
Journal of Computer and System Sciences 104 (2019) 5–16
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Complexity of regular functions

Eric Allender ∗, Ian Mertz

Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 June 2015
Received in revised form 16 July 2016
Accepted 21 October 2016
Available online 2 November 2016

Keywords:
Computational complexity
Transducers
Weighted automata

We give complexity bounds for various classes of functions computed by cost register
automata.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We study various classes of regular functions, as defined in a recent series of papers by Alur et al. [8,10,9]. In those
papers, the reader can find pointers to work describing the utility of regular functions in various applications in the field
of computer-aided verification. Additional motivation for studying these functions comes from their connection to classical
topics in theoretical computer science; we describe these connections now.

The class of functions computed by two-way deterministic finite transducers is well-known and widely-studied. Engel-
friet and Hoogeboom studied this class [18] and gave it the name of regular string transformations. They also provided an
alternative characterization of the class in terms of monadic second-order logic. It is easy to see that this is a strictly larger
class than the class computed by one-way deterministic finite transducers, and thus it was of interest when Alur and Černý
[5] provided a characterization in terms of a new class of one-way deterministic finite automata, known as streaming string
transducers; see also [6]. Streaming string transducers are traditional deterministic finite automata, augmented with a finite
number of registers that can be updated at each time step, as well as an output function for each state. Each register has
an initial value in �∗ for some alphabet �, and at each step receives a new value consisting of the concatenation of certain
other registers and strings. (There are certain other syntactic restrictions, which will be discussed later, in Section 2.)

The model that has been studied in [8,10,9], known as cost register automata (CRAs), is a generalization of streaming
string transducers, where the register update functions are not constrained to be the concatenation of strings, but instead
may operate over several other algebraic structures such as monoids, groups and semirings. Stated another way, streaming
string transducers are cost register automata that operate over the monoid (�∗, ◦) where ◦ denotes concatenation. Another
important example is given by the so-called “tropical semiring”, where the additive operation is min and the multiplicative
operation is +; CRAs over (N ∪ {∞}, min, +) can be used to give an alternative characterization of the class of functions
computed by weighted automata with costs in N [8].

The cost register automaton model is the main machine model that was advocated by Alur et al. [8] as a tool for defining
and investigating various classes of “regular functions” over different domains. Their definition of “regular functions” does

* Corresponding author.
E-mail addresses: allender@cs.rutgers.edu (E. Allender), iwmertz@gmail.com (I. Mertz).
http://dx.doi.org/10.1016/j.jcss.2016.10.005
0022-0000/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2016.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:allender@cs.rutgers.edu
mailto:iwmertz@gmail.com
http://dx.doi.org/10.1016/j.jcss.2016.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2016.10.005&domain=pdf

6 E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16
not always coincide exactly with the CRA model, but does coincide in several important cases. In this paper, we will focus
on the functions computed by (various types of) CRAs.

Although there have been papers examining the complexity of several decision problems dealing with some of these
classes of regular functions, there has not previously been a study of the complexity of computing the functions themselves.1

There was even a suggestion [4] that these functions might be difficult or impossible to compute efficiently in parallel. Our
main contribution is to show that most of the classes of regular functions that have received attention lie in certain low
levels of the NC hierarchy.

2. Preliminaries

The reader should be familiar with some common complexity classes, such as L (deterministic logspace), and P (de-
terministic polynomial time). Many of the complexity classes we deal with are defined in terms of families of circuits.
A language A ⊆ {0, 1}∗ is accepted by circuit family {Cn : n ∈ N} if x ∈ A iff C|x|(x) = 1. Our focus in this paper will be on
uniform circuit families; by imposing an appropriate uniformity restriction (meaning that there is an algorithm that de-
scribes Cn , given n) circuit families satisfying certain size and depth restrictions correspond to complexity classes defined
by certain classes of Turing machines.

Logspace uniformity (meaning that, on input 1n , a logspace-bounded machine can produce a description of the circuit Cn)
is a convenient and easy-to-define uniformity condition that is adequate to use when characterizing complexity classes in
terms of circuit families, as long as the complexity class contains logspace. However, most of the classes that we consider
in this paper are subclasses of logspace – and for these small classes, the issue of choosing the proper uniformity condition
is more complicated. These small classes can all be described equivalently in terms of machine models (using variants of
alternating Turing machines) or in terms of logic (because a language can be viewed as a class of finite structures that satisfy
a given logical formula, and it turns out that many important complexity classes correspond to certain natural classes of
logic formulae). In order to maintain equivalence with these machine-based and logic-based characterizations, there is now
a general consensus that UE -uniformity is the best notion to use. Informally, a family of polynomial-size circuits {Cn} is
UE -uniform if there is a linear-time machine that takes inputs of the form (n, g, h, p) and determines if p encodes a path
from gate h to gate g in Cn , and also determines what type of gate g and h are. The reader will not need to be concerned
with the details of the uniformity condition, and we refer the reader to Section 4.5 of the excellent text by Vollmer [26] for
a longer discussion of uniformity, as well as for more information about the following standard circuit complexity classes.

– NCi = {A : A is accepted by a UE -uniform family of circuits of bounded fan-in AND, OR and NOT gates, having size
nO (1) and depth O (logi n)}.

– ACi = {A : A is accepted by a UE -uniform family of circuits of unbounded fan-in AND, OR and NOT gates, having size
nO (1) and depth O (logi n)}.

– TCi = {A : A is accepted by a UE -uniform family of circuits of unbounded fan-in MAJORITY gates, having size nO (1) and
depth O (logi n)}.

We remark that, for constant-depth classes such as AC0 and TC0, UE -uniformity coincides with UD -uniformity, which is
also frequently called DLOGTIME-uniformity.

Following the standard convention, we also use these same names to refer to the associated classes of functions computed
by the corresponding classes of circuits. For instance, the function f is said to be in NC1 if there is UE -uniform family of
circuits {Cn} of bounded fan-in AND, OR and NOT gates, having size nO (1) and depth O (log n), where Cn has several output
gates, and on input x of length n, Cn outputs an encoding of f (x). (We say that an “encoding” of the output is produced,
to allow the possibility that there are strings x and y of length n, such that f (x) and f (y) have different lengths.) It
is easy to observe that, if the length of f (x) is polynomial in |x|, then f is in (say) NC1 if and only if the language
{(x, i, b): the i-th symbol of f (x) is b} is in NC1.

