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Abstract

Space complexity is a key field of study in theoretical computer science. In the quantum
setting there are clear motivations to understand the power of space-restricted computation,
as qubits are an especially precious and limited resource.

Recently, a new branch of space-bounded complexity called catalytic computing has
shown that reusing space is a very powerful computational resource, especially for subrou-
tines that incur little to no space overhead. While quantum catalysis in an information
theoretic context, and the power of “dirty” qubits for quantum computation, has been
studied over the years, these models are generally not suitable for use in quantum space-
bounded algorithms, as they either rely on specific catalytic states or destroy the memory
being borrowed.

We define the notion of catalytic computing in the quantum setting and show a number
of initial results about the model. First, we show that quantum catalytic logspace can always
be computed quantumly in polynomial time; the classical analogue of this is the largest open
question in catalytic computing. This also allows quantum catalytic space to be defined
in an equivalent way with respect to circuits instead of Turing machines. We also prove
that quantum catalytic logspace can simulate log-depth threshold circuits, a class which is
known to contain (and believed to strictly contain) quantum logspace, thus showcasing the
power of quantum catalytic space. Finally we show that both unitary quantum catalytic
logspace and classical catalytic logspace can be simulated in the one-clean qubit model.

∗Supported by the Dutch Ministry of Economic Affairs and Climate Policy (EZK), as part of the Quantum
Delta NL programme.

†Supported by the Grant Agency of the Czech Republic under the grant agreement no. 24-10306S and by the
Center for Foundations of Contemporary Computer Science (Charles Univ. project UNCE 24/SCI/008).

‡Supported by the Dutch Ministry of Economic Affairs and Climate Policy (EZK), as part of the Quantum
Delta NL program, and the project Divide and Quantum ‘D&Q’ NWA.1389.20.241 of the program ‘NWA-ORC’,
which is partly funded by the Dutch Research Council (NWO)

§Supported by a Royal Society University Research Fellowship and the EPSRC (RoaRQ), Investigation 005
[grantreference EP/W032635/1].

¶Supported by a Royal Commission for the Exhibition of 1851 Research Fellowship.
‖Supported by the Dutch National Growth Fund (NGF), as part of the Quantum Delta NL program.

1



Contents

1 Introduction 2
1.1 Space in quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Catalysis and space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6
2.1 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Quantum Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Catalytic computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Quantum catalytic space 8
3.1 Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Catalytic tapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Gateset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 QCL upper bounds 12
4.1 Polynomial average runtime bound . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Equal running times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Turing machines and circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Simulation of TC1 15
5.1 Reversibility and obliviousness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Simulation by QCL machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Simulating catalytic space in DQC1 17
6.1 One clean qubit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Containment of unitary QCL in DQC1 . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Containment of CL in DQC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction

Space is one of the cornerstones of theoretical computer science, and the study of space-bounded
computations has been crucial in the development of complexity theory. Investigating logspace
computations revealed the limits of efficient computation under memory constraints and has led
to striking results such as Savitch’s theorem [Sav70] and NL = coNL [Imm88, Sze88]. Logspace
reductions are essential in classifying problems as NL-complete or P-complete, and leading to
techniques for efficient parallelization and algorithm design. Many graph and database problems
rely on logspace techniques, making them relevant for query optimization, data retrieval, and
formal verification. Furthermore, logspace computations have practical applications in streaming
algorithms, embedded systems, cryptography, and model checking, where minimizing memory
usage is critical.

The emergence of quantum computing has led to remarkable theoretical speedups over the
best known classical algorithms. The promise of exponential computational advantage in using
principles of quantum mechanics to process information comes with formidable experimental
challenges of building and maintaining quantum computers that can implement long sequences
of coherent operations. This led to a renewed interest in the structure of quantum space.
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1.1 Space in quantum computation

Understanding the true extent of the power of quantum computing in a variety of space-
constrained settings is a major challenge. In contrast to the classical setting where adding a
reasonable amount of extra memory to support computations is routinely achievable, producing
and maintaining multiple qubits is exceptionally difficult due to several fundamental physical,
engineering, and scalability issues. Qubits are fragile and susceptible to decoherence, and main-
taining long coherence times becomes significantly harder as the number of qubits increases.
Furthermore, quantum error rates scale with the number of qubits, making fault-tolerant quan-
tum computing a major challenge. In the quantum computational setting, space thus comes at a
premium, and increasing the amount of space available for computation requires overcoming fun-
damental challenges to reduce error rates, increase control precision, and maintain entanglement
across multiple systems, to name but a few.

The characterization of quantum logspace (QL) and the study of the computational power
of bounded-error quantum logarithmic space (BQL) and its relationship to classical complexity
classes was first done by Watrous [Wat98], where it was established that BQL ⊆ P. This
showed that any problem solvable in quantum logspace with bounded error is also solvable in
polynomial time by a classical deterministic machine. In later work, Watrous [Wat01] showed
that QSPACE(s) ⊆ SPACE[O(s2)] for all s ≥ log n, even when the quantum machine is allowed to
err with probability arbitrarily close to 1/2; this confirms that quantum logspace computations
remain simulable within polynomial space, and is consistent with classical space complexity
results such as Savitch’s theorem. His work also established that quantum logspace can efficiently
solve certain algebraic problems, including the group word problem for solvable groups, which
lacks efficient classical logspace algorithms [Wat01].

These above obstacles prompted the search for extra ingredients which could lift restricted
models of quantum computation (for example – realized by quantum circuits which are classically
efficiently simulatable) to regain the power of universal quantum computation. These extra
ingredients (e.g. magic state injection) are usually studied in the context of unrestricted space
and there has as of yet been no attempt to investigate them under space restrictions.

On the other hand, there have been several notable results that illuminate various properties
of quantum logspace. One of the earliest findings shows that any quantum computation that can
be performed with logarithmic space can also be efficiently simulated using matchgate circuits
of polynomial width, and vice versa [JKMW10]. Following this characterisation, there have
been a series of further results indicating that quantum logspace describes a non-trivial class of
computations. Ta-Shma [TS13] showed that given a matrix with a bounded condition number,
a quantum logspace algorithm can efficiently approximate its inverse or solve linear systems.
Girish, Raz, and Zhan [GRZ20] described a quantum logspace algorithm to compute powers of an
matrix with bounded norm and prove that deterministic logspace is equal to reversible logspace.
Recently, it was shown by the same authors that the class of decision problems solvable by a
quantum computer in logspace admits an efficient verification procedure [GRZ24]; moreover,
they also show that every language in BQL has an (information-theoretically secure) streaming
proof with a quantum logspace prover and a classical logspace verifier. This hints at a curious
interplay between the powers of classical and quantum logspace.

1.2 Catalysis and space

Catalysis is a concept well-studied in the context of quantum information and is widely recognized
for its counterintuitive abilities to enable (state) transformations that are otherwise infeasible
(see survey by Lipka et al. [LBWN24]). A related concept, known as catalytic embedding,
was recently introduced in the context of circuit synthesis as an alternative to traditional gate
approximation methods in quantum circuit design [ACG+23]. These foregoing lines of work
focus on the idea that a specific unitary may be implemented more efficiently if a special state
(i.e. catalyst) is available, often discussing resource theories, and do not dwell on complexity
theoretic implications.

In this work, we initiate the complexity-theoretic study of the effect of catalytic space in
quantum computations. Much like magic state injection is able to promote and increase quantum
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computational power in the space-unrestricted setting, the presence of a catalyst in the form
of an extra register of quantum memory—albeit memory that already contains some stored
quantum information—holds a similar promise for space-bounded quantum computations. The
notion of catalytic space can be regarded as a theoretical model of qubit reusal.

