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Abstract. We consider the complexity class ACC! and related families
of arithmetic circuits. We prove a variety of collapse results, showing
several settings in which no loss of computational power results if fan-
in of gates is severely restricted, as well as presenting a natural class
of arithmetic circuits in which no expressive power is lost by severely
restricting the algebraic degree of the circuits. We draw attention to
the strong connections that exist between ACC! and VP, via connections
to the classes CC!'[m] for various m. These results tend to support a
conjecture regarding the computational power of the complexity class
VP over finite algebras, and they also highlight the significance of a class
of arithmetic circuits that is in some sense dual to VP. In particular,
these dual-VP classes provide new characterizations of ACC! and TC!
in terms of circuits of semiunbounded fan-in. As a corollary, we show
that ACC' = CC' for all 4 > 1.

Keywords. Circuit Complexity, Arithmetic circuits, Semiunbounded
circuits, Threshold Circuits

Subject classification. F.1.3 Complexity Measures and Classes

1. Introduction

Most of the well-studied subclasses of P are defined in terms of
Boolean or arithmetic circuits. The question of the relative power
of NC', LogCFL, and AC', or of #NC' and #LogCFL boils down
to the question of how the computational power of a (log-depth,
polynomial-size) circuit model depends on the fan-in of gates in
the model.

In this paper we highlight the significance of a class of semi-
unbounded fan-in arithmetic circuits that is in some sense dual to
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the well-studied class VP. Our main contribution is to present sev-
eral settings where fan-in can be severely restricted for log-depth,
polynomial-size circuits, with no loss of computational power. We
also present a natural class of arithmetic circuits in which no ex-
pressive power is lost by severely restricting the algebraic degree
of the circuits.

1.1. Duality. Semiunbounded fan-in circuits play an important
role in computational complexity theory. Over the Boolean semir-
ing, logarithmic depth polynomial-size semiunbounded fan-in cir-
cuits (with bounded fan-in AND gates and unbounded fan-in OR
gates, with NOT gates only at the input level) characterize the
complexity class LogCFL, also known as SAC!, which has been the
subject of numerous investigations (Gal |[1995; |Gal & Wigderson
1996; Reinhardt & Allender|[2000; [Venkateswaran| 1991). Over F,,
logarithmic depth polynomial-size semiunbounded fan-in circuits
(with bounded fan-in multiplication gates and unbounded fan-in
addition gates) characterize the complexity class VP(F,), the study
of which was initiated by (Valiant|1979)). VP(F,) is usually defined
as poly-size arithmetic circuits with degree n®W: its characteriza-
tion by logarithmic depth semiunbounded fan-in arithmetic circuits
was shown in Allender et al| (1998); Valiant et al.| (1983). These
classes have received a lot of attention since then (e.g., (Biirgisser
1999, 2000; |Gal & Wigderson! 1996} Koiran & Perifel |2011))).

Because LogCFL is closed under complement (Borodin et al.
1989)), it can be characterized in terms of semiunbounded fan-in
circuits by restricting either the AND gates or the OR gates to
have bounded fan-in. It is unknown if there is any other algebraic
structure for which a similar phenomenon occurs. In particular, it
is not known how the complexity of functions in VP(F,) compares
to that of the functions in the classes defined by logarithmic depth
polynomial-size semiunbounded fan-in circuits with bounded fan-
in + gates and unbounded fan-in x gates.

A large part of the motivation for this paper is to understand
the computational power of these semiunbounded fan-in circuit
classes, which are in some sense dual to Valiant’s classes VP(IF,).
We use the notation AP(FF,) to refer to the class of problems charac-
terized by logarithmic depth polynomial-size semiunbounded fan-
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in circuits with bounded fan-in addition gates and unbounded fan-
in multiplication gates. Formal definitions appear in[Section 2] We
show that each class AP(F,) corresponds exactly to a particular
subclass of ACC!, and that the union over all p of AP(F,) is ex-

actly equal to ACC! (Corollary 3.2)). Our results extend to larger

depths as well, yielding characterizations of ACC" for every i in
terms of semiunbounded fan-in arithmetic circuits (Corollary 3.7).

Note that here (and in several of our other results) we relate
Boolean classes (e.g. ACC!) to arithmetic circuit classes. For this
purpose we work with the Boolean part of classes defined by arith-
metic circuits. The VP classes are usually studied as classes of
polynomials, but it is also common to study the Boolean part of
VP over a given semiring R, where (following Blum et al| (1998))),
the Boolean part of an arithmetic circuit class is the class of lan-
guages whose characteristic functions are computed by circuits in
the class. Especially over finite fields, there is little to distinguish
VP from its Boolean part. There is a large literature exploring the
connections between Boolean and arithmetic circuit complexity;
see [Vollmer| (1999).