We will have need to refer to an alternative characterization of NC1 in terms of branching programs. A branching program
is a directed acyclic graph with vertices partitioned into levels. The width of a branching program is the largest number of
vertices that appears in any level. There is a source node in level zero, and edges connect only vertices in adjacent levels
(going from level i to i + 1). In the highest-numbered level, there are two sink nodes, labeled 1 and 0, respectively. Each
edge is labeled with a predicate of the form “the i-th bit of x is b” or “true”. A branching program accepts x if there is a
path from the source node to the sink labeled 1, traversing only edges whose predicates are true on input x. A branching
program is deterministic if, for every node v and every input x, there is at most one edge leaving v on input x whose label
evaluates to true. It is known that every problem in NC1 is accepted by a uniform family of width-5 deterministic branching
programs of polynomial size, and conversely every language accepted by a uniform family of constant-width nondeterministic
branching programs of polynomial size lies in NC1 [11].

1 It may be appropriate to emphasize that, in the prior work on decision problems, a CRA is given as part of the input. In the present investigation, the
CRA computing a function f is fixed, and the task is to compute f (x), given x.

E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16 7
We also need to refer to certain classes defined by families of arithmetic circuits. Let (S, +, ×) be a semiring. An arith-
metic circuit consists of input gates, + gates, and × gates connected by directed edges (or “wires”). One gate is designated
as an “output” gate. If a circuit has n input gates, then it computes a function from Sn → S in the obvious way. In this
paper, we consider only arithmetic circuits where all gates have bounded fan-in.

– #NC1
S is the class of functions f : ⋃

n Sn → S for which there is a UE -uniform family of arithmetic circuits {Cn} of
logarithmic depth, such that Cn computes f on Sn .

– By convention, when there is no subscript, #NC1 denotes #NC1
N , with the additional restriction that the functions in

#NC1 are considered to have domain
⋃

n{0, 1}n . That is, we restrict the inputs to the Boolean domain. (Boolean negation
is also allowed at the input gates.)

– GapNC1 is defined as #NC1 − #NC1; that is: the class of all functions that can be expressed as the difference of two
#NC1 functions. It is the same as #NC1

Z restricted to the Boolean domain. See [26,1] for more on #NC1 and GapNC1.

The following inclusions are known:

NC0 ⊆ AC0 ⊆ TC0 ⊆ NC1 ⊆ #NC1 ⊆ GapNC1 ⊆ L ⊆ AC1 ⊆ P.

All inclusions are straightforward, except for GapNC1 ⊆ L [19].

2.1. Cost-register automata

A cost-register automaton (CRA) is a deterministic finite automaton (with a read-once input tape) augmented with a fixed
finite set of registers that store elements of some algebraic domain A. At each step in its computation, the machine

– consumes the next input symbol (call it a),
– moves to a new state (based on a and the current state (call it q)),
– based on q and a, updates each register ri using updates of the form ri ← f (r1, r2, . . . , rk), where f is an expression

built using the registers r1, . . . , rk using the operations of the algebra A.

There is also an “output” function μ defined on the set of states; μ is a partial function – it is possible for μ(q) to be
undefined. Otherwise, if μ(q) is defined, then μ(q) is some expression of the form f (r1, r2, . . . , rk), and the output of the
CRA on input x is μ(q) if the computation ends with the machine in state q.

More formally, here is the definition as presented by Alur et al. [8].
A cost-register automaton M is a tuple (�, Q , q0, X, δ, ρ, μ), where

– � is a finite input alphabet.
– Q is a finite set of states.
– q0 ∈ Q is the initial state.
– X is a finite set of registers.
– δ : Q × � → Q is the state-transition function.
– ρ : Q × � × X → E is the register update function (where E is a set of algebraic expressions over the domain A and

variable names for the registers in X).
– μ : Q → E is a (partial) final cost function.

A configuration of a CRA is a pair (q, ν), where ν maps each element of X to an algebraic expression over A. The initial
configuration is (q0, ν0), where ν0 assigns the value 0 to each register (or some other “default” element of the underlying
algebra). Given a string w = a1 . . .an , the run of M on w is the sequence of configurations (q0, ν0), . . . (qn, νn) such that, for
each i ∈ {1, . . . , n} δ(qi−1, ai) = qi and, for each x ∈ X , νi(x) is the result of composing the expression ρ(qi−1, ai, x) to the
expressions in νi−1 (by substituting in the expression νi−1(y) for each occurrence of the variable y ∈ X in ρ(qi−1, ai, x)).
The output of M on w is undefined if μ(qn) is undefined. Otherwise, it is the result of evaluating the expression μ(qn) (by
substituting in the expression νn(y) for each occurrence of the variable y ∈ X in μ(qn)).

It is frequently useful to restrict the algebraic expressions that are allowed to appear in the transition function ρ :
Q × � × X → E . One restriction that is important in previous work [8] is the “copyless” restriction.

A CRA is copyless if, for every register r ∈ X , for each q ∈ Q and each a ∈ �, the variable “r” appears at most once in
the multiset {ρ(q, a, s) : s ∈ X}. In other words, for a given transition, no register can be used more than once in computing
the new values for the registers. Following [9], we refer to copyless CRAs as CCRAs. Over many algebras, unless the copyless
restriction is imposed, CRAs compute functions that can not be computed in polynomial time. For instance, CRAs that can
concatenate string-valued registers and CRAs that can multiply integer-valued registers can perform “repeated squaring” and
thereby obtain results that require exponentially-many symbols to write down.

8 E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16
3. CRAs over monoids

In this section, we study CRAs operating over algebras with a single operation. We focus on two canonical examples:

– CRAs operating over the commutative monoid (Z, +).
– CRAs operating over the noncommutative monoid (�∗, ◦).

3.1. CRAs over the integers

Additive CRAs (ACRAs) are CRAs that operate over commutative monoids. They have been studied in [8,10,9]; in [10] the
ACRAs that were studied operated over (Z, +), and thus far no other commutative monoid has received much attention, in
connection with CRAs.

Theorem 1. All functions computable by CCRAs over (Z, +) are computable in NC1 . (This bound is tight, since there are regular sets
that are complete for NC1 under projections [11].)

Proof. It was shown in [8] that CCRAs (over any commutative semiring) have equivalent power to CRAs that are not re-
stricted to be copyless, but that have another restriction: the register update functions are all of the form r ← r′ + c for
some register r′ and some semiring element c. Thus assume that the function f is computed by a CRA M of this form. Let
M have k registers r1, . . . , rk .

It is straightforward to see that the following functions are computable in NC1:

– (x, i) �→ q, such that M is in state q after reading the prefix of x of length i. (To see that this is computable in NC1,
recall first that every regular set is in NC1. Thus, each of the O (1) languages of the form Lq is in NC1, where Lq is the
regular set accepted by the finite automaton M , altered so that q is its only accepting state. Now consider the circuit
that, on input (x, i) computes the length-i prefix of x and determines membership of the prefix in each Lq .)

