of parameters, that Ω(dh) = ω(log n),
and thus TreeEval2,d,h /∈ NC1, assuming Conjecture 6.1. We give exact details after es-
tablishing the other side of Theorem 1.4, namely the space complexity of TreeEval2,d,h.

6.2. Space bounds for TreeEvalk,d,h. Using Lemma 5.1, we can generalize
Theorem 1.1, and in fact Theorem 5.2, to degrees d other than 2, proving Theorem 1.3:

Theorem 1.3. TreeEvalk,d,h can be computed in space O(h log(d log k) + d log k).

Proof. Our proof proceeds much like that of Theorem 5.2. Let F = F2r and
K = F2rs where r and s will be determined later; we treat F as a subfield of K, and
encode data as tuples of elements of F .

Our proof strategy in Theorem 5.2 goes through as before after replacing 2 log k
with d log k in the degree and number of registers. However, this replacement gives
rise to an issue: since the size of the larger field K must be at least the degree, and
the degree in turn is at least the number of inputs a, for a ≥ d this results in at
least a log |K| = Ω(d log d) space being used to store registers, which could violate our
target upper bound when d≫ k.

Our solution is to use two different encodings, depending on whether 1) d < 1
2

√
k;

or 2) d ≥ 1
2

√
k. Specifically, when d < 1

2

√
k we proceed as in Theorem 5.2; we

represent each element of [k] as a tuple of ⌈(log k)/r⌉ elements of F , and later we
choose r to be at most ⌈log k⌉.

Meanwhile, when d ≥ 1
2

√
k, we instead use a packed representation to group

the values from child nodes together: a single element of F represents a tuple of up
to c elements of [k], where c ≤ d is an integer to be determined later; we choose
r = c⌈log k⌉ in this case.

We build this packed representation using Proposition 2.8, as follows. Let G =
F2⌈log k⌉ ; thus G is large enough to encode values in [k], and we abuse notation by
considering [k] to be a subset of G. We treat G as a subfield of F (Proposition 2.7),
so Proposition 2.8 then gives us c elements e1, . . . , ec ∈ F which allow us to encode a
tuple (v1, . . . , vc) ∈ Gc as v1e1 + · · ·+ vcec ∈ F .

We use induction to build a program Pu to compute the value vu at each node u.
Let t(h′) be the length of our programs at height h′.
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The value at a leaf node can be read directly from the input, so t(1) = O(d+log k)
as it is either ⌈d/c⌉ or ⌈(log k)/r⌉.

To compute the value at an internal node we use Lemma 5.1. To do this, we must
specify values a, b, a function f : Fa → Fb, and an input g computed by a register
program Pg.

First we define the function f , which is based on the function fu : [k]d → [k] at
node u. In the d < 1

2

√
k case, we treat it as f : Fd⌈(log k)/r⌉ → F⌈(log k)/r⌉, and we

have a = d⌈(log k)/r⌉, b = ⌈(log k)/r⌉, again just as in Theorem 5.2. In the “packed”
(i.e. d ≥ 1

2

√
k) case, we instead treat fu as

f : F⌈d/c⌉ → G

and we have a = ⌈d/c⌉, b = 1. In both cases, g ∈ Fa is an encoding of the d input
values to the function fu.

Let u′
1, . . . , u

′
d be the children of u. The register program Pg is a concatenation

of d programs Pu′
1
, . . . , Pu′

d
computing vu′

1
, . . . , vu′

d
. In the d ≥ 1

2

√
k case, Pg must

include additional instructions to pack each group of c values v1, . . . , vc into a single
register using the encoding v1e1 + · · ·+ vcec. This can be done as follows.

1: for i = 1, . . . , ⌈d/c⌉ do
2: for j = 1, . . . ,min{c, d− (i− 1)c} do
3: Ri ← Ri/ej
4: Run Pu′

ci+j
to add vu′

ci+j
∈ G ⊆ F to Ri

5: Ri ← Ri · ej
The effect of lines 3–5 is to add ej times the encoding of vu′

ci+j
to Ri, so the net effect

of the program is to add the full encoding v1e1 + · · ·+ vcec of each group of c values
vu′

i
to each of the ⌈d/c⌉ registers. For a node at height h′ + 1, the length of Pg is

t(Pg) = d · t(h′) for the d < 1
2

√
k case, or t(Pg) = d · (t(h′) + 2) for the d ≥ 1

2

√
k case.