The first step towards a rigorous study of catalytic logspace quantum computations is to
formalize the model and means of interaction with the catalytic space. Identifying new compu-
tational capabilities endowed by the presence of a catalyst in the form of additional quantum
memory, which however contains an arbitrary unknown quantum state, appears to be a sig-
nificantly more challenging task due to the nature of quantum information and the inherent
limitations of quantum resources. For example, any framework for quantum catalytic space
must incorporate the possibility of entanglement and its inherent limitations (e.g. monogamy)
between the catalytic memory and the rest of the work space. It has to further account for the
irreversibile nature of quantum measurement.

Remarkably, it was recently shown that the addition of a similar notion of catalytic space has
major implications even in the classical logspace setting. Buhrman et al. [BCK+14] introduced
a model of space, called catalytic computing, which studies the power of “imperfect” memory. In
addition to the usual Turing machine work tape, a catalytic machine is equipped with a much
larger catalytic work tape, which is filled with an arbitrary initial string τ and which must be
reset to the configuration τ at the end of its computation.

The setting of most interest to us is catalytic logspace (CL), wherein a logspace machine is
given access to a polynomial size catalytic tape. On the positive side, [BCK+14] showed that
such machines have significantly greater power than traditional logspace, capturing the additional
power of both non-determinism (NL) and randomness (BPL); in fact, they showed that CL can
simulate the much larger class of logarithmic-depth threshold circuits (TC1). On the negative
side, they also showed that CL can be simulated by (zero-error) randomized polynomial-time
machines (ZPP), which are strongly believed to be much weaker than e.g. polynomial space.

Since then, many works have studied classical catalytic space from a variety of angles,
including augmenting catalytic machines with other resources such as randomness or non-
determinism [BKLS18, DGJ+20, CLMP25, KMPS25], considering non-uniform models such as
catalytic branching programs or catalytic communication complexity [Pot17, CM22, PSW25],
analyzing the robustness of classical catalytic machines to alternate conditions [BDS22, BDRS24,
GJST24], and so on. Many properties of catalytic computation have emerged that appear ripe
for use in the quantum setting, such as reversibility [Dul15, CLMP25], robustness [GJST24,
FMST25], and average-case runtime bounds [BCK+14].

Perhaps most important to motivate our current study, the utility of classical catalytic compu-
tation has been strikingly demonstrated in its use as a subroutine in an ordinary space-bounded
computation: avoiding linear blowups in space when solving many instances of a problem. The
most impactful result is the Tree Evaluation algorithm of Cook and Mertz [CM24], which was
the key piece in Williams’ recent breakthrough on time and space [Wil25]. Catalytic subroutines
of this kind are even more relevant in the quantum setting, as they may lead to a persistent
reduction of the qubit count when executing a quantum algorithm.

1.3 Summary of results

In this paper we initiate the systematic study of catalytic techniques in the quantum setting.
To this end we codify a concrete definition of quantum catalytic space (QCSPACE), explore the
degrees to which the definition is robust, and establish the relationship of quantum catalytic
logspace (QCL) to various classical and quantum complexity classes.

Our main technical contribution is to show that, somewhat surprisingly, quantum Turing
machines and quantum circuits are equivalent even in the catalytic space setting:

Theorem 1. Let L be a language, and let s := s(n) and c := c(n). Then L is computable
by a quantum catalytic Turing machine with work space O(s) and catalytic space O(c) iff L is
computable by a family of quantum catalytic circuits with work space O(s) and catalytic space
O(c).
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While this translation is straightforward in other settings, QCL has no a priori polynomial
time bound, and so there is no obvious way to define the length of a catalyic circuit without
running into trouble. However, we prove that the result of Buhrman et al. [BCK+14] which
shows that CL takes polynomial time on average can be strengthened in the quantum case, to
show that QCL always takes polynomial time without any error:

Theorem 2. QCL ⊆ EQP

Such a result is considered the “holy grail” of classical catalytic computing.
In terms of class containments, we focus on two questions: the relationship of quantum and

classical catalytic space, and the relationship of catalytic space to the one-clean qubit model
(DQC1), a pre-existing object of study in quantum complexity which bears a strong resemblance
to catalysis. We show that, while CL ⊆ QCL is surprisingly out of reach at the moment, this
can be shown for an important subclass of CL, one which captures the strongest known classical
containment:

Theorem 3. TC1 ⊆ QCL

As a consequence, we show that TC1 constitutes a natural class of functions for which catalysis
gives additional power to quantum computation.

We also show that unitary QCL (QUCL) and classical CL are both contained in DQC1:

Theorem 4. BQUCL ⊆ DQC1

Theorem 5. CL ⊆ DQC1

Note that we use a version of DQC1 defined using a logspace controller instead of a polynomial
time controller as may also be done. These results show how much of the power of DQC1 comes
from avoiding the limitation of the resetting condition on the “dirty” work space.

1.4 Open problems

We identify a number of interesting avenues to further explore the power of quantum catalytic
space, and understand its relation to various (quantum) complexity classes.

QCL subroutines. Remarkably, classical catalytic subroutines can already be used to achieve
analogous space savings in QCL. Is it possible to identify genuinely quantum subroutines to
achieve savings beyond those attained by classical generalizations? This is not so straightforward
because the subset of qubits being reused in a catalytic subroutine could become entangled with
qubits that cannot be accessed by the subroutine. Therefore, there might be a non-trivial and
inaccessible reference system with respect to which the catalytic property must hold. While we
show the presence of such an inaccessible reference system does not change the model we define,
designing quantum catalytic subroutines (cf. classical results in [CM24, Wil25]) stands out as a
fertile direction for future work.

CL vs QCL. While we have started investigating the question, we still have no simple answer
as to the relationship between CL and QCL; in fact we have not even ruled out that CL contains
QCL. The primary challenge is that while any CLmachine runs in polynomial time in expectation
over the catalytic tape, QCL machines always run in polynomial time. We do not know how to
fit in pathological cases where CL runs in exponential time, for example, into QCL. Similarly, a
problem or oracle that can separate QCL from CL would also be of interest1.

1A candidate oracle for showing a separation between QCL and CL is the oracle relative to which CL and
PSPACE are equivalent, as shown in [BCK+14]. This oracle uses the fact that the initial catalytic tapes of CL
are either compressible or random, using the oracle differently for either situation. This type of adaptive usage of
the oracle, based on the given catalytic state, seems not to translate to the quantum setting due to Theorem 8.
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QNC1 vs QCL. Starting with Barrington’s Theorem [Bar89], a landmark result in space com-
plexity, a classical line of work [BC92, BCK+14] has shown that polynomial-size formulas over
many different gatesets can be computed using only logarithmic space, using a reversible, al-
gebraic characterization of computation. Such a result in the quantum case, i.e. QNC1 ⊆ QL,
appears far out of reach, as this would imply e.g. novel derandomizations in polynomial time.
However, such techniques are also key to the study of catalytic computation, and so perhaps we
can show QNC1 or a similar quantum circuit class is contained in QCL. This would give a clear
indication of the power of quantumness in catalytic computation.

QCL vs DQC1. While we seem to find that QUCL or QCL without intermediate measurements
is contained in DQC1, it is unclear if this still holds when we allow intermediate measurements.

2 Preliminaries

2.1 Quantum computation

For this work we will consider complex Hilbert spaces H ∼= Cd of dimension d, that will form the
state space for a quantum system. Multiple quantum systems are combined by taking the tensor
product of their Hilbert spaces, such as H1 ⊗H2. We will often write Hs to denote the Hilbert

space
(
C2

)⊗s
of s qubits, where the dimension is given by function d(Hs) = 2s. We will also

often use the abbreviation [n] = {1, . . . , n}. Below, we recall some of the important background
required for this article, referring the reader to [NC10] for more details.