– (x, i) �→ Gi , where Gi is a labeled directed bipartite graph on [k] × [k], with the property that there is an edge labeled
c from j on the left-hand side to � on the right hand side, if the register update operation that takes place when M
consumes the i-th input symbol includes the update r� ← r j + c. If the register update operation includes the update
r� ← c, then vertex � on the right hand side is labeled c. (To see that this is computable in NC1, note that by the
previous item, in NC1 we can determine the state q that M is in as it consumes the i-th input symbol. Thus Gi is
merely a graphical representation of the register update function corresponding to state q.) Note that the indegree of
each vertex in Gi is at most one. (The outdegree of a vertex may be as high as k.)

Now consider the graph G that is obtained by concatenating the graphs Gi (by identifying the right-hand side of Gi with
the left-hand side of Gi+1 for each i). This graph shows how the registers at time i + 1 depend on the registers at time i.
G is a constant-width graph, and it is known that reachability in constant-width graphs is computable in NC1 [11,12]. Note
that we can determine in NC1 the register that provides the output when the last symbol of x is read. By tracing the edges
back from that vertex in G (following the unique path leading back toward the left, using the fact that each vertex has
indegree at most one) we eventually encounter a vertex of indegree zero. In NC1 we can determine which edges take part
in this path, and add the labels that occur along that path. This yields the value of f (x). �
We remark that the NC1 upper bound holds for any commutative monoid where iterated addition of monoid elements can
be computed in NC1.

A related bound holds, when the copyless restriction is dropped:

Theorem 2. All functions computable by CRAs over (Z, +) are computable in GapNC1 . (This bound is tight, since there is one such
function that is hard for GapNC1 under AC0 reductions.)

Proof. We use a similar approach as in the proof of the preceding theorem. We build a bipartite graph Gi that represents
the register update function that is executed while consuming the i-th input symbol, as follows. Each register update
operation is of the form r� ← a0 + ri1 + ri2 + . . . rim . Each register r j appears, say, a j times in this sum, for some nonnegative
integer a j . If r� ← a0 + ∑k

j=1 a j · r j is the update for r� at time i, then if a j > 0, then Gi will have an edge labeled a j from
j on the left-hand side to � on the right-hand side, along with an edge from 0 to � labeled a0, and an edge from 0 to 0.
Let the graph Gi correspond to matrix Mi . An easy inductive argument shows that (

∑k
j=0(

∏t
i=1 Mi)) j,� gives the value of

register � after time t . The expressions
∏t

i=1 Mi)) j,� are instances of the “iterated matrix multiplication” problem, and it is
known that iterated multiplication of O (1) × O (1) integer matrices can be computed in GapNC1 [16]. Thus the sum of such
expressions also lies in GapNC1, which establishes the upper bound.

For the lower bound, observe that it is shown in [16], building on [13], that computing the iterated product of 3 × 3
matrices with entries from {0, 1, −1} is complete for GapNC1. More precisely, taking a sequence of such matrices as input

E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16 9
and outputting the (1, 1) entry of the product is complete for GapNC1. Consider the alphabet � consisting of such matrices.
There is a CRA taking input from �∗ and producing as output the contents of the (1, 1) entry of the product of the matrices
given as input. (The CRA simulates matrix multiplication in the obvious way.) �
3.2. CRAs over (�∗, ◦)

Unless we impose the copyless restriction, CRAs over this monoid can generate exponentially-long strings. Thus in this
subsection we consider only CCRAs.

CCRAs operating over the algebraic structure (�∗, ◦) are precisely the so-called streaming string transducers that were
studied in [6], and shown there to compute precisely the functions computed by two-way deterministic finite transducers
(2DFAs). This class of functions is very familiar, and it is perhaps folklore that such functions can be computed in NC1, but
we have found no mention of this in the literature. Thus we present the proof here.

Theorem 3. All functions computable by CCRAs over (�∗, ◦) are computable in NC1 . (This bound is tight, since there are regular sets
that are complete for NC1 under projections [11].)

Proof. Let M be a 2DFA computing a (partial) function f , and let x be a string of length n. If f (x) is defined, then M halts
on input x, which means that M visits no position i of x more than k times, where k is the size of the state set of M .

Define the visit sequence at i to be the sequence q(i,1), q(i,2), . . .q(i,�i) of length �i ≤ k such that q(i, j) is the state that M
is in the j-th time that it visits position i. Denote this sequence by V i .

We will show that the function (x, i) �→ V i is computable in NC1. Assume for the moment that this is computable
in NC1; we will show how to compute f in NC1.

Note that there is a planar directed graph G of width at most k having vertex set
⋃

i V i , where all edges adjacent to
vertices V i go to vertices in either V i−1 or V i+1, as follows: Given V i−1, V i and V i+1, for any q(i, j) ∈ V i , it is trivial to
compute the pair (i′, j′) such that, when M is in state q(i, j) scanning the i-th symbol of the input, then at the next step
it will be in state q(i′, j′) scanning the i′-th symbol of the input. (Since this depends on only O (1) bits, it is computable in
UE -uniform NC0.) The edge set of G consists of these “next move” edges from q(i, j) to q(i′, j′) . It is immediate that no edges
cross when embedded in the plane in the obvious way (with the vertex sets V 1, V 2, . . . arranged in vertical columns with
V 1 at the left end, and V i+1 immediately to the right of V i , and with the vertices q(i,1), q(i,2), . . .q(i,�i) arranged in order
within the column for V i).

Let us say that (i, j) comes before (i′, j′) if there is a path from q(i, j) to q(i′, j′) in G . Since reachability in constant-width
planar graphs is computable in AC0 [12], it follows that the “comes before” predicate is computable in AC0.

Thus there is a TC0 circuit family that first uses AC0 circuitry to compute, for each tuple (i, j, i′, j′), whether (i′, j′)
comes before (i, j), and furthermore, for each tuple, the transition function of M determines whether M produces an output
symbol when departing state qi′, j′ . Using MAJORITY gates, it is trivial to compute the number of 1’s in a vector, and hence,
in TC0, one can compute the size of the set {(i′, j′) : (i′, j′) comes before (i, j) and M produces an output symbol when
moving from q(i′, j′)}. Call this number m(i, j) . Hence, in TC0 one can compute the function (x, m) �→ (i, j) such that
m(i, j) = m. But this allows us to determine what symbol is the m-th symbol of f (x). Hence, given the sequences V i , f (x)
can be computed in TC0 ⊆ NC1.

It remains to show how to compute the sequences V i .
It suffices to show that the set B = {(x, i, V) : V = V i} ∈ NC1. To do this, we will present a nondeterministic constant-

width branching program recognizing B; such branching programs recognize only sets in NC1 [11]. Our branching program
will guess each V j in turn; note that each V j can be described using only O (k log k) = O (1) bits, and thus there are only
O (1) choices possible at any step. When guessing V j+1, the branching program rejects if V j+1 is inconsistent with V j
and the symbols being scanned at positions j and j + 1. When i = j the branching program rejects if V is not equal to
the guessed value of V i . When j = |x| the branching program halts and accepts if all of the guesses V 1, . . . , Vn have been
consistent. It is straightforward to see that the algorithm is correct. �
4. CRAs over semirings

In this section, we begin the study of CRAs operating over algebras with two operations satisfying the semiring axioms.
We focus on three such structures:

– CRAs operating over the commutative ring (Z, +, ×) (Section 4.1).
– CRAs operating over the commutative semiring (Z ∪ {∞}, min, +): the so-called “tropical” semiring (Section 5).
– CRAs operating over the noncommutative semiring (�∗ ∪ {⊥}, max, ◦) (Section 6).