Finally, invoking Lemma 5.1 produces a program of length

(|K| − 1)(t(Pg) + 2a+ b) ≤ 2rs(dt(h′) +O(d log k))

for computing vu. Putting all the layers together, we have t(h) = O((d2rs)hd log k),
so we need

log t(h) = O(log((d2rs)hd log k)) = O(hrs+ h log d+ log log k)

space to track our position in the program.
We use a total of a + b registers over K, each requiring rs bits to store, thus

giving us (a+ b)rs space in total. In the d < 1
2

√
k case, we have a = d⌈(log k)/r⌉ and

b = ⌈(log k)/r⌉, and we will make sure r ≤ ⌈log k⌉ to ensure that a+b = O((d log k)/r).
In the d ≥ 1

2

√
k case, we have a = ⌈d/c⌉ and b = 1 for some c ≤ d, so a+ b = O(d/c);

as stated above, we make sure that r = c⌈log k⌉. Putting this together, the space
used by registers is

(a+ b)rs = O((d log k)/r) · rs = O(ds log k)

in both cases. Lastly our program is

O(hrs+ h log d+ d log k)
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uniform by the same argument as in Theorems 4.1 and 5.2. Putting this all together,
by Proposition 2.5, in total we need space

O(hrs+ h log d+ d log k) +O(ds log k) +O(hrs+ h log d+ log log k)

= O(hrs+ h log d+ ds log k).

All that remains is to choose r and s, or c and s in the d ≥ 1
2

√
k case. This is based

on the parameter restrictions we have already committed to, as well as the constraint
in Lemma 5.1 that a(|F| − 1) < |K| − 1.

We begin with the d < 1
2

√
k case, where our constraint becomes

d⌈(log k)/r⌉(2r − 1) < 2rs − 1.

As long as k > 1, setting r = log(2d log k) and s = 2 satisfies the constraint, and we
get an algorithm using space

O(hrs+ h log d+ ds log k) = O(h log(d log k) + d log k).

In the d ≥ 1
2

√
k case, having set r = c⌈log k⌉ our constraint is

⌈d/c⌉(2c⌈log k⌉ − 1) < 2sc⌈log k⌉ − 1.

Setting c = (log d + 1)/(log k + 1) and s = 2 satisfies this, and so r = c⌈log k⌉ =
O(log d), giving us space

O(hrs+ h log d+ ds log k) = O(h log d+ d log k)

for our algorithm, which completes the proof.

6.3. KRW and NC1 vs L. The input to TreeEvalk,d,h is of length dh · kd log k,
and thus Theorem 1.3 gives us an algorithm using space O(log n · log logn) for every
setting of k, d, and h. This follows from our precise space usage

O(h log(d log k) + d log k) = O(h log d+ h log log k + d log k)

where h log d and d log k are both O(log n). In fact, while h log log k = O(log n ·
log log n) as with TreeEvalk,h, this can be tightened for larger values of d. As with
Theorem 1.2, this implies that some parameterizations of TreeEvalk,d,h are easy.

Theorem 6.4. Let d := d(k) be such that d ≥ (log k)Ω(1). Then TreeEvalk,d,h can
be computed in L.

Proof. Theorem 1.3 gives an algorithm for TreeEvalk,d,h which uses space O(
h log(d log k) + d log k), which for log k ≤ dO(1) is at most O(h log d + d log k), which
is O(log n) as n = O(dh · kd log k).

Theorem 6.4 should mostly be interpreted as a statement about large fan-in
TreeEval, rather than small alphabet TreeEval, as it gives no new result in the case of
d = O(1) for any alphabet size9. In any case, applying Theorem 6.4 to TreeEval2,d,h for
large enough d immediately yields Theorem 1.4, which we state in a more quantitative
form.