Definition 1 (Quantum states). A pure quantum states is a unit vector of the Hilbert space
|ψ⟩ ∈ H, with the normalization condition ⟨ψ|ψ⟩ = 1. We also make use of more general states
represented by density matrices ρ which are positive semi definite operators on a Hilbert space
with unit trace, Tr[ρ] = 1. Density matrices describe mixed states which, beyond pure quan-
tum states, can also capture classical uncertainty. In other words, they correspond to classical
mixtures of pure quantum states. The density matrix of a pure state is ρ = |ψ⟩ ⟨ψ|. Given an
ensemble of states {|ψi⟩} and corresponding probabilities {pi}, with pi ≥ 0 and

∑
i pi = 1, it can

be represented by a mixed state of the form ρ =
∑

i pi |ψi⟩ ⟨ψi|. We will denote the set of mixed
states a Hilbert space H by D(H).

Definition 2 (Quantum channels). A quantum channel is a linear operator that maps density
matrices to density matrices, Φ : D(H1) → D(H2) (also known as superoperators or CPTP
maps). It is also required to have two additional properties: 1) it must be completely positive;
and 2) it must be trace preserving. We denote the set of channels from D(H) to itself by C(D(H)).

We denote the identity channel on d qubits by Id, or just I when d is clear from context.
The Choi matrix of a channel Φ that acts on an input space H of dimension d is defined by the
action of Φ on the first register of a maximally entangled state in H⊗H

J(Φ) := (Φ⊗ Id)

1

d

d∑
i,j=1

|i⟩ ⟨j| ⊗ |i⟩ ⟨j|

 =
1

d

d∑
i,j=1

Φ

(
|i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| .

Definition 3. The trace distance between two density matrices ρ, σ ∈ D(H) is defined by:

||ρ− σ||1 = Tr[
√

(ρ− σ)†(ρ− σ)],

where A† denotes the conjugate transpose of the matrix A† = ĀT .

It is well known that no physical process can increase the trace distance between two states:

Lemma 1 (Contractivity under CPTP maps [NC10, Theorem 9.2]). Let Φ ∈ C(D(H)) and
ρ, σ ∈ D(H) then the trace distance between ρ and σ can not increase under application of Φ:

||Φ(ρ)− Φ(σ)||1 ≤ ||ρ− σ||1
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2.1.1 Quantum Turing machines

Our fundamental computation model in quantum computing will be the quantum analogue of
Turing machines [Deu85, BV97], which we define informally below.

Definition 4 (Quantum Turing machine). A quantum Turing machine is a classical Turing
machine with an additional quantum tape and quantum register. The quantum register does not
affect the classical part of the machine in any way, except in that the qubits in the quantum
register can be measured in the computational basis. On doing so, the values read from the
measurement are copied into the classical registry, from where they can be used to affect the
operation of the machine. The quantum Turing machine can perform any gate from its quantum
gate set on its quantum registry. We assume this gate set is fixed and universal. Finally, the
tape head on the quantum tape can swap qubits between the quantum registry and the position
that the quantum tape head is located at. This applies a two-qubit SWAP gate.

We define a number of complexity classes with respect to efficient computation by quantum
Turing machines [BV97, Nis02]2.

Definition 5 (BQP). BQP is the set of all languages L = (Lyes, Lno) ⊂ {0, 1}∗ × {0, 1}∗ for
which there exists a quantum Turing machine M using t = poly(n) time such that for every
input x ∈ L of length n = |x|,

• if x ∈ Lyes then the probability that M accepts input x is ≥ c,

• if x ∈ Lno then the probability that M accepts input x is ≤ s.

Definition 6 (BQL). BQL is the set of all languages L = (Lyes, Lno) ⊂ {0, 1}∗ × {0, 1}∗ for
which there exists a quantum Turing machine M using r = O(log(n)) quantum and classical
space such that for every input x ∈ L of length n = |x|,

• if x ∈ Lyes then the probability that M accepts input x is ≥ c,

• if x ∈ Lno then the probability that M accepts input x is ≤ s.

The completeness and soundness parameters in both the above definitions can be chosen to
be c = 2/3 and s = 1/3 without affecting the set of languages.

Definition 7 (EQP). EQP is the set of all languages L = (Lyes, Lno) ⊂ {0, 1}∗ × {0, 1}∗ for
which there exists a quantum Turing machine M using t = poly(n) time such that for every
input x ∈ L of length n = |x|,

• if x ∈ Lyes then M outputs one with certainty on measurement,

• if x ∈ Lno then M output zero with certainty on measurement.

Remark 1. Note that the definition of EQP is gateset dependent; this is due to the fact that
quantum gatesets only allow universality up to approximation, which means that if a quantum
complexity class requires perfect soundness and completeness, as does EQP, it also has to be
gateset dependent.

2.1.2 Quantum circuits

We may also define quantum complexity classes using uniform quantum circuits. For this we
use similar definitions to those provided by [FR21], which readers may refer to for more details.

Definition 8. Let s := s(n), t := t(n), k := k(n), let K be a family of machines, and let G be a
set of k-local operators. A K-uniform space-s time-t family of quantum circuits over G is a set
{Qx}x∈{0,1}n , where each Qx is a sequence of tuples ⟨i, g, j1 . . . jk⟩ ∈ [t]×G× [s]k such that there
is a deterministic TM M ∈ K which, on input x ∈ X , outputs a description of Qx.

2We do not attempt to provide an exhaustive list of references to the vast literature on this topic, and refer
the interested reader to the Complexity Zoo for such a list.
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The execution of Qx consists of initializing a vector |ψ⟩ to |0s⟩ within Hs and applying, for
each step i ∈ [t] in order, each gate g to qubits j1 . . . jk such that ⟨i, g, j1 . . . jk⟩ ∈ Qx. The output
of Qx is the value obtained by measuring the first qubit at the end of the computation.

If G consists of unitary operators, we call these unitary circuits and call each g a gate. If G
additionally consists of measurements together with postprocessing and feed forward by (classical)
K-machines, we call these general circuits and call each g a channel.

It is known that polynomial-time uniform general quantum circuits over n qubits with poly(n)
gates can be used to provide an alternative definition of BQP [Yao93]. Similarly, logspace uniform
general quantum circuits of logarithmic width can be used as an alternative to define classes such
as BQL [FR21].

2.2 Catalytic computation

We finally recall the known classical definitions of catalytic classical computation.

Definition 9 ([BCK+14]). A catalytic Turing Machine with space s := s(n) and catalytic space
c := c(n) is a Turing Machine M with a work tape of length s and a catalytic tape of length c.
We require that for any τ ∈ {0, 1}c, if we initialize the catalytic tape to τ , then on any given
input x, the execution of M on x halts with τ on the catalytic tape.

This definition gives rise to a natural complexity class CSPACE[s, c], which is a variant of
the ordinary class SPACE[s]. The most well-studied variant is catalytic logspace, where s is
logarithmic and c is polynomial.

Definition 10. We define CSPACE[s, c] to be the class of all functions f for which there exists a
catalytic Turing MachineM with space s and catalytic space c such that on input x,M(x) = f(x).
We further define catalytic logspace as

CL :=
⋃
k∈N

CSPACE(k log n, nk)

3 Quantum catalytic space

The first goal of this paper is to find a proper definition of quantum catalytic space. There are
many choices that have to be made in the model, but we begin with our general definition up
front, leaving questions of machine model, uniformity, gateset, and initial catalytic tapes. These
will be discussed and clarified in the rest of this section.

Definition 11 (Quantum catalytic machine). A quantum catalytic machine with work space
s := s(n), catalytic space c := c(n), uniformity K, gateset G, and catalytic set A is a K-
uniform quantum machine M with operations from G acting on two Hilbert spaces, Hs and Hc,
of dimensions 2s and 2c respectively. The latter space, called the catalytic tape, will be initialized
to some ρ ∈ A ⊆ D(Hc). We require that for any ρ ∈ A, if we initialize the catalytic tape to
state ρ, then on any given input x ∈ {0, 1}n, the execution of M(x) halts with ρ on the catalytic
tape.