(Here, the max operation takes two strings x, y in �∗ as input, and produces as output the lexicographically-larger of the
two. For any x, max(x, ⊥) = x.) There is a large literature dealing with weighted automata operating over semirings. It is
shown in [8] that the class of functions computed by weighted automata operating over a semiring (S, +, ×) is exactly

10 E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16
equal to the class of functions computed by CRAs operating over (S, +, ×), where the only register operations involving ×
are of the form r ← ∑

i ri × ci for some registers ri and some semiring elements ci . Thus for each structure, we will also
consider CRAs satisfying this restriction.

We should mention the close connection between iterated matrix product and weighted automata operating over com-
mutative semirings. As in the proof of Theorem 2, when a CRA is processing the i-th input symbol, each register update
function is of the form r� ← a0 + ∑k

j=1 a j · r j , and thus the register updates for position i can be encoded as a matrix.
Thus the computation of the machine on an input x can be encoded as an instance of iterated matrix multiplication. In
fact, some treatments of weighted automata essentially define weighted automata in terms of iterated matrix product. (For
instance, see [22, Section 3].) Thus, since iterated product of k × k matrices lies in #NC1

S for any commutative semiring S ,
the functions computed by weighted automata operating over S all lie in #NC1

S . (For the case when S = Z, iterated matrix
product of k × k matrices is complete for GapNC1 for all k ≥ 3 [16,13].)

4.1. CRAs over the integers

First, we consider the copyless case:

Theorem 4. All functions computable by CCRAs over (Z, +, ×) are computable in GapNC1 . (Some such functions are hard for NC1 ,
but we do not know if any are hard for GapNC1 .)

Proof. Consider a CCRA M computing a function f , operating on input x. There is a function computable in NC1 that
maps x to an encoding of an arithmetic circuit that computes f (x), constructed as follows: The circuit will have gates r j,i

computing the value of register j at time i. The register update functions dictate which operations will be employed, in
order to compute the value of r j,i from the gates r j′,i−1. Due to the copyless restriction, the outdegree of each gate is at
most 1 (which guarantees that the circuit is a formula).

It follows from Lemma 5 below that f ∈ GapNC1. �
Lemma 5. If there is a function computable in NC1 that takes an input x and produces an encoding of an arithmetic formula that
computes f (x) when evaluated over the integers, then f ∈ GapNC1 .

Proof. Recall that an arithmetic formula takes a sequence of integers as input, and produces an integer as output. Thus a
formula (together with an input sequence) can be viewed as a representation of the number that is produced as output.
By [15], there is a logarithmic-depth arithmetic-Boolean formula over the integers, that takes as input a bitstring encoding
a formula F (along with inputs to F) and outputs the integer represented by F . An arithmetic-Boolean formula is a formula
with Boolean gates AND, OR and NOT, and arithmetic gates +, ×, as well as test2 and select gates that provide an interface
between the two types of gates. Actually, the construction given in [15] does not utilize any test gates [14], and thus we
need not concern ourselves with them. (Note that this implies that there is no path in the circuit from an arithmetic gate
to a Boolean gate.)

A select gate takes three inputs (y, x0, x1) and outputs x0 if y = 0 and outputs x1 otherwise. In the construction given
in [15], select gates are only used when y is a Boolean value. When operating over the integers, then, select(y, x0, x1) is
equivalent to y × x1 + (1 − y) × x0. But since Boolean NC1 is contained in #NC1 ⊆ GapNC1 (see, e.g., [1]), the Boolean
circuitry can all be replaced by arithmetic circuitry. (When operating over algebras other than Z, it is not clear that such a
replacement is possible.) �

We cannot entirely remove the copyless restriction while remaining in the realm of polynomial-time computation, since
repeated squaring allows one to obtain numbers that require exponentially-many bits to represent in binary. However, as
noted above, if the multiplicative register updates are all of the form r ← r′ × c, then again the GapNC1 upper bound holds
(and in this case, some of these CRA functions are complete for GapNC1, just as was argued in the proof of Theorem 2).

5. CRAs over the tropical semiring

In this section, we consider CRAs operating over the tropical semiring. We show that the functions computable by such
CRAs have complexity bounded by the complexity of functions in #NC1 , and thus lie in L. In order to state a more precise
bound on the complexity of these functions, we introduce the class #NC1

trop, and we prove some basic propositions about
arithmetic circuits over the tropical semiring.

2 A test gate computes a unary function, taking as input a value from an arithmetic gate g , and producing as output the Boolean value of the predicate
“g is equal to zero”.

E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16 11
5.1. Arithmetic circuit preliminaries

Functions in #NC1
trop have complexity in some sense intermediate between NC1 and #NC1 . Proposition 6 shows that

there are some functions in #NC1
trop that are hard for NC1, and Lemma 9 shows that, if the values at the input level of

#NC1
trop circuits have binary representation of only O (log n) bits, then #NC1

trop circuits are no harder to evaluate than #NC1

functions. (Without this restriction, the best known upper bound is AC1; see, e.g. [2, Lemma 5.5].) It is worth remarking
that it has been conjectured that #NC1 consists of precisely the functions computable in NC1; see [1]. Thus the lower and
upper bounds of NC1 and #NC1 are not very far apart.

Recall that the accepted convention for #NC1 is that inputs are restricted to be in {0, 1}, and that for every Boolean
input xi the negated input ¬xi is also available. In order to simplify the statement of the following results, we allow #NC1

trop
circuits to take arbitrary elements from Z ∪ {∞} as input (as in the standard setting for arithmetic circuit complexity).
But sometimes it is also convenient to consider #NC1

trop as a class of languages, in which case we will follow the same
convention as for #NC1 , and restrict the inputs to be in {0, 1}, where for every Boolean input xi the negated input ¬xi is
also available.

Recall from Section 4 the result of [8], which states that the class of functions computed by weighted automata over the
tropical semiring corresponds to the class of functions computed by CRAs operating over the tropical semiring (without the
copyless restriction) where the only register operations involving addition are of the form r ← r′ + c for some register r′
and some natural number c. As discussed in Section 4, these functions all lie in #NC1

trop. In Theorem 12, we show nearly as
good an upper bound for the class of functions computed by copyless CRAs without this restriction on addition. First, however,
we present some basic results on the complexity of functions in #NC1

trop, beginning with a lower bound.