9We state a similar statement more geared towards small alphabets, due to [Sto23, Gol24b], in
Appendix B.
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Theorem 6.5. Assume Conjecture 6.1 holds. Then there exists a function in L
which requires formulas of depth Ω(log2 n/ log logn).

Proof. Let d = Θ(log n) and h = Θ(log n/ log log n) be such that dh ·2d = n. Then
by Theorem 6.4 we have TreeEval2,d,h ∈ L, while Lemma 6.3 states that TreeEval2,d,h
requires depth Ω(dh) = Ω(log2 n/ log log n) as claimed.

Theorem 6.5 uses the strongest version of Conjecture 6.1, but as stated in the in-
troduction, any weakening which implies that TreeEval2,d,h requires superlogarithmic
formula depth is sufficient, with stronger versions of the conjecture directly translating
to stronger separations between NC1 and L.

7. Application 2: Near-optimal catalytic branching programs. Our sec-
ond contribution outside of TreeEval is to the study of catalytic branching programs
for computing arbitrary functions.

7.1. Catalytic branching programs. First, we establish the background of
catalytic branching programs to give context to our results.

7.1.1. Definitions and motivation. We have thus far avoided discussing any
syntactic space-bounded models except in passing. While we assume familiarity on
the part of the reader with branching programs in the usual sense, to understand our
second auxiliary result we must formally define the model of [GKM15] now.

Definition 7.1. Let n ∈ N and let f : {0, 1}n → {0, 1} be an arbitrary function.
An m-catalytic branching program is a directed acyclic graph G with the following
properties:

• There are m source nodes and 2m sink nodes.
• Every non-sink node is labeled with an input variable xi for i ∈ [n], and has

two outgoing edges labeled 0 and 1.
• For every source node v there is one sink node labeled with (v, 0) and one with
(v, 1).

We say that G computes f if for every x ∈ {0, 1}n and source node v, the path defined
by starting at v and following the edges labeled by the value of the xi labeling each
node ends at the sink labeled by (v, f(x)).

The size of G is the number of nodes in G. For this paper all branching programs
are layered, meaning all nodes are organized into groups, called layers, where all edges
from layer i go to nodes in layer i+ 1 for all i. The width of G is the largest size of
any layer, while the length of G is the number of layers.

The (logarithm of the) size of an ordinary branching program computing f non-
uniformly corresponds to the space needed to compute f , as we need only remember
where in the program we currently are. By contrast, the reader should think of the
m-catalytic branching program model as providing some initial memory τ in the form
of the label of some start node, and the (logarithm of the) size of the program is the
space required to compute f while remembering this string τ .

Clearly this can be done with sm nodes, where s is the size of the smallest
branching program for f , by simply taking m disjoint copies of an optimal branching
program for f ; we are interested in when this value can be reduced. This corresponds
to using the space needed to store τ in a non-trivial way during the computation of
f . This view also motivated Potechin [Pot17] to alternately view catalytic branching
programs as amortized branching programs, as we can think of taking these m disjoint
branching programs for f and letting them share memory states, i.e. internal nodes,
while still preserving the same disjoint source-sink behavior.
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7.1.2. Past results. In addition to characterizing m-catalytic branching pro-
grams as amortized branching programs, Potechin [Pot17] showed that, given enough
amortization, every function can be computed by branching programs of amortized
linear size. Robere and Zuiddam [RZ21] studied two different amortized branching
program models, with one being catalytic branching programs, and concluded along
with [Pot17] that a linear upper bound holds; they also improved the amount of amor-
tization needed for functions f that can be represented as low-degree F2 polynomials.

Later, Cook and Mertz [CM22] showed the results of [Pot17, RZ21] can be cap-
tured by clean register programs. Each source node corresponds to an initial setting
τ of the registers, with the clean condition exactly giving back the pairing between
source and sink nodes.

Proposition 7.2. Let f : {0, 1}n → {0, 1} be a function, and let F be a fi-
nite field of characteristic p. Assume that there exists a register program P using t
instructions—each of which only reads one input bit10—and s registers over F , whose
net result is to cleanly compute f into some register. Then f can be computed by an
m-catalytic branching program of width m · p and length t, where m = |F|s/p.