This gives rise to the following complexity classes:

Definition 12 (Quantum catalytic complexity). QCSPACE[s, c] is the class of Boolean functions
which can be decided with probability 1 by a quantum catalytic machine with work memory s and
catalytic memory c.

BQCSPACE[s, c] is the class of Boolean functions which can be decided with probability 2/3
by a quantum catalytic machine with work memory s and catalytic memory c.

We further specify to the case of quantum catalytic logspace:
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Definition 13 (Quantum catalytic logspace).

QCL =
⋃
k∈N

QCSPACE[k log n, nk]

BQCL =
⋃
k∈N

BQCSPACE[k log n, nk]

3.1 Machine model

We begin by defining the two natural choices of base model for quantum catalytic machines,
namely Turing machines and circuits.

Definition 14 (Quantum catalytic Turing machine). A quantum catalytic Turing machine is
defined as in Definition 11 with quantum Turing machines as our machine model. We write
QCSPACEM (respectively BQCSPACEM, QCLM, and BQCLM) to refer to QCSPACE with quan-
tum Turing machines.

Definition 15 (Quantum catalytic circuits). A quantum catalytic circuit is defined as in Defi-
nition 11 with time-2O(s) quantum circuits as our machine model. We write QCSPACEC (respec-
tively BQCSPACEC, QCLC, and BQCLC) to refer to QCSPACE with quantum catalytic circuits.

Given that CL and related classes are defined in terms of (classical) Turing machines, the
option of circuits seems surprising and perhaps unnatural. For example, Definition 15 imposes
a time bound as part of its definition, while for CL there is no known containment in polynomial
time. For quantum circuits and Turing machines without access to the catalytic tape, a simple
equivalence has been known for a long time Ian: REF; however, Definition 15 only allows for
circuits of length 2O(s), while a generic transformation on s + c qubit registers would give a
circuit of length 2O(s+c), i.e. requiring an exponential overhead.

The main result of this paper is to show that these models are in fact equivalent:

Theorem 6. For s = Ω(log n), c = 2O(s)

QCSPACEM[O(s), O(c)] = QCSPACEC[O(s), O(c)]

BQCSPACEM[O(s), O(c)] = BQCSPACEC[O(s), O(c)]

For the rest of this section we will deal with all auxiliary issues, namely the choice of catalytic
tapes and gateset, for quantum circuits alone; while all proofs can be made to hold for quantum
Turing machines without much issue, this is also obviated by Theorem 6, which we will prove in
Section 4.

3.2 Catalytic tapes

We now move to discussing the choice of initial catalytic tapes A. Perhaps the most immediate
choice would be to put no restrictions on A and allow our catalytic tapes to come from the set
of all density matrices in D(Hc); this will ultimately be our definition.

Definition 16. We fix the catalytic set in Definition 11 to be A = D(Hc).

While this is a natural option, encompassing every possible state on c qubits, there are other
choices one can make. We propose four natural options—density matrices and three others—and
show that all four are equivalent, thus justifying our choice.

Definition 17. We define the following catalytic sets:

• Density is the set of all density matrices ρ ∈ D(Hc).

• Pure is the set of all pure states |ψ⟩ ∈ Hc.
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• PauliProd = {|PP⟩ : |PP⟩ =

c⊗
i=1

|ϕ⟩i} is the set of tensor products of eigenstates of the

single-qubit Pauli operators, where |ϕ⟩i ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |⟳⟩ , |⟲⟩} ⊂ H2.

• EPR = { 1√
2c

∑2c−1
i=0 |i⟩ |i⟩} ⊂ Hc⊗Hc is the unique state of c EPR pairs, where the catalytic

tape will be formed of one half of each EPR pair; the other halves are retained as a reference
system which cannot be operated on by the quantum circuit. the quantum circuit is of the
form Qx = Q̃x ⊗ Ic, acting as the Identity on the second set of halves of the EPR pairs
that is inaccessible to the circuit.

Remark 2. We briefly comment on the third set, i.e. EPR. Using classical catalytic techniques
as a subroutine has proven to be very useful, for instance in giving an algorithm for tree evaluation
in O(log n log(log n)) space [CM24]. One can also consider using analogous quantum catalytic
techniques as subroutines for quantum computations, albeit this does not appear straightforward
due to inherent quantum limitations. We will see that this complication can be effectively modeled
by considering the initial state of the catalytic tape to be the halves of c EPR pairs.

We will now prove that the four classes of quantum catalytic circuits with initial catalytic
states restricted to one of the four sets D(Hc), Hc, PauliProd, and EPR respectively, are all
equivalent. For this we first require the following lemma.

Fact 1. Any 2d × 2d complex matrix can be written as a linear combination of rank-1 outer
products of states from PauliProd over d qubits. In other words, the complex span of the set of
d-qubit tensor products of Pauli eigenstates equals the set of 2d × 2d complex matrices.

Proof. Note that all four Pauli matrices can be written as a linear combination of two of the
Pauli eigenstates:

I = |0⟩ ⟨0|+ |1⟩ ⟨1| , X = |+⟩ ⟨+| − |−⟩ ⟨−| ,
Z = |0⟩ ⟨0| − |1⟩ ⟨1| , Y = |⟳⟩ ⟨⟳| − |⟲⟩ ⟨⟲| .

The four Pauli matrices form a basis for 2× 2 complex matrices. Consequently, Pauli strings of
length d—i.e., tensor products of d Pauli matrices—form a basis for 2d × 2d matrices.

Now we can state the theorem:

Theorem 7. Let QCCA denote quantum catalytic circuits with initial catalytic tapes coming
from A. Then The following four classes of quantum catalytic circuits are equivalent:

QCCDensity = QCCPure = QCCPauliProd = QCCEPR

Proof. First note the obvious implications: for any quantum catalytic circuit Φ,

Φ ∈ QCCDensity =⇒ Φ ∈ QCCPure

Φ ∈ QCCPure =⇒ Φ ∈ QCCPauliProd

these follow due to the fact that PauliProd ⊂ Pure ⊂ Density. To finish the proof, we will further
show the following two implications.

(1) Φ ∈ QCCPauliProd =⇒ Φ⊗ Ic ∈ QCCEPR

(2) Φ⊗ Ic ∈ QCCEPR =⇒ Φ ∈ QCCDensity

We first prove implication (1). Let Φ be a circuit from QCCPauliProd and consider the action of
Φ ⊗ Ic (where the Identity operator acts on the inaccessible halves of the EPR pairs) on the
state 1

2c |0⟩ ⟨0|
∑

i,j |i⟩ ⟨j| ⊗ |i⟩ ⟨j|:

Φ⊗ Ic

 1

2c
|0⟩ ⟨0|

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j|

 =
1

2c

∑
i,j

Φ

(
|0⟩ ⟨0| ⊗ |i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| ,
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because Φ being a channel is a linear operator. By Fact 1, |i⟩ ⟨j| can be written as a linear
combination of rank-1 projectors onto PauliProd states. Since Φ is catalytic with respect to
PauliProd, it follows that

1

2c

∑
i,j

Φ

(
|0⟩ ⟨0| ⊗ |i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| = η ⊗ 1

2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| ,

for some state in η ∈ D(Hs). This shows that Φ ∈ QCCEPR.
Implication (2) requires a similar approach. Let Φ̃ ∈ QCCEPR, then we can write Φ̃ = Φ⊗Ic.