Proposition 6. NC1 ⊆ #NC1
trop .

Proof. Recall first that the inclusion NC1 ⊆ #NC1 is proved by observing that NC1 circuits can be assumed without loss
of generality to be “unambiguous”, in the sense that each OR gate that evaluates to one always has exactly one child that
evaluates to one. (That is, a ∨b is replaced by (¬a ∧b) ∨ (a ∧¬b) ∨ (a ∧b); see, e.g., [1].) Thus consider any language L ∈ NC1,
and consider the “unambiguous” NC1 circuit family {Cn} accepting L. If we simply replace each AND gate by min, and we
replace each OR gate by +, then the resulting #NC1

trop circuit is equivalent to Cn . �
Now, we consider the problem of evaluating #NC1

trop circuits. We note first that determining if the output is ∞ can be
accomplished in NC1.

Proposition 7. The problem of taking as input an arithmetic formula φ (with assignments to all of the input variables), and determining
if φ evaluates to ∞ is in NC1 .

Proof. Given φ, replace each finite input with 0, and replace each ∞ input with 1. Change each min gate to AND, and
change each + gate to OR. Call the resulting formula φ′; it is easy to see that φ′ evaluates to 1 iff φ evaluates to ∞. Now,
by [15], φ′ can be evaluated in NC1. �

Thus, if we want to evaluate a #NC1
trop formula, it suffices to focus on the case where the formula evaluates to a value

other than ∞. A very powerful result by Elberfeld, Jakoby, and Tantau [17, Theorem 5] can be used to show that some
closely-related problems reduce to the computation of #NC1 functions, but we find that there are enough complications
caused by the presence of ∞-inputs and negative inputs, so that it is simpler to present a direct argument rather than to
invoke [17]. Thus our next lemma says that evaluating a #NC1

trop formula that takes on a finite value is no harder than
evaluating a #NC1 expression. The following definition and lemma make precise what is meant by “no harder than” in this
context.

Definition 8. Let x be a non-zero dyadic rational. That is, x can be expressed as x = ∑m
i=−m bi2i for some m, where bi ∈ {0, 1}

for all i. Define low.order(x) to be the least i ∈ {−m, . . . , m} such that bi = 1. If φ is an arithmetic formula, then low.order(φ)

is defined to be low.order(z) for the number z that is represented by φ.

Observe that low.order(xy) = low.order(x) + low.order(y). Observe also that low.order(x + y) = min{low.order(x), low.order(y)}
if low.order(x) �= low.order(y), but if low.order(x) = low.order(y), then it is not obvious how to obtain a useful bound on
low.order(x + y). For this reason, in the following lemma, we will introduce the notion of “spread”.

An informal interpretation of the following lemma is: In order to evaluate a #NC1
trop formula φ, one can evaluate a #NC1

formula φ′ and perform some trivial arithmetic on low.order(φ′). Thus #NC1
trop efficiently reduces to #NC1 .

12 E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16
Lemma 9. Let c and � be natural numbers. There is a function f computable in NC1 that takes as input a #NC1
trop formula φ of depth

c logn, where each finite input to φ is in the range [−n�, n�], and produces as output a #NC1 formula φ′ and numbers m, r such that,
if φ evaluates to a finite value z, then zr ≤ low.order(φ′) − m < (z + 1)r. (In other words, z = �(low.order(φ′) − m)/r�.)

Proof. The argument we present is very similar to a proof that is presented in [20] (where the authors of that paper are
working over the (max, +) algebra, instead of (min, +)).

Let the #NC1
trop formula φ be given, of depth c log n, where each input that is not ∞ lies in the range [−n�, n�]. We first

build an arithmetic formula φ0 over the dyadic rationals, and then modify φ0 to obtain the desired #NC1 formula φ′ .
We assume without loss of generality that φ is a complete binary tree, where all paths from input gates to the output

have length c log n, and we also assume that φ is composed of alternating layers of + and min gates. (This normal form
can be obtained by at most doubling the depth, by inserting dummy gates, using the rules min(x, x) = x and x + 0 = x;
the modified formula can be obtained from φ in NC1.) Thus φ has nc input gates, each of which takes on a value in
[−n�, n�] ∪ {∞}.

Let r = (n� + 1)n2c + 1. The formula φ0 is obtained from φ by changing each + gate of φ to a × gate, and changing each
min gate of φ to a + gate. At the input level, each input of φ that has some finite value a is replaced by the value 2ra .
(Note, it is possible that a < 0.) Each input of φ that is labeled with ∞ is replaced by the value 2(n�+1)ncr .

First, we observe that each gate g of φ0 evaluates to a dyadic rational in the range [2−rn�nc
, 2r(n�+1)n2c]. This is because

all inputs to φ0 are positive. The output cannot be larger than the result of multiplying together nc values of size 2(n�+1)ncr

(which is the value that replaces ∞), and it cannot be smaller than multiplying together nc values of size 2−rn�
.

Before we proceed to our inductive argument showing that the output of φ0 encodes the value of φ, it is necessary
to prove some results showing how the values stored in the gates of φ0 evolve as the computation progresses. Given
a gate g0 of φ0 whose value is encoded in binary as

∑m
i=−m bi2i , define spread(g0) to be the largest j < r such that

b�low.order(g0)/r�r+ j = 1. Here is some intuition about spread(g0). Think of the binary representation of the value of g0 as a
bit string divided into subfields of length r. All of the fields to the right of low.order(g0) are all zero. The field corresponding
to positions

�low.order(g0)/r�r + (r − 1), . . . �low.order(g0)/r�r + 1, �low.order(g0)/r�r

is where the useful information is stored. If g0 is an input gate, then this field is very “clean”; it is of the form 0r−11. If g0
appears at a higher depth in the circuit, this field can be a bit messy. However, the high-order bits of this field are all going
to be 0, and the 1’s can only appear in positions �low.order(g0)/r�r + j for 0 ≤ j ≤ spread(g0).

Claim 10. If g0 is a gate at depth d of φ0 , then spread(g0) ≤ 2d.

Note that, since d = c log n, 2d < r.

Proof. The proof of the claim is by induction on d. When d = 0, spread(g0) = 0 < 2d .
If g0 is a + gate at depth d, say g0 = h0 + k0, where the claim holds at h0 and k0, then either

spread(g0) = max{spread(h0), spread(k0)},
or

spread(g0) = max{spread(h0), spread(k0)} + 1.

In either case, by the induction hypothesis we have spread(g0) ≤ 2d−1 + 1 ≤ 2d . So in either case the claim holds at g0.
If g0 is a × gate at depth d, say g0 = h0 × k0, where the claim holds at h0 and k0, then spread(g0) = spread(h0) +

spread(k0). (To see this, consider the binary representation of the product h0 × k0 as divided up into fields of length r, and
similarly divide h0 and k0 into fields of length r. Let xh and xk be the contents of the fields containing low.order(h0) and
low.order(k0), respectively. Then the field containing low.order(h0 ×k0) consists of the low-order r bits of the product xh × xk .
The length of the non-zero part of the product xh × xk is exactly spread(h0) + spread(k0).)