Proof. Each of the |F|s nodes in a given layer represents a unique setting to all
the registers. We execute one instruction of the register program per layer, querying
the input bit corresponding to that instruction.

Finally, we consider, for each source and sink node, the corresponding assignment
to the designated output register. Find a basis {e1, . . . , er} for F considered as a
vector space over Fp such that e1 is the field element 1 ∈ F . We delete all source
nodes except those whose first coordinate is 0—leaving us with |F|s/p source nodes
as claimed—and similarly we delete all sink nodes except those whose corresponding
assignment to the first coordinate is either 0 or 1. By construction, each source
whose assignment is τ will reach the sink node labeled by the same τ , except that if
f(x1, . . . , xn) = 1, then 1 is added to the output register, so that its first coordinate
is 1 instead of 0.

In [Pot17, RZ21], the amount of amortization required to achieve linear upper
bounds was 22

n

in the worst case. [CM22] used Proposition 7.2 plus the central
TreeEval subroutines of [CM20, CM21] to improve this to 22

ϵn

for any ϵ > 0. This is
still the best known result for achieving linear amortized braching program size.

We also mention in passing that the m-catalytic branching programs produced
by Proposition 7.2 can be made into permutation branching programs—a classic and
much more well-studied model—of the same width and length. In fact they are more
restricted, and for example only have one accepting vertex; recently, Hoza, Pyne, and
Vadhan [HPV21] and Pyne and Vadhan [PV21] showed a lower bound against the
read-once version of such programs for infinite width. See [CM22] for more discussion
of the connections between these models and of how close to read-once these programs
can be made.

7.2. One-shot clean polynomials. Given our connection between register pro-
grams and m-catalytic branching programs, and the fact that Lemma 5.1 gives us a
way to cleanly compute arbitrary polynomials, it seems natural to ask whether our
techniques can improve the size of m-catalytic branching programs for computing ar-

10This is different from our earlier condition, given by Proposition 2.5, that each instruction
be computable in small space. In non-uniform branching programs and register programs, we can
compute any function of the current space in one step, but need to take careful account of the length
as the exact number of variable reads.
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bitrary functions. This requires us to leave behind our strategy of using Lemma 5.1
in a recursive way, and instead apply it directly to the whole function f in question.

Using this idea to prove Theorem 1.5 is the subject of the rest of the section. We
prove a more general, fine-grained version of the theorem first.

Theorem 7.3. For any f : {0, 1}n → {0, 1} and positive integers r, s such that

(7.1) ⌈n/r⌉(2r − 1) < 2rs − 1

there exists an m-catalytic branching program of width 2m and length less than 2rsn ·
(1 + 2/r + 3/n) computing f , where m ≤ 2(n+2r)s.

Proof. Let F = F2r and K = F2rs . We partition the input into groups of up to
r bits, and encode each group of bits as an element of F = F2r . This grouping and
encoding together define a function g : {0, 1}n → F⌈n/r⌉, which plays the role of g
in the statement of Lemma 5.1, with a = ⌈n/r⌉. The program Pg (which cleanly
computes g) can be implemented as a sequence of n instructions, reading each input
once.

Applying Lemma 5.1 gives a register program of length

(|K| − 1)(t(Pg) + 2a+ b) = (2rs − 1)(n+ 2⌈n/r⌉+ 1)

< 2rsn(1 + 2/r + 3/n)

which uses

a+ b = ⌈n/r⌉+ 1

registers over K. By Proposition 7.2, this gives us an m-catalytic branching program
of length less than 2rsn(1 + 2/r + 3/n) and width 2m, where

m = |K|⌈n/r⌉+1/2 = (2rs)⌈n/r⌉+1/2 < 2(n+2r)s

Finally Lemma 5.1 requires a(|F| − 1) < |K| − 1, which is exactly our requirement

⌈n/r⌉(2r − 1) < 2rs − 1.