For a given input state |0⟩ ⟨0| ∈ Hs the action of Φ⊗ Ic must satisfy

Φ

 1

2c

∑
i,j

|0⟩ ⟨0| ⊗ |i⟩ ⟨j|

⊗ |i⟩ ⟨j| = η ⊗ 1

2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| ,

for some state in η ∈ D(Hs). Since the catalytic state of c EPR pairs is returned perfectly
unaffected for every choice of input state, the effective channel of Φ can also be written as a
tensor product channel: Φ = Γs ⊗ Ξc

3, with the action of Ξc being

1

2c

∑
i,j

Ξc

(
|i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| = 1

2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| .

Note that although the effective channel factorises into a tensor product across the work and
catalytic registers, without the catalytic tape much larger circuits may be required to implement
Γc. Moving forward, this implies that the Choi matrix of Ξc is

J(Ξc) =
∑
i,j

Ξc

(
|i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| =

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| = J(I),

and therefore the effective channel Ξc is the identity channel. This gives that for any state
ρ ∈ Hc it must hold that on input |0⟩ ⟨0|, the channel Φ must act as follows:

Φ(|0⟩ ⟨0| ⊗ ρ) = η ⊗ ρ

Remark 3. In the proof that these channel definitions are equivalent we actually showed that
any channel under one definition also furnishes an instance of the other definitions. This means
that they are also operationally equivalent. These equivalence proofs therefore have to hold for
any type of machine model that has to adhere to the same restrictions of resetting the input state
in the catalytic space. In particular it also holds for quantum Turing machines.

3.3 Gateset

When discussing quantum circuits, a fundamental issue is the underlying gate set. Unlike the
classical case, unitary operations form a continuous space, and finite-sized circuits over finite gate
sets cannot implement arbitrary unitaries. However, there do exist finite gate sets of constant
locality (that is, fan-in) which are quantum universal, in the sense that any n-qubit unitary may
be approximated to any desired precision ϵ in ℓ2-distance by a product of l = O(poly log 1

ϵ ) gates
from the universal gate set; this is the celebrated Solovay-Kitaev theorem [Kit97, DN06, NC10].
From the standpoint of complexity classes, Nishimura and Ozawa [NO09] also showed that
polynomial-time quantum Turing machines are exactly equivalent to finitely generated uniform
quantum circuits.

We note that Definitions 8 and 15 do not make reference any fixed universal gate set. A
potential issue that arises in this regard is that the complexity class being defined may depend

3It seems that the catalyst does not offer any improvement, because we can write Φ as a tensor product of
the action on the logspace clean qubits and the action of the catalyst, however this does not need to hold. Only
the action as a whole is writable as a tensor product, it might actually consist of intermediate steps that are not
of tensor product form, therefor Γs might only have an efficient circuit description in the presence of a catalyst.
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in an intricate way on the chosen universal gate set, since it may not be possible to perfectly
reset every initial catalytic state under our uniformity and resource constraints. If we relax the
notion of catalyticity to mean that the initial catalytic state only has to be reset to within ϵ
trace distance at the end of the computation, one can use the Solovay-Kitaev theorem to see
that every choice of gate set leads to the same complexity class in Definition 15. This interesting
model resembles classical catalytic space classes with small errors in resetting, and we leave it
as an open question to determine how it relates to the exact resetting model.

Returning to our setting that requires the quantum catalytic machine to perfectly reset the
catalytic space to its initial state at the end of the computation, we will restrict out attention to
the case of universal quantum gate sets that are infinite (for the complexity theoretic properties
of circuit families over such gate sets, see e.g. [NO02]). In this case, our definition is robust
to the choice of gate set since any unitary may be implemented exactly by finite-sized circuits
over such gate sets. Consequently changing the gate set does not change the set of catalytic
states that can be reset exactly by the machine. This results in well-defined catalytic complexity
classes independent of the specific choice of gate set.

3.4 Uniformity

Similar to gatesets, the question of uniformity is quite subjective, as different uniformity condi-
tions will lead to different levels of expressiveness for our machines.

Definition 18. We fix the uniformity in Definition 11 to be K = SPACE[O(s)].

We choose SPACE[O(s)] as it is the largest class of classical machines a QCSPACE[s, c] machine
should seemingly contain by default. Thus we believe the choice of SPACE[O(s)]-uniformity is
best suited to removing classical uniformity considerations from taking the forefront of the
discussion regarding quantum catalytic space.

The question of how uniformity affects the power of QCSPACE is left to future work; we only
comment briefly here on natural alternative choices. Perhaps the most immediate would be to
consider CSPACE[s, c] uniformity, as it mirrors our quantum machine. As we will see later, it
is not clear how to prove QCSPACE[s, c] contains CSPACE[s, c] directly, an interesting technical
challenge that would be rendered moot by building it into the uniformity. Similarly we avoid
P-uniformity because it is not known, and even strongly disbelieved, that CL contains P.

4 QCL upper bounds

In this section we will finally return to the question of our quantum machine model, showing that
Turing machines and circuits are equivalent. One major stepping stone is to show that quantum
catalytic Turing machines adhere to a polynomial runtime bound for all possible initializations
of the catalytic tape.

Before all else, a remark is in order as to why such a restriction should hold for a seemingly
stronger model, i.e. QCLM, when it is not in fact known for CL. While quantum catalytic
space has access to more powerful computations, i.e. quantum operations, it also has the much
stronger restriction of resetting arbitrary density matrices rather than arbitrary bit strings. This
restriction gives rise to a much stronger upper bound argument, and in fact rules out one of the
main techniques available to classical Turing machines, namely compression arguments (see c.f.
[Dul15, CLMP25]).

4.1 Polynomial average runtime bound

We begin by showing an analogue of the classical result of [BCK+14], i.e. the average runtime of
a quantum catalytic machine for a random initial catalytic state ρ is polynomial in the number of
work qubits. We note that the runtime of a quantum Turing machine need not be a deterministic
function of the input; M has access to quantum states and intermediate measurements, from
which it is possible to generate randomness which might influence the time that machine takes
to halt.
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Definition 19. Given a quantum catalytic Turing machine M , a fixed input x ∈ {0, 1}n, and
an initial catalytic tape ρ, we denote by T (M,x, ρ) the distribution of runtimes of M on input x
and initial catalytic tape ρ.

For an averaging argument to hold, we need to have a quantum notion of non-overlapping
configuration graphs.

Lemma 2. Let M be a quantum catalytic Turing machine, and let {τi}i form an orthonormal
basis for D(Hc). For all i and t, let ρi,t be the density matrix describing the state of the classical
tape, quantum tape, and internal state of M at time step t on initial catalytic tape τi. Then if
M is absolutely halting, all elements of the set {ρi,t}i,t are orthogonal.

Proof. We first consider the states ρi,t for a fixed i. Assume instead that there exists some times
t and t′ where the states are not orthogonal. This means that the state at time step t can be
written as a superposition between the state in time step t′ and the state ρi,t = pρi,t′ + (1− p)η
for some p > 0. This forms a loop in the configuration graph where part of the state is back
at time step t′. The amplitude of the part of the state in this loop will shrink over time, but
never go to zero. The part of the state that is stuck in the loop will never reach the halting
state, therefore this is in contradiction with the assumption that the quantum Turing machine
is absolutely halting.

Next we consider the states ρi,t for different i. By definition of a quantum Turing machine,
the transformations M can apply to the entire state of the machine is given by some quantum
channel. By Lemma 1 we know that the trace distance between the entire state of the machine
for separate instances of the catalytic tape can only decrease by this quantum channel. Therefore
we know that if two instances start out to be orthogonal and end to be orthogonal, they have
to remain orthogonal through the entire calculation.