1.2. Fan-in Reductions. Our results mentioned above relating
ACC! to the semiunbounded fan-in AP classes can be viewed as
fan-in reductions. We explore this in more detail, and obtain fan-
in reductions for TC! as well. In addition to arithmetic circuits,
we also consider fan-in reductions for both ACC! and TC! in the
Boolean setting, considering their characterizations by circuits with
AND and OR gates, along with MOD,, gates.

1.2.1. Fan-in Reductions in Arithmetic Circuits. First we
note that both ACC! and TC! are characterized by unbounded fan-
in arithmetic circuits, then we observe that unbounded fan-in is not
necessary for these characterizations.

We show here that ACC! = (J, #AC!(F,) (Corollary 3.5). On
the other hand, the semiunbounded fan-in model, where the + gates
have fan-in two, also yields ACC!' (Corollary 3.2)).

The complexity class TC! is defined by polynomial-size thresh-
old circuits of logarithmic depth. (Reif & Tate |1992) gave an al-
ternative characterization of TC! in terms of unbounded fan-in
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arithmetic circuits of logarithmic depth where the circuits for in-
puts of size n operate over the field IF,, , where p,, is the n-th prime.
(See also the discussion of Reif and Tate’s work in |Buhrman et al.
(2014).) Using standard notation (reviewed in[Section 2)), this char-
acterization can be stated as TC! = #ACH(F,, ). We show that no
computational power is lost (modulo logspace-Turing reductions)
by restricting the fan-in of the 4 gates in this setting: We show

that TC! = LAP(FW) Theorem 4.3)).

1.2.2. Fan-in Reductions in Boolean Circuits. The usual
definition of ACC! is in terms of polynomial size logarithmic depth
circuits with unbounded fan-in AND and OR gates, along with
MOD,, gates for different m. We observe here that TC! has an
analogous characterization: TC' = AC![p,] (that is, AC! circuits
with MOD,,, gates, . We show for both ACC! and
TC! that unbounded fan-in is not necessary for the AND and OR
gates; they can both be restricted to constant fan-in. But then,
noting that MOD gates can simulate bounded fan-in AND and
OR gates, we get characterizations of both ACC! (Theorem 4.12))
and TC! by logarithmic depth polynomial size cir-
cuits using only unbounded fan-in MOD gates. These character-
izations also carry over for ACC' and TC' for every i > 1 (Corol|
lary 4.5 and [Corollary 4.14). In particular, for all i > 1, ACC' =
CC'. (For definitions of these circuit complexity classes, see
ftion 2| and [Section 3|)

1.3. Algebraic Degree. Immerman and Landau conjectured
that computing the determinant of integer matrices is complete for
TC! (Immerman & Landau/[1995). This would have several conse-
quences, including providing a characterization of TC! in terms of
VP(Q). (Buhrman et al.|2014) have argued that the Immerman-
Landau conjecture is unlikely, in that this would imply that arbi-
trary polynomials having degree n®(°¢™ and polynomial-size arith-
metic circuits mod p, could be simulated by arithmetic circuits
of much lower degree over Q. This raises the question: When
can high-degree polynomials over one algebra be simulated by low-
degree polynomials over another?

Our degree-reduction theorem (Corollary 4.10|) gives one nat-
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ural class of polynomials of degree n®1°8™ over one algebra (IFy)

that can be simulated by polynomials having much smaller de-
gree. We show that restricting the fan-in of x gates in #AC!(FFy)
circuits to be logarithmic results in no loss of expressive power;
the restricted class (whose polynomials have algebraic degree only
nOleglosn)) represents the same class of functions as the unre-
stricted class (with degree n®1°s™)) We believe that this weak-
ens the arguments against the Immerman-Landau conjecture that
were raised in Buhrman et al.| (2014), and we suspect that there are
other such examples, where restricting the fan-in of x gates causes
no loss of power. We also see no reason why degree n©(oglosn)
should be optimal. Lowering the degree to n°® would imply
#ACH(F,) = ACY2] = VP(Fy). (We omit “Boolean part” if it

causes no confusion.)

1.4. A Conjecture. We conjecture that ACC! is precisely the
class of languages logspace-Turing reducible to | J,, VP(Z,,). If the
conjecture is true, then ACC! can be defined using either kind of
semiunbounded fan-in circuits, with bounded fan-in + or bounded
fan-in x.

ACC! and VP are familiar to many theoreticians. (The com-
plexity class ACCY has received a great deal of attention over the
years — notably including the nonuniform lower bound presented
in \Williams| (2014) — and the corresponding class of logarithmic-
depth circuits was familiar, even though comparatively little has
been written about ACC'. One example is Moore et al.| (2000).)
We believe that we are the first to conjecture that these two classes
are very closely related.