By induction, spread(g0) = spread(h0) + spread(k0) ≤ 2d−1 + 2d−1 = 2d . �
Next, we claim that the value of φ can easily be extracted from the value of φ0.

Claim 11. If φ evaluates to a finite value z, then zr ≤ low.order(φ0) < z(r + 1). Thus z = �low.order(φ0)/r� (since z < r).

Proof. This claim follows immediately from the following statement, which we prove by induction on d:
For all d, if gate g at depth d takes on a finite value z in φ, then zr ≤ low.order(g0) < zr + 2d (where g0 is the value

that the gate corresponding to g takes on in φ0), and if g (at depth d) takes on the value ∞ in φ, then low.order(g0) ≥
(n� + 1)ncr − dn� .

E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16 13
This suffices to prove the claim, since the output gate has depth d = c log n and thus 2d = nc < r. The claim holds at the
input level (where d = 0).

Now let g be a + gate at depth d computing h +k, where the inductive hypothesis holds at h and k. If g takes on a finite
value z, then both h and k take on finite values, call them zh and zk . By induction, we have z = zh + zk , and g0 = h0 × k0,
where zhr ≤ low.order(h0) < zhr +2d−1 and zkr ≤ low.order(k0) < zkr +2d−1. Observe that low.order(g0) = low.order(h0 ×k0) =
low.order(h0) + low.order(k0). Thus zr = zhr + zkr ≤ low.order(h0) + low.order(k0) = low.order(g0) < zhr + 2d−1 + zkr + 2d−1 =
(zh + zk)r + 2d = zr + 2d .

If g takes on the value ∞, then either h or k also takes on the value ∞. Assume without loss of generality that h = ∞.
Then, by induction low.order(h0) ≥ (n� + 1)ncr − (d − 1)n� . Thus low.order(g0) = low.order(h0) + low.order(k0) ≥ ((n� + 1)ncr −
(d − 1)n�) + (−n�) = (n� + 1)ncr − dn� .

Next let g be a min gate at depth d, computing min(h, k), where the inductive hypothesis holds at h and k. If g takes
on a finite value z, then at least one of h and k takes on a finite value. Assume without loss of generality that h is the
minimum, and that h takes the value zh , and let zk be the value of gate k. By induction, we have z = zh , and g0 = h0 × k0,
where zhr ≤ low.order(h0) < zhr + 2d−1. If zk is finite, then zkr ≤ low.order(k0) < zkr + 2d−1, and otherwise low.order(k0) ≥
(n� + 1)ncr − (d − 1)n� .

If low.order(h0) �= low.order(k0) (which is the case, in particular, if k = ∞), then low.order(g0) = low.order(h0), and the in-
ductive hypothesis holds at g0. Thus assume that low.order(h0) = low.order(k0). Thus zr = zhr ≤ low.order(h0) ≤ low.order(g0),
and thus the first inequality of the claim holds at g0.

Also low.order(g0) ≤ �low.order(h0)/r�r + spread(h0) + 1 ≤ �low.order(h0)/r�r + 2d−1 + 1 by Claim 10. By induction, we
have low.order(g0) ≤ �(zhr + 2d−1)/r�r + 2d−1 + 1 = zhr + 2d−1 + 1 = zr + 2d−1 + 1 < zr + 2d , as desired.

If g takes on the value ∞, then both h and k also evaluate to ∞. By the inductive hypothesis, low.order(h0) ≥ (n� +
1)ncr − (d −1)n� and low.order(k0) ≥ (n� +1)ncr − (d −1)n� . It follows that low.order(g0) ≥ min{low.order(h0), low.order(k0)} ≥
(n� + 1)ncr − (d − 1)n� > (n� + 1)ncr − dn� . This completes the proof of the inductive step, and establishes how the value of
φ can be obtained from the value of φ0. �

However, φ0 operates over the dyadic rationals, and it still remains for us to produce a formula φ′ over N.
Let q be the least natural number, such that no input to φ0 has a label less than 2−qr . Let φ′ be φ0, where each input x

of φ0 is replaced by 2qr x. Clearly, φ′ operates over N. Since φ was assumed to have alternating levels of + and min gates,
φ′ has alternating levels of × and + gates. At the input level, the value of each gate of φ0 can be obtained by dividing the
value of the corresponding gate of φ′ by 2qr . More generally, if g0 is a gate of φ0 such that paths from the input level to g0

encounter d × gates, then the value of g0 can be obtained by dividing the value of the corresponding gate of φ′ by 22dqr .
The proof is completed, by setting m equal to 2dqr, where d is c

2 log n. �
5.2. Tropical CRAs

Having established the facts that we need about #NC1
trop, we return to the task of giving a bound on the complexity of

CRAs operating over the tropical semiring.
Again, we first consider the copyless case.

Theorem 12. All functions computable by CCRAs over the tropical semiring are computable in #NC1
trop ◦NC1 , and are computable in L.

Here, #NC1
trop ◦ NC1 refers to the class of functions expressible as g(f (x)) for some functions f ∈ NC1 and g ∈ #NC1

trop. Thus
this can be viewed as #NC1

trop with some minor NC1 pre-processing. The reader might wonder how #NC1
trop ◦ NC1 differs

from #NC1
trop, in light of Proposition 6 (which states that NC1 circuits can be replaced by #NC1

trop circuitry). The explanation
is that our NC1 function outputs encodings of ∞ (along with elements of N), to feed into the #NC1

trop circuit.

Proof. The L upper bound follows easily, because the only operation that increases the value of a register is a + operation,
and because of the copyless restriction the value of a register after i computation steps can be expressed as a sum of i O (1)

values that are present as constants in the program of the CRA. Thus, in particular, the value of a register at any point
during the computation on input x can be represented using O (log |x|) bits. Thus a logspace machine can simply simulate a
CRA directly, storing the value of each of the O (1) registers, and computing the updates at each step.

Another way of obtaining the L upper bound follows from Lemma 9, because, when we establish the #NC1
trop ◦NC1 upper

bound, we use #NC1
trop circuits where all of the finite input values are small. Thus, not only are these functions computable

in L, but they can easily be computed from functions in #NC1 .
For the #NC1

trop ◦ NC1 upper bound, first note that there is a function h computable in NC1 that takes x as input, and
outputs a description of an arithmetic formula F over the tropical semiring that computes f (x). This is exactly as in the
first paragraph of the proof of Theorem 4.