Lemma 3. Let M be a quantum catalytic Turing machine with work space s and catalytic space
c, let {ρi}i form an orthonormal basis for D(Hc), and define Tmax(M,x, ρ) to be the maximum
runtime of machine M on input x on starting catalytic tape ρ. Then

Ei[Tmax(M,x, ρi)] ≤ 2O(s)

Proof. Our catalytic machine is defined by a SPACE[O(s)] machine, defined by a tape of length
O(s) and an internal machine of size O(1), which acts on Hs and Hc, which can be addressed
into using log s and log c bits respectively. Since these quantities plus the Hilbert spaces Hs and
Hc define the dimensionality of our machine, by Lemma 2 we have that∑

ρ∈{ρi}

Tmax(M,x, ρ) ≤ O(22(s+c+O(s)+O(1)+log s+log c))

and therefore the lemma follows because |{ρi}| ≤ 22c and 2(s + O(s) + O(1) + log s + log c) =
O(s).

This already gives us a nice containment for our QCSPACE[s, c] classes.

Corollary 1. QCLM ⊆ ZQP

Corollary 2. BQCLM ⊆ BQP

4.2 Equal running times

We now take a further leap, showing that the initial catalytic tape does not affect the (distribu-
tion of the) runtime of our machine M for a fixed input x.

Definition 20. Let M be a quantum catalytic Turing machine, and let n ∈ N. We define
Tmax(M,n) to be the maximum of the support of T (M,x, ρ), maximized over x and ρ.

We can first show that given M and only one single copy of a state η ∈ Hc, this probability
distribution can be approximated up to arbitrary precision for any x.
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Lemma 4. Given catalytic Turing machine M and a single copy of a quantum state η ∈ Hc,
T (M,x, η) can be approximated up to arbitrary precision for any x.

Proof. Because M is a quantum catalytic Turing machine it has to reset the quantum state
initialized in its catalytic tape perfectly. Therefore we can use the following approach: first
fix some input x, then run the catalytic machine given x as input and η on its catalytic tape
and record the running time. When the machine halts, η should be returned in the catalytic
tape. This means the test can be performed again given the same inputs. This test can be run
arbitrarily often giving an arbitrary approximation to T (M,x, η).

This gives us the following observation about states with different halting times:

Lemma 5. Let M be a quantum catalytic Turing machine, and let ρ1, ρ2 ∈ D(Hc). Assume
there exists x ∈ {0, 1}n such that T (M,x, ρ1) ̸= T (M,x, ρ2). Then ||ρ1 − ρ2||1 = 1, where || · ||1
is the trace distance.

Proof. The Helstrom bound states that the optimal success probability of any state discrimina-
tion protocol given one copy of an unnown state is:

Psuccess =
1

2
+

1

2
· ||ρ1 − ρ2||1

By Lemma 4, we know that T (M,x, ρ) can be approximated to any precision with only one
copy of ρ. Given a copy of either ρ1 or ρ2 at random, one can estimate T (M,x, ρ) and perfectly
discriminate between the cases ρ = ρ1 and ρ = ρ2 giving a protocol with Psuccess = 1. Therefore
it follows that

1

2
+

1

2
||ρ1 − ρ2||1 = 1

and hence ||ρ1 − ρ2||1 = 1.

Lemma 5 is sufficient to show that the halting time of a quantum catalytic Turing machine
is independent of the initial state in the catalytic tape:

Theorem 8. Let M be a quantum catalytic Turing machine with s-qubit work space and c-
qubit catalytic space, and let x ∈ {0, 1}n. Then there exists some value t := t(n) such that
T (M,x, ρ) = t for all ρ ∈ D(Hc).

Proof. Assume for contradiction that there exist ρ1, ρ2 such that T (M,x, ρ1) ̸= T (M,x, ρ2). By
Lemma 5 it holds that ||ρ1 − ρ2||1 = 1. Consider the state ρ′ = 1

2ρ1 +
1
2ρ2, and note that only

one of T (M,x, ρ′) ̸= T (M,x, ρ1) or T (M,x, ρ′) ̸= T (M,x, ρ2) can hold, by transitivity. Without
loss of generality, let T (M,x, ρ′) ̸= T (M,x, ρ1), and so ||ρ′ − ρ1||1 = 1 by Lemma 5. However,
by definition we have that

||ρ′ − ρ1||1 = ||(1
2
ρ1 +

1

2
ρ2)− ρ1||1 =

1

2

which is a contradiction.

Putting Lemma 3 and Theorem 8 together immediately shows that the runtime of M is
bounded by a polynomial in n for every input x and initial catalytic state ρ:

Theorem 9. Let M be a quantum catalytic Turing machine with work space s and catalytic
space c. Then the maximum halting time is bounded by 2O(s).

This strengthens Corollary 1 to remove the randomness in the output probability; this is the
quantum equivalent of showing CL ∈ P, considered the holy grail of open problems in classical
catalytic computing:

Corollary 3. QCLM ⊆ EQP
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4.3 Turing machines and circuits

We finally prove Theorem 6 and show the equivalence of our two definitions of quantum catalytic
machines. To do this, we observe, without proof, that Theorem 8 extends to any classical
observable feature of the initial catalytic state by the same proof. We will apply this to one
other aspect, namely the transition applied at a given timestep t:

Lemma 6. Let M be a quantum catalytic Turing machine, and let x ∈ {0, 1}n. Then for every
time t, there exists a fixed operation g applied by M at time t for every ρ ∈ Hc.

This is sufficient to prove Theorem 6:

Proof of Theorem 6. We only prove the equivalence between QCSPACEC and QCSPACEM; the
same proof applies to BQCSPACEC and BQCSPACEM. Certainly QCSPACEC[s, c] is contained in
QCSPACEM[O(s), O(c)], since QCSPACEC circuits are SPACE[O(s)] uniform and can be directly
simulated by a QCSPACEM machine.

Conversely, given a QCSPACEM[s, c] machine M , we wish to find an equivalent quantum
catalytic circuit in QCSPACEC[O(s), O(c)]. For this, we transform the transition function of the
quantum Turing machine into a quantum channel; since the transition only takes a finite number
of (qu)bits as input, this can be always be done, and we have our transitions act on the same
space Hs ⊗ Hc as M . Then, by using a method similar to that from the proof of Lemma 11,
to make the machine oblivious, the tape head movement of the quantum Turing machine will
be fixed. If our circuit is the transition function channel copied to all locations where the tape
heads end up, we completely simulate the quantum Turing machine. We know that Tmax(M,n)
is always at most 2O(s) for a machine M by Theorem 9, and so the number of such transition
function channels is also at most 2O(s). Therefore, we can simulate M using a quantum circuit
of length 2O(s) as claimed.

5 Simulation of TC1

In this section we show that QCL can simulate Boolean threshold circuits. As in the classical
world, the ability to simulate TC1 is also a reason to believe that catalytic logspace is strictly
more powerful than logspace. This follows from the fact that QL = PL [Wat98], which is itself
contained in TC1:

Lemma 7. QL ⊆ TC1

Since TC1 can compute powerful functions such as determinant, this containment is largely
believed to be strict. Thus Theorem 3 gives us a candidate class of problems for separating QL
from QCL.

5.1 Reversibility and obliviousness

In [BCK+14] the authors showed that TC1 can be simulated by transparent register programs,
which themselves are computable in CL; thus our goal is to extend the CL simulation of trans-
parent programs to QCL. More broadly, we show that reversible, oblivious, time-bounded CL is
enough to simulate transparent programs, and such a model is structured enough that, while
we cannot show that all of CL is in QCL, we can at least prove the containment for this small
fragment.

We first make the following definitions which we use for our simulations. We begin by recalling
a result of Dulek [Dul15] which shows that catalytic Turing machines can be made reversible
(see c.f. [CLMP25] for a proof)

Theorem 10. For every catalytic machine M with space s and catalytic space c, there exist
catalytic machines M→, M← with space s + 1 and catalytic space c such that for any pair of
configurations (τ1, v1), (τ2, v2) of M→ and M←, if M→ transitions from (τ1, v1) to (τ2, v2) on
input x, then M← transitions from (τ2, v2) to (τ1, v1) on input x.
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We will also need to consider oblivious machines, i.e. ones where the tape head movement
is solely a function of the input length |x| and does not depend at all on the content of the
catalytic tape c. While any Turing machine can be made oblivious, it requires relaxing the
definition of obliviousness to not forcing the machine to halt at the same time on every input;
we simply require that every machine that continues to run carries out its execution in an
oblivious manner. We will bar this restriction in this section.