7.3. Main result. Theorem 1.5 follows from an analysis of various parameter
regimes from Theorem 7.3.

Proof of Theorem 1.5. We analyze three ways to choose r and s to satisfy the
precondition of Theorem 7.3, each corresponding to one claim of the theorem. In
what follows, all asymptotics (O(), o()) take n as the growing variable, with one of r
or s fixed and the other a function of n.

Constant s. Let s be any integer greater than 1. We consider two settings, s = 2
and s ≥ 3.

In the s = 2 setting, fix r = ⌈log n− log log n+ 1⌉. Let us verify the prerequsiite
(7.1) of Theorem 7.3. For sufficiently large n,⌈n

r

⌉
(2r − 1) <

n
2
3 log n

(2r − 1)

< 2r(2r − 1)

< 22r − 1 = 2rs − 1.
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So, we may apply Theorem 7.3. The length of the resulting program is at most

2rsn(1 + 2/r + 3/n) ≤ 22(logn−log logn+2)n(1 + o(1))

= (16 + o(1))

(
n3

log2 n

)
and for m we have

m ≤ 22(n+2r)

< 22(n+2 logn−2 log logn+4)

= 28 · 22n
(

n

log n

)4

.

This proves the first claim of Theorem 1.5 (size O(m · n3/ log2 n), m = 2(2+o(1))n).
For the second claim (size O(m ·n2+ϵ), m = 2O(n)), we move to the s ≥ 3 setting.

Let

r =

⌈
1

s− 1
log n

⌉
.

The prerequisite (7.1) is satisfied since for sufficiently large n, the left side is less than
2(s − 1)ns/(s−1)/ log n and the right side is at least ns/(s−1) − 1. The length of the
program given by Theorem 7.3 is at most

2rsn(1 + 2/r + 3/n) ≤ 2s · 2(s/(s−1)) logn · n · (1 + o(1))

= (2s + o(1))n(2s−1)/(s−1)

and for m we have

m ≤ 2(n+2r)s

< 2(n+2)s · n2s/(s−1).

Let ϵ = 1
s−1 ∈ (0, 1/2], so s = 1 + 1/ϵ. This gives us length at most (21+1/ϵ + o(1)) ·

n2+ϵ = O(n2+ϵ) and m at most

2(n+2)(1+1/ϵ)n2(1+ϵ) < 2(1+1/ϵ+o(1))n.

Note that ϵ can be made arbitrarily small by increasing s.
Constant r. Let r be any integer strictly greater than 1, and set

s =

⌈
log n− log r

r
+

1

n

⌉
+ 1.

The prerequisite (7.1) is satisfied for large enough n since 2rs−1 > 2r · nr −1 > 2r−1.
The length of the program produced by Theorem 7.3 is at most

2rsn(1 + 2/r + 3/n) < 2r((logn−log r)/r+(1/n)+2)n(1 + 2/r + 3/n)

=
n

r
· 2r/n · 22r · n · (1 + 2/r + 3/n)

≤ (1 + o(1))

(
22r
(
1

r
+

2

r2

)
n2

)
≤ (1 + o(1))22rn2
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and for the width we get

m < 2(n+2r)((logn−log r)/r+1/n+2)

≤ 2(n logn)/r+n(2−(log r)/r+o(1)).

Setting ϵ = 1/r gives us the third claim of Theorem 1.5 (size O(m · n2), m =
O(2(2+ϵ logn)n)). ϵ can be made arbitrarily small by increasing r. This completes
the proof.

8. Conclusion. The most immediate question left open by this work is whether
or not TreeEval ∈ L. Both answers are entirely possible, and it is no longer clear why
one should be wholly convinced of either.

Similarly, we may take the chance to consider what answer we might expect on the
KRW conjecture. We have stated Theorem 1.4 about the implications of composition
theorems for formulas, but since our main theorem can and should be read as a
failure of composition theorems in the space-bounded case, it is natural, possibly
more so than before, to also believe that they could fail for formulas as well. Here one
should read the contrapositive of Theorem 1.4 as giving a different angle: if one can
show that deterministic uniform logspace has formulas of depth o(log2 n/ log log n)—
barely below the bound given by Savitch’s Theorem [Sav70] for non-deterministic
non-uniform space—then the KRW conjecture falls in tandem.