Next, as in the proof of Lemma 5, recall that, by [15], there is a uniform family of logarithmic-depth arithmetic-Boolean
formulae {Cn} over the tropical semiring, that takes as input an encoding of a formula F and outputs the integer represented

14 E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16
by F . Furthermore, each arithmetic-Boolean formula Cn has Boolean gates AND, OR and NOT, and arithmetic gates min, +,
as well as select gates, and there is no path in Cn from an arithmetic gate to a Boolean gate.

Let {Dn} be the uniform family of arithmetic circuits, such that Dn is the connected subcircuit of Cn consisting only
of arithmetic min and + gates. We now have the following situation: The NC1 function h (which maps x to an encoding
of a formula F having some length m) composed with the circuit Cm (which takes F as input and produces f (x) as
output) is identical with some NC1 function h′ (computed by the NC1 circuitry in the composed hardware for Cm(h(x)))
feeding into the arithmetic circuitry of Dm . Each select gate with inputs (y, x0, x1) can be simulated by the subcircuit
min(x0 + z(y), x1 + z(¬y)) where z(v) is the NC1 function that takes the Boolean value v as input, and outputs 0 if v = 0,
and outputs ∞ otherwise. This is precisely what is needed, in order to establish our claim that f ∈ #NC1

trop ◦ NC1. �
Unlike the case of CRAs operating over the integers, CRAs over the tropical semiring without the copyless restriction

compute only functions that are computable in polynomial time (via a straightforward simulation). We know of no better
upper bound than P in this case, and we also have no lower bounds.

As noted above at the beginning of Section 4, if the “multiplicative” register updates (i.e., + in the tropical semiring)
are all of the form r ← r′ + c, then even without the copyless restriction, the computation of a CRA function f reduces to
iterated matrix multiplication of O (1) × O (1) matrices over the tropical semiring. Again, it follows easily that the contents
of any register at any point in the computation can be represented using O (log n) bits. Thus the upper bound of L holds
also in this case.

6. CRAs over the max-concat semiring

As in Section 3.2, we consider only CCRAs.

Theorem 13. All functions computable by CCRAs over (�∗, max, ◦) are computable in AC1 .

Proof. Let f be computed by a CCRA M operating over (�∗, max, ◦).
We first present a logspace-computable function h with the property that h(1n) is a description of a circuit Cn computing

f on inputs of length n. The input convention is slightly different for this circuit family. For each input symbol a and each
i ≤ n there is an input gate gi,a that evaluates to λ (the empty string) if xi = a, and evaluates to ⊥ otherwise. (This provides
an “arithmetical” answer to the Boolean query “is the i-th input symbol equal to a?”)

Assume that there are gates r1,i, r2,i, . . . , rk,i storing the values of each of the registers at time i. For i = 0 these gates are
constants. For each input symbol a and each j ≤ k, let Ea, j(r1,i, . . . , rk,i) be the expression that describes how register j is
updated if the i + 1-st symbol is a. Then the value r j,i+1 = maxa{gi,a ◦ Ea, j(r1,i, . . . , rk,i)}. This yields a very uniform circuit
family, since the circuit for inputs of length n consists of n identical blocks of this form connected in series. That is, there is
a function computable in NC1 that takes 1n as input, and produces an encoding of circuit Cn as output.

Although the depth of circuit Cn is linear in n, its algebraic degree is only polynomial in n. (Recall that the additive
operation of the semiring is max and the multiplicative operation is ◦. Thus the degree of a max gate is the maximum of
the degrees of the gates that feed into it, and the degree of a ◦ gate is the sum of the degrees of the gates that feed into it.)
This degree bound follows from the copyless restriction. (Actually, the copyless restriction is required only for the ◦ gates;
inputs to the max gates could be re-used without adversely affecting the degree.)

By [2, Proposition 5.2], arithmetic circuits of polynomial size and algebraic degree over (�∗, max, ◦) characterize exactly
the complexity class OptLogCFL. OptLogCFL was defined by Vinay [25] as follows: g is in OptLogCFL if there is a nondeter-
ministic logspace-bounded auxiliary pushdown automaton M running in polynomial time, such that, on input x, g(x) is the
lexicographically largest string that appears on the output tape of M along any accepting computation path. The proof of
Proposition 5.2 in [2], which shows how an auxiliary pushdown automaton can simulate the computation of a max-concat
circuit, also makes it clear that an auxiliary pushdown machine, operating in polynomial time, can take a string x as in-
put, use its logarithmic workspace to compute the bits of h(1|x|) (i.e., to compute the description of the circuit C|x|), and
then to produce C|x|(x) = f (x) as the lexicographically-largest string that appears on its output tape along any accepting
computation path. That is, we have f ∈ OptLogCFL.

By [2, Lemma 5.5], OptLogCFL ⊆ AC1, which completes the proof. �
7. Conclusion

Fig. 1 summarizes our main results, and calls attention to some of our main open problems:

– Are there any CCRA functions over (Z, +, ×) that are complete for GapNC1?
– Are there any CCRA functions over the tropical semiring that are hard for #NC1

trop? (Note in particular that it is not
known that iterated product of constant-dimension matrices is complete for #NC1

trop.)

– The gap between the upper and lower bounds for CCRA functions over (�∗, max, ◦) is quite large (NC1 versus
OptLogCFL ⊆ AC1). Can this be improved?

E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16 15
Fig. 1. Summary of results. When a class of CRA functions and a complexity class appear together, it means that containment of the CRA class in the
complexity class is tight, since some of the CRA functions are complete for the complexity class.

– Is there an NC upper bound for CRA functions (without the copyless restriction) over the tropical semiring?

Subsequent to our work, there have been some new developments relating to CRAs. Complexity results extending our
work have been presented, that apply to automata similar to CRAs augmented with a “visible pushdown” [23]. And a logical
characterization has been given for a subclass of CRA functions [24].

Acknowledgments

This work was supported by NSF grants CCF-1064785 and CCF-1555409 and an REU supplement. We thank Samir Datta
for calling our attention to [20] and for his comments on an earlier version of this work [3]. We also thank Till Tantau and
the anonymous referees for helpful comments.

References

[1] E. Allender, Arithmetic circuits and counting complexity classes, in: J. Krajíček (Ed.), Complexity of Computations and Proofs, in: Quaderni di Matem-
atica, vol. 13, Seconda Università di Napoli, 2004, pp. 33–72.

[2] E. Allender, J. Jiao, M. Mahajan, V. Vinay, Non-commutative arithmetic circuits: depth reduction and size lower bounds, Theor. Comput. Sci. 209 (1–2)
(1998) 47–86.

[3] E. Allender, I. Mertz, Complexity of regular functions, in: Proc. 9th International Conference on Language and Automata Theory and Applications (LATA),
in: Lecture Notes in Computer Science, vol. 8977, Springer, 2015, pp. 449–460.

[4] R. Alur, Regular functions, Lecture presented at Horizons in TCS: A Celebration of Mihalis Yannakakis’s 60th Birthday, Center for Computational In-
tractability, Princeton, NJ, 2013.