Definition 21. We say that a CL machine is totally oblivious if the following holds. Let t, q, h be
special registers on the free work tape, all initialized to 0, representing the time, state, and tape
heads of the machine. At each point in time our machine consist of one mega-step: for every
setting of t, q, h there is a fixed transformation, computable in logspace, which the machine applies
to the catalytic tape and to q, h, and a mega-step consists of applying each of these operations,
conditioned on the values of t, q, h on the free work tape, in order. At the end of every mega-step
we increment t, and our machine halts iff t reaches a predetermined step T .

Totally oblivious machines are ones that in essence apply the same bundle of transformations
at every time step, with the information about which one to to actually apply being written on
the free work tape, and the halting behavior being determined only by the clock.

Such machines are clearly in poly-time bounded CL (see c.f. [CLMP25] for a discussion of
this class), since the clock must fit on the free work tape. This causes issues when we seek total
obliviousness in tandem with reversibility; in general it is not known, and is highly unlikely, that a
polynomially time-bounded Turing machine can be made reversible while remaining polynomially
time-bounded.

However, there is an important class of algorithms which is both reversible and totally obliv-
ious: clean register programs. For our purposes we will use a very restricted version of clean
register programs (see c.f. [Mer23] for a discussion).

Definition 22. A register program P is a list of instructions P1 . . . Pt where each Pi either has
the form Rj += xk for some input variable xk or has the form Rj += qi(R1 . . . Rm) for some
polynomial qi. A register program cleanly computes a value v if for any initial values τ1 . . . τm,
the net result of running P on the registers R1 . . . Rm, where each Rj is initialized to the value
τj, is that R1 = τ1 + v and Rj = τj for all j ̸= 1.

If we think of these registers as being written on the catalytic tape, it is clear that clean
register programs are totally oblivious, as the instruction at every moment in time is based only
on the timestep. This is nearly immediate, although we note a few minor complications here.
We need to preprocess the catalytic tape to ensure our registers have values over the same ring
as our register program; for example, if we represent numbers mod p using ⌈log p⌉ bits, some
initial values will exceed p. This can be handled obliviously by observing that for either τ or
τ , half the registers are already correct, and so we take one full pass over τ to keep a count of
which case we are in, store this as a bit b (1 iff we need to flip τ), and XOR τ with b at the
beginning and end of the computation. We subsequently ignore all blocks which are initialized
to improper values; when we go to operate on register Rj , say, as we obliviously pass over the
whole catalytic tape we will count how many valid registers we have seen, and act only when
we see the counter reach j.

Besides being totally oblivious, however, such programs are also reversible, as every step of
the form Rj += c can be inverted by a step of the form Rj− = c. Thus such programs appear
highly constrained in terms of what they can and cannot achieve. Nevertheless, such programs
are sufficient to compute TC1.

Lemma 8 ([BCK+14]). Let L be a language in TC1. Then L can be decided by a clean register
program, and, hence, by a totally oblivious reversible CL machine.

5.2 Simulation by QCL machines

We now show that reversibility plus total obliviousness is sufficient for simulation by QCL.
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Lemma 9. Let L be a language which can be computed be a totally oblivious reversible CL
machine. Then L ⊆ QCL.

Proof. Let M be a totally oblivious reversible CL machine. We will treat our quantum catalytic
tape as a superposition over classical catalytic tapes, i.e. a superposition over computational
basis states. It is thus sufficient to show that the operation of machine M can be simulated by
a fixed quantum circuit containing Toffoli gates, as such a circuit will correctly operate on each
of our catalytic basis states in each branch of the superposition.

By total obliviousness, every step that M takes is a fixed transformation conditioned on
the value of t, q, and h; since we additionally know that such a step is reversible, it must be
isomorphic to a Toffoli gate applied to a fixed position of the catalytic tape conditioned on some
fixed mask applied to t, q, and h, and furthermore each transformation can be computed by our
logspace controlling machine. Since these operations are fixed for each timestep, we can move t
to our space controlling machine and have it construct a circuit, comprised of Toffoli gates on q,
h, and the catalytic tape, of polynomial length.

This is sufficient to prove our main result for this section:

Proof of Theorem 3. Combine Lemma 8 with Lemma 9.

6 Simulating catalytic space in DQC1

Lastly we will discuss the relationship between catalytic computing and a pre-existing yet closely
related quantum model, namely the one clean qubit setting. We will introduce the model and
then prove that it can simulate unitary QCL. Finally we will show that classical CL is also
contained in the one clean qubit model.

6.1 One clean qubit model

In the one-clean qubit model, first introduced by Knill and Laflamme [KL98], a quantum machine
is given a single input qubit initialized in the zero state and n qubits initialized in the maximally
mixed state. We will formalize the definition of this computational model:

Definition 23 (One clean qubit). Let {Qx}x be a log-space uniform family of unitary quantum
circuits. The one clean qubit model is a model of computation in which Qx is applied to the
n+ 1-qubit input state

ρ = |0⟩⟨0| ⊗ In
2n
,

where n = |x| and In operator is the identity on n qubits. After execution of Qx the first qubit
is measured, giving output probabilities:

p0 = 2−n Tr
[
(|0⟩⟨0| ⊗ I)Qx(|0⟩⟨0| ⊗ I)Q†x

]
,

p1 = 1− p0

Remark 4. Two points stand out in this definition. First, note that Qx are unitary circuits, and
hence do not allow intermediate measurements; such measurements would allow for resetting the
qubits initialized in the maximally mixed state, making the model significantly stronger. Second,
in this paper we consider log-space uniform families of unitary circuits, rather than the more
common deterministic polynomial-time uniform families, in order to align more closely with the
QCL model that we study.

The one-clean qubit model is a probabilistic model of computation, and hence we typically
talk about computing a function f(x) in terms of success probability for computing f(x) being
bounded away from 1/2. The exact bound on the error probability does not matter; while we
often use 2/3 in defining e.g. BQP, even a 1/poly(n) gap is sufficient as there we can employ
standard error-correction to boost our success, namely by running the algorithm multiple times.
However, this is not known to be possible in the one-clean qubit model, as such a machine can
only reliably run once.
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Definition 24 ([KL98, She06]). DQC1 is the set of all languages L = (Lyes, Lno) ⊂ {0, 1}∗ ×
{0, 1}∗ for which there exists a one-clean qubit machine M and a polynomial q(n) that on input
x ∈ L of length n = |x|,

• if x ∈ Lyes then the output probability p1 ≥ 1
2 + 1

q(n)

• if x ∈ Lno then the output probability p0 ≥ 1
2 + 1

q(n)

On the other hand, somewhat surprisingly the one-clean qubit model is robust to the number
of clean qubits allowed, up to a logarithmic number:

Lemma 10 ([SJ08]). DQCk = DQC1 for k = O(log(n)), where DQCk means having access to k
clean qubits instead of one.

6.2 Containment of unitary QCL in DQC1

We now move on to establishing a formal connection between QCL and DQC1. A QCL machine
is allowed to apply intermediate measurements to its quantum tape as well as its catalytic
tape, which is not possible in DQC1; however, if we restrict the QCL machine to not make any
intermediate measurements we can show that such a machine can in fact be simulated by the
one-clean qubit model.

Definition 25 (QUCL). A QUCL machine is a QCL machine in which the quantum circuit is
unitary. In the final step of the unitary the QUCL machine measures the first qubit, which then
gives the outcome of the calculation. Similarly we define BQUCL to be BQCL with the unitary
restriction.