There is also a broader question of how to apply our techniques to other problems
in space-bounded complexity. The result of Lemma 5.1, of cleanly and efficiently
computing arbitrary polynomials, seems to be a heavy hammer, but thus far it has
only found a few nails.

Recently, Mertz [Mer23] surveyed a number of techniques for space-bounded com-
plexity, including the use of clean register programs seen in this and previous papers.
The survey posed a host of open questions of how they can be further strengthened
and applied, such as showing the power of catalytic computing. To take one example
where our results may be relevant, [Mer23] conjectured that an optimal improvement
to Lemma 4.5 could also show that catalytic logspace contains NC2. However, whether
our more modest improvement in this paper can be useful in making progress on this
or any other questions posed remains unknown.

Appendix A. Evaluating polynomials on a line. In this section we discuss
the characterization of Lemmas 4.5 and 5.1 given by Goldreich [Gol24a]. They noted
that the use of primitive roots of unity is not necessary; our key equation in Lemma 4.4,
extrapolating from Lemma 4.3, is only one instantiation of a broader class of equations,
stating that any d + 1 (or more) evaluations of a degree d polynomial p along a line
is enough to determine its value anywhere else on the line.

Lemma A.1. Let K be a finite field, let d,m, n ∈ N be such that d < m ≤ |K|− 1,
and let p : Kn → K be a degree-d polynomial over K. Then for every distinct
ℓ1, . . . , ℓm ∈ K, there exist coefficients c1, . . . , cm ∈ K such that the following in-
terpolation equation is true for all choices of τ := (τi)

n
i=1 ∈ Kn, x := (xi)

n
i=1 ∈ Kn.

m∑
j=1

cjp(ℓjτ + x) = p(x).

Here, ℓjτ + x represents the tuple (ℓjτi + xi)
n
i=1. Each coefficient ci can be computed

in O(log |K|+ logm) space given access to ℓ1, . . . , ℓm.
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Proof. Fixing τ1, . . . , τn, x1, . . . , xn, define the univariate polynomial

q(ℓ) = p(ℓτ + x) = p(ℓτ1 + x1, . . . , ℓτn + xn).

In other words, q is p restricted to the line ℓτ + x.
Because q has degree less than m, we can use Lagrange interpolation to recon-

struct the polynomial q(ℓ) by evaluating it at any m points. First, define

ri(ℓ) =

∏
j ̸=i(ℓj − ℓ)∏
j ̸=i(ℓj − ℓi)

so that ri(ℓi) = 1 and ri(ℓj) = 0 for j ̸= i. Then q(ℓ) =
∑m

i=1 q(ℓi)ri(ℓ) and so

p(x) = q(0) =

m∑
i=1

ciq(ℓi)

where each coefficient

ci =

∏
j ̸=i ℓj∏

j ̸=i(ℓj − ℓi)

can be computed from the values ℓi with arithmetic over K and a loop variable with
m values.

Lemma 4.4 is a special case: for a careful choice of ℓi, the coefficients are all
ci = −1. This has the advantage of simplicity—it is perhaps easier to see that the
interpolation can be carried out without using much space. On the other hand, Gol-
dreich went on to show that the view given by Lemma A.1 makes the later embedding
argument given in Lemma 5.1 simpler by not relying on a field extension. Further-
more, it leads to the question of where our work can be generalized, and whether
other choices of coefficients—perhaps based on properties of the specific polynomials
coming from TreeEval—can yield nicer properties, or even improvements, of results
such as Theorem 1.1.

To close this section, we remark that this generalization points to a barrier in
improving Lemmas 4.5 and 5.1. From Lemma A.1 we know that d + 1 evaluations
are sufficient to determine p(x); however, for a general degree d polynomial, d + 1
evaluations are necessary as well.11 The results on register programs for TreeEval
given by [CM20, CM21] as well as this work only compute one evaluation p(ατ + βx)
per recursive call, as rebalancing the coefficients α and β requires accessing x; thus
it would seem that we cannot decrease the amount of recursion at each node below
Ω(log k) calls without changing our approach.