[5] R. Alur, P. Cerný, Expressiveness of streaming string transducers, in: Conference on Foundations of Software Technology and Theoretical Computer
Science (FST&TCS), in: LIPIcs, vol. 8, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2010, pp. 1–12.

[6] R. Alur, P. Cerný, Streaming transducers for algorithmic verification of single-pass list-processing programs, in: 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), 2011, pp. 599–610.

[7] R. Alur, L. D’Antoni, J.V. Deshmukh, M. Raghothaman, Y. Yuan, Regular functions, cost register automata, and generalized min-cost problems, CoRR,
abs/1111.0670, 2011.

[8] R. Alur, L. D’Antoni, J.V. Deshmukh, M. Raghothaman, Y. Yuan, Regular functions and cost register automata, in: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), 2013, pp. 13–22, see also the expanded version, [7].

[9] R. Alur, A. Freilich, M. Raghothaman, Regular combinators for string transformations, in: Joint Meeting of the Twenty-Third EACSL Annual Conference
on Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science, (CSL-LICS), ACM, 2014, p. 9.

[10] R. Alur, M. Raghothaman, Decision problems for additive regular functions, in: ICALP, in: Lecture Notes in Computer Science, vol. 7966, Springer, 2013,
pp. 37–48.

[11] D.A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages in NC1, J. Comput. Syst. Sci. 38 (1989) 150–164.
[12] D.A.M. Barrington, C.J. Lu, P.B. Miltersen, S. Skyum, Searching constant width mazes captures the AC0 hierarchy, in: 15th International Symposium on

Theoretical Aspects of Computer Science (STACS), in: Lecture Notes in Computer Science, vol. 1373, Springer, 1998, pp. 73–83.
[13] M. Ben-Or, R. Cleve, Computing algebraic formulas using a constant number of registers, SIAM J. Comput. 21 (1) (1992) 54–58.
[14] S. Buss, Comment on formula evaluation, 2014, personal communication.
[15] S.R. Buss, S. Cook, A. Gupta, V. Ramachandran, An optimal parallel algorithm for formula evaluation, SIAM J. Comput. 21 (4) (1992) 755–780.
[16] H. Caussinus, P. McKenzie, D. Thérien, H. Vollmer, Nondeterministic NC1 computation, J. Comput. Syst. Sci. 57 (2) (1998) 200–212.
[17] M. Elberfeld, A. Jakoby, T. Tantau, Algorithmic meta theorems for circuit classes of constant and logarithmic depth, in: 29th Symposium on Theoretical

Aspects of Computer Science, STACS’12, in: LIPIcs, vol. 14, 2012, pp. 66–77.

http://refhub.elsevier.com/S0022-0000(16)30101-5/bib7175616465726E69s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib7175616465726E69s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib616A6D76s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib616A6D76s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib6C617461s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib6C617461s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib616C75722E6365726E79s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib616C75722E6365726E79s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib616C75722E6365726E792E6F6C64s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib616C75722E6365726E792E6F6C64s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib61616472792E6C6F6E67s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib61616472792E6C6F6E67s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib61616472792E6C696373s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib61616472792E6C696373s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib6166722E636F6D62696E61746F7273s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib6166722E636F6D62696E61746F7273s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib61722E6465636973696F6Es1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib61722E6465636973696F6Es1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib62617272696E67746F6Es1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib736B79756Ds1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib736B79756Ds1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib424F433932s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib627573732E6574616Cs1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib636D7476s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib656C62657266656C64s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib656C62657266656C64s1

16 E. Allender, I. Mertz / Journal of Computer and System Sciences 104 (2019) 5–16
[18] J. Engelfriet, H.J. Hoogeboom, MSO definable string transductions and two-way finite-state transducers, ACM Trans. Comput. Log. 2 (2) (2001) 216–254.
[19] W. Hesse, E. Allender, D.A.M. Barrington, Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comput. Syst. Sci. 65

(2002) 695–716.
[20] A. Jakoby, T. Tantau, Logspace algorithms for computing shortest and longest paths in series-parallel graphs, in: Conference on Foundations of Software

Technology and Theoretical Computer Science (FST&TCS), in: Lecture Notes in Computer Science, vol. 4855, Springer, 2007, pp. 216–227, the proof of
Lemma 4 can be found as the proof of Lemma 3.5 in [21].

[21] A. Jakoby, T. Tantau, Computing shortest paths in series-parallel graphs in logarithmic space, in: Complexity of Boolean Functions, 12.03.–17.03.2006,
in: Dagstuhl Seminar Proceedings, vol. 06111, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2006.

[22] S. Kiefer, A.S. Murawski, J. Ouaknine, B. Wachter, J. Worrell, On the complexity of equivalence and minimisation for Q-weighted automata, Log. Methods
Comput. Sci. 9 (1) (2013).

[23] A. Krebs, N. Limaye, M. Ludwig, Cost register automata for nested words, in: Proc. 22nd International Computing and Combinatorics Conference –
(COCOON), in: Lecture Notes in Computer Science, vol. 9797, Springer, 2016, pp. 587–598.

[24] F. Mazowiecki, C. Riveros, Maximal Partition Logic: Towards a Logical Characterization of Copyless Cost Register Automata, LIPIcs-Leibniz International
Proceedings in Informatics, vol. 41, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[25] V. Vinay, Counting auxiliary pushdown automata, in: Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois,
USA, 30–July 3, 1991, 1991, pp. 270–284.

[26] H. Vollmer, Introduction to Circuit Complexity: A Uniform Approach, Springer-Verlag New York Inc., 1999.

http://refhub.elsevier.com/S0022-0000(16)30101-5/bib656E67656C66726965742E686F6F6765626F6F6Ds1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib686162s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib686162s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib74616E746175s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib74616E746175s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib74616E746175s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib74616E7461752E646167737475686Cs1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib74616E7461752E646167737475686Cs1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib74616E7461752E646167737475686Cs1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib6F75616B6E696E65s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib6F75616B6E696E65s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib6B72656273s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib6B72656273s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib72697665726F73s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib72697665726F73s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib76696E6179s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib76696E6179s1
http://refhub.elsevier.com/S0022-0000(16)30101-5/bib766F6C6C6D6572s1

	Complexity of regular functions
	1 Introduction
	2 Preliminaries
	2.1 Cost-register automata

	3 CRAs over monoids
	3.1 CRAs over the integers
	3.2 CRAs over (Γ*, °)

	4 CRAs over semirings
	4.1 CRAs over the integers

	5 CRAs over the tropical semiring
	5.1 Arithmetic circuit preliminaries
	5.2 Tropical CRAs

	6 CRAs over the max-concat semiring
	7 Conclusion
	Acknowledgments
	References