Using this definition we can give the following proof of containment:

Proof of Theorem 4. Let C be a log-space uniform BQUCL quantum channel. Since C is unitary
up until the last measurement step, it preserves all possible density matrices from the catalytic
tape, and in particular it preserves the maximally mixed state In. Let U be the unitary part of
C. The action of U on the work-tape and the catalytic tape, with the catalytic tape initialized
in In, is:

U |0⟩ ⟨0|w ⊗ In
2n
U† = (

√
p0 |0⟩ ⟨0|w0

|ψ0⟩ ⟨ψ0|w +
√
p1 |1⟩ ⟨1|w0

|ψ1⟩ ⟨ψ1|w)⊗
In
2n

with |p1| ≥ 2/3 in a ’yes’ instance and |p0| ≥ 2/3 in a ’no’ instance. Note that this calculation
is of the exact form of a log(n)-clean qubit machine and that the output probabilities are a
constant bounded away from 1/2; hence this problem is in DQCk, and by Lemma 10 is therefore
in DQC1

6.3 Containment of CL in DQC1

We aim to show that CL ⊆ DQC1. The idea is that CL, as per Theorem 10, can always be made
reversible. While as discussed before we cannot maintain reversibility and total obliviousness,
a CL machine can also always be made ‘almost oblivious’ while maintaining reversibility; the
tape head movements are independent of the input, but the machine does not know when to
halt. Instead, after any given amount of time, we know that the machine has halted on a
fraction 1/poly(n) of possible initial catalytic states. Since the DQC1 model can be interpreted
as sampling from a uniform distribution of computational basis states, this shows the probability
of finding the correct output is 1/2 + 1/poly(n), which is sufficient for the proof.

Definition 26. A non-halting reversible oblivious catalytic Turing machine is a reversible obliv-
ious catalytic Turing machine that need not halt absolutely. In particular, for every input x and
initial catalytic state c there exists a time t(x, c) where the correct output has been written to the
output tape and the catalytic tape has been reset to its initial state. In addition, the output state
has an additional binary cell that indicates whether or not the output has been determined yet,
or is still ‘unknown’ by the machine.
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Definition 27. We say a reversible oblivious catalytic Turing machine halts with polynomial
success probability if there exists polynomials p, q such that for any valid input x to a promise
problem, after time p(|x|) the output tape of the catalytic Turing machine contains the correct
output to the problem on a fraction of at least 1/q(|x|) when the initial catalytic tapes are taken
uniformily at random. After time p(|x|), the output tape of the catalytic Turing machine never
contains the wrong answer, but it may leave the output undetermined.

We show that any CL machine can be transformed into a reversible oblivious catalytic Turing
machine that halts with polynomial success probability.

Lemma 11. Any catalytic Turing machine M that has a logarithmic clean space and polynomial
size catalytic tape can be turned into a non-halting oblivious reversible catalytic Turing machine
Mo with a logarithmic clean tape and polynomial catalytic tape.

Proof. By [Dul15, CLMP25], M can always be assumed to be reversible. We claim we can also
make M oblivious by sacrificing the condition that M is absolutely halting. This also interferes
with what is meant by the machine being catalytic, but the new machine no longer needs to be
catalytic.

To make the machine oblivious, we make two modifications. The first applies to operations
on the clean tape. The second applies to operations on the catalytic tape. On the clean tape, we
double the size of the clean tape ofM , breaking it up into pairs. The first entry of the pair stores
the original data while the second keeps track of the position of where the tape head is ‘supposed’
to be. Then by iterating over all positions on the clean tape of the Turing machine in every
step of the original Turing machine, operations on the clean tape of the Turing machine can be
made oblivious. Similarly, for operations on the catalytic tape, we can maintain an additional
part of the clean tape that keeps track of the position of the catalytic tape head position. By
iterating over all possible positions of the catalytic tape head and checking if the tape head is
‘really there’, we can make catalytic tape operations oblivious.

We call the machine formed this way Mo for oblivious M . Since the catalytic and clean tape
are no more than polynomial length, this procedure adds at most a polynomial factor to the
runtime. However, since the runtime of M may be super-polynomial and an oblivious machine
has the same runtime for all inputs x of the same length and catalytic tapes c, the machine does
not have enough clean space to keep a clock to know whether or not it has terminated. This
means we cannot assume it to be halting. However, we can show that it is halting with sufficient
probability:

Lemma 12. For any language L in CL that is recognized by a catalytic Turing machine M , there
exists a reversible oblivious catalytic Turing machine N that halts with polynomial probability
that also recognizes L. Furthermore, N also uses O(log |x|) clean space and polynomial catalytic
space.

Proof. We observe that Mo in Lemma 11 is simulated step-by-step, meaning that not only do
we reach the same outcome, but up to a fixed transformation and a slower runtime, Mo passes
through the same intermediate states. If we consider a modified version ofM in the first place, we
can ensure that the machine halts with polynomial success probability. We modify the original
machine M to form the machine M ′ in the following ways:

1. The machine M ′ repeats the original machine M l(n) = 2s(n) times where s(n) is the
length of the clean tape. Each repetition is called a cycle.

2. The space used for writing the output of M originally is extended by one additional bit.
This bit starts out in 0, signifying the output is ‘undetermined’. These to bits together
are called the output state.

3. After each cycle, the machine cleans itself. This means that it resets the clean space to
the all 0 state, reversing the computation except the output state, which is left unaltered
except for the first cycle.
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4. After the first cycle, the correct output of the computation is written to the output tape
and the second bit of the output state is flipped, signifying the output is ‘determined’.
For every subsequent cycle, a counter that counts up to 2l(n) is incremented by 1, but the
output tape is left unchanged.

We claim that the machineM ′o halts with polynomial probability. Suppose that the runtime
of a cycle of M ′ on input x and catalytic tape c is f(x, c). The expected runtime of a cycle
of M ′, f(x), over a uniform distribution of catalytic tapes for fixed x is at most l(n) by close
analysis of the polynomial expected time bound given in [BCK+14]. Let us examine the output
at time t(x) = t(|x|) = l(n) + 1. Then, by Markov’s inequality on a uniform distribution of
possible catalytic tapes

P(output undetermined) ≤ f(x)

t(x)

≤ l(n)

t(x)

=
l(n)

l(n) + 1
= 1− 1

l(n) + 1

This means that at time t(n), the probability that an output is written to the clean tape is at least
1/(l(n)+1) = 1/poly(n). After the first cycle, the output must be correct. However, afterwards,
we have no control over what is written onto the output tape. In making the machine reversible
and oblivious, it may later change the value in the output tape, including incorrect values. This
is why we repeat each cycle many times. This is M ′ stalling to preserve the correctness of the
output. Since the cycle is repeated 2l(n) times and each cycle uses time at least 1 to increment
the counter, this means that at time t(x) = l(n) + 1 the value in the output tape is guaranteed
to be correct or undetermined.

Let N = M ′o. Then N is reversible, oblivious and halts with polynomial probability. Since
t(x) = l(n) + 1 and l(n) or any upper bound on l(n) (which is sufficient) is readily computable,
this completes the proof.

This completes all technical components necessary to show that CL ⊆ DQC1.

Proof of Theorem 5. The maximally mixed state of DQC1 can be interpreted as uniformly ran-
domly sampling computational basis states. If we take these basis states to be the catalytic tape
and use the fact that DQC1 is unchanged if we allow a logarithmic number of clean qubits, then
we can run the machine N from Lemma 12 by using unitary gates instead of reversible, oblivious
operations. When we measure the output bit at the end, we get either an indeterminate state or
the correct output with certainty. If we get an indeterminate state, we output a random bit and
thus output the correct answer with probability 1/2. If not, then we output the correct answer,
which occurs with probability at least 1/poly(n).
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