Appendix B. Improving our result by an O(log log log n) factor. In this
section we give an exposition of the results of Stoeckl [Sto23] and Goldreich [Gol24b],
which give an improvement to Theorem 1.1.

Theorem B.1 ([Sto23, Gol24b]). TreeEval can be computed in space O(log n ·
log log n/ log log log n).

11As stated the lemma technically would work for just one evaluation, i.e. when ℓ = 0 and c = 1.
However, using ℓ = 0 in our register program is akin to erasing the memory where we are adding x,
which prevents us from cleanly computing our value. Thus what we mean here is that d+1 non-zero
values ℓ are necessary.
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In contrast to our techniques, which solely rely on efficient computation at the
given nodes of the TreeEval instance, they alter the structure of the TreeEval instance
itself to balance the gap in the space used for the register memory and the space used
for the program counter in Theorem 1.2. In particular, merging levels of the tree
allows us to reduce the height h at the expense of growing the fan-in d.

Lemma B.2 ([Sto23, Gol24b]). TreeEvalk,d,h can be computed in space

O

(
h log d+

h

t
log log k + dt log k

)
for any integer t = t(k, d, h) ∈ {1, . . . , h}.

Proof. We can transform the TreeEvalk,d,h instance into a TreeEvalk,dt,⌈h/t⌉ in-
stance as follows: starting at the top level, i.e. the level containing only the root of
TreeEval, we take each node at the current level and merge it with its subtree of depth
t, with the function at the new node being the composite function of all nodes merged
this way. This subtree has dt leaves, as each internal node has branching factor d,
and thus we are left with every node at the current level having dt children, while
we have removed t levels from the tree. We now move to the level containing these
children and repeat. In the end we are left with a tree of height ⌈h/t⌉ and each node
having fan-in dt.

We complete the proof with two applications of Theorem 1.3. First, the function
fu : [k]d

t → [k] associated with each internal node u of the new tree is an instance of
TreeEvalk,d,t, and so can be computed in space

(#) O(t log(d log k) + d log k).

Setting this space aside allows us to access the input to the transformed instance of
TreeEvalk,dt,⌈h/t⌉, which can then be computed in space

(∗) O

(⌈
h

t

⌉
log(dt log k) + dt log k

)
= O

(
h log d+

h

t
log log k + dt log k

)
.

The total space used is (∗) plus (#), which is dominated by (∗).
We now use Lemma B.2 prove Theorem B.1. Note that in Section 1, we used

TreeEval without parameters to refer to TreeEvalk,h rather than TreeEvalk,d,h, and
in fact [Sto23, Gol24b] only state Theorem B.1 for the case of TreeEvalk,h as well.
However, extending their proof to general fan-in only requires a minor modification,
and so we show their improvement in full generality.

Theorem B.3. Define n := n(k, d, h) = Θ(dhkd log k) to be the size of inputs
to TreeEvalk,d,h. Then TreeEvalk,d,h can be computed in space O(log n · log log n/
log log log n).

Proof. By definition we have h log d = O(log n) and d log k = O(log n). Set
t = ⌈(log log log k)/(2 log d)⌉. If t > h then we have h < log log log k, so Theorem 1.3
gives space

O(log n+ log log n log log log n) = O(log n).

So assume instead that t ≤ h. Note that dt ≤ d · d(log log log k)/(2 log d) = d
√
log log k,

so Lemma B.2 gives space

O

(
h log d+

h log d log log k

log log log k
+ d log k

√
log log k

)
≤ O

(
log n log log n

log log log n

)
.
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Theorems 1.2 and 6.4 show that TreeEvalk,d,h is in fact in logspace whenever d is
too large or h is too small. We remark here that Lemma B.2 can be used to give a
logspace upper bound for the last remaining parameter, namely whenever k is small.

Theorem B.4 ([Sto23, Gol24b]). Let k := k(d, h) be such that

log k ≤ (h log d)1−Ω(1).

Then TreeEvalk,d,h can be computed in L.

Proof. We again recall that h log d = O(log n) and d log k = O(log n). Let ϵ > 0
be such that log k ≤ (h log d)1−ϵ, let α = ϵ

2(1−ϵ)—note that α = Θ(1) and 1 + 2α =

(1− ϵ)−1—and set t = ⌈(α log log k)/(log d)⌉. We consider three cases.
Case 1: t = 1. Then log log k ≤ (log d)/α, so Theorem 1.3 gives space

O(h log(d log k) + d log k) = O(h log d+ h log log k + d log k)

≤ O

(
h log d+

h log d

α
+ d log k

)
≤ O(log n).

Case 2: t > h. Then h < 2α log log k/ log d, and Theorem 1.3 gives space

O(h log d+ h log log k + d log k) ≤ O(α log log k + (log log k)2 + d log k)

≤ O(log n).

Case 3: 2 ≤ t ≤ h. Then t ≤ 2α log log k/ log d, so dt ≤ (log k)2α, and applying
Lemma B.2 gives space

O

(
h log d+

h

t
log log k + dt log k

)
≤ O(h log d+ h log d+ (log k)1+2α)

≤ O(h log d+ (h log d)
1−ϵ
1−ϵ )

≤ O(log n).

At the end of Appendix A, we saw that Ω(log k) recursive calls at each node could
be inherently necessary, given our register program approach. However, the proof of
Lemma B.2 circumvents this issue by taking the same subroutine at each node as
before, but preprocessing the tree to alter its structure. This indicates that rather
than trying to improve Lemma 4.5 against the backdrop of the d + 1 evaluations
barrier, we should instead be looking for “external” approaches to shaving off the last
factors in order to show TreeEval ∈ L.

Appendix C. List of theorems.

C.1. Space bounds for TreeEval.

Theorem 1.1. TreeEval can be computed in space O(log n · log log n).
Theorem 4.1. TreeEvalk,h can be computed in space O((h+ log k) · log log k).
Theorem 5.2. TreeEvalk,h can be computed in space O(h log log k + log k).

Theorem 1.3. TreeEvalk,d,h can be computed in space O(h log(d log k) + d log k).

Theorem B.1 ([Sto23, Gol24b]). TreeEval can be computed in space O(log n ·
log log n/ log log log n).

Theorem B.3. Define n := n(k, d, h) = Θ(dhkd log k) to be the size of inputs
to TreeEvalk,d,h. Then TreeEvalk,d,h can be computed in space O(log n · log log n/
log log log n).
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C.2. Conditions under which TreeEval ∈ L.

Theorem 1.2. Let h := h(k) be such that h = O( log k
log log k ). Then TreeEvalk,h can

be computed in L.

Theorem 6.4. Let d := d(k) be such that d ≥ (log k)Ω(1). Then TreeEvalk,d,h can
be computed in L.

Theorem B.4 ([Sto23, Gol24b]). Let k := k(d, h) be such that

log k ≤ (h log d)1−Ω(1).

Then TreeEvalk,d,h can be computed in L.

C.3. The KRW conjecture.

Theorem 1.4. If the KRW conjecture holds, then L ̸⊆ NC1.

Theorem 6.5. Assume Conjecture 6.1 holds. Then there exists a function in L
which requires formulas of depth Ω(log2 n/ log logn).

C.4. Catalytic branching programs.

Theorem 1.5. Every function f : {0, 1}n → {0, 1} has m-catalytic branching
programs of the following size:

• size O(m · n3/ log2 n) with m = 2(2+o(1))n

• size O(m · n2+ϵ) with m = 2O(n), for any constant ϵ > 0
• size O(m · n2) with m = O(2(2+ϵ logn)n), for any constant ϵ > 0

Theorem 7.3. For any f : {0, 1}n → {0, 1} and positive integers r, s such that

(7.1) ⌈n/r⌉(2r − 1) < 2rs − 1

there exists an m-catalytic branching program of width 2m and length less than 2rsn ·
(1 + 2/r + 3/n) computing f , where m ≤ 2(n+2r)s.
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