2. Preliminaries

We assume that the reader is familiar with Boolean circuit com-
plexity classes such as AC® and ACCY; a good source for this back-
ground material is the excellent text by (Vollmer 1999). The fol-
lowing standard notation is used by Vollmer for circuit complexity
classes, and we follow those conventions here{]]

1We will also refer to the complexity classes CC* [m], which are not dis-
cussed in [Vollmer| (1999). We defer the definition of those classes to
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DEFINITION 2.1. o AC' is the class of languages accepted by
logtime-uniform circuit families of polynomial size and depth
O(log"n), consisting of unbounded fan-in AND, and OR

gates, along with NOT' gates.

o AC'[m] is defined as AC’, but in addition unbounded fan-in
MOD,, gates are allowed, which output 1 iff the number of
input wires carrying a value of 1 is a multiple of m.

o For any finite set S C N, AC'[S] is defined analogously to
AC'[m], but now the circuit families are allowed to use MOD,
gates for anyr € S. It is known that, for anym € N, AC'[m] =
AC'[Supp(m)], where — following the notation of |Corrales-
Rodriganez & Schoof (1997) — Supp(m) ={p : p is prime
and p divides m} (Smolensky| |1987). Thus, in particular
AC'[6] = AC'[2,3] and AC' = AC'[()]. (When it will not cause
confusion, we omit unnecessary brackets, writing for instance

AC'[2, 3] instead of AC'[{2,3}].)
o ACC' =/, AC'[m)].

o TC' is the class of languages accepted by logtime-uniform
circuit families of polynomial size and depth O(log’n), con-
sisting of unbounded fan-in MAJORITY gates, along with
NOT gates.

o SAC" is the class of languages accepted by logtime-uniform
circuit families of polynomial size and depth O(log’ n), con-
sisting of unbounded fan-in OR gates and bounded fan-in
AND gates, along with NOT gates at (some of) the leaves.

Note that the restriction that NOT gates appear only at the
leaves in SAC' circuits is essential; if NOT gates were allowed to
appear everywhere, then these classes would coincide with AC'.
Similarly, note that we do not bother to define a complexity class
SAC'[m], since a MOD,,, gate with a single input wire is equivalent
to a NOT gate, and thus SAC'[m] would be the same as AC'[m).

Definition 3.8
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A remark about uniformity: We have chosen to define the
classes above in terms of logtime-uniformity, primarily because we
will have occasion to mention the classes AC? and TCY, and logtime-
uniformity has been widely accepted as the more appropriate uni-
formity condition to use when discussing small classes. But it is
well-known that, for circuit classes that contain SAC', logtime-
uniformity coincides with logspace uniformity (see the discussion
beginning at page 123 in |Vollmer| (1999)), and logspace uniformity
is frequently somewhat easier to work with. Since Vollmer| (1999)
does not specifically discuss the equivalence of these uniformity
conditions for classes such as AC'[m], we include a brief discussion
here. Consider a logspace-uniform circuit family {C,} of AC'[m]
circuits, and consider any unbounded fan-in gate g at depth d in
C,, receiving inputs from gates hy, ..., h,,. (Assume without loss
of generality that C), contains only OR and MOD gates, using
DeMorgan’s Laws, and that C, is leveled, with gates at level d
receiving inputs from gates at level d — 1.) C,, is equivalent to a
logtime-uniform circuit D,,, where each gate g at level d in C, is
simulated by a gate g; in D,, of the same type as g. The inputs
to gq consist of fan-in two AND gates g4, for every gate h of C,,.
The inputs to theAND gate g, are (1) the gate hy_q, and (2) a
logtime-uniform SAC' subcircuit checking whether there is a wire
from h to g in C),. It is easy to see that each gate g at level d takes
on the same value as gate g4, and that the entire construction of
D,, is logtime-uniform.

The algebraic complexity classes VP(R) for various algebraic
structures R were originally defined (Valiant|[1979)) in the context
of nonuniform circuit complexity, as classes of families of n-variate
polynomials of degree n®) that can be represented by polynomial-
size arithmetic circuits over R. (For more on VP, see, e.g. [Biirgisser
(1999, 2000); |Gal & Wigderson| (1996); Koiran & Perifel (2011);
Malod & Portier| (2008).) In this paper, we focus on uniform circuit
families, and thus we use the notation VP(R) to denote the families
of polynomials that result when we impose a logspace-uniformity
condition on the circuit families. In the original nonuniform set-
ting, it was shown by Valiant et al. (1983)) that the circuits defining
polynomials in VP(R) can be assumed to have small depth. Later
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Allender et al|(1998) a slightly improved characterization was pro-
vided, that works also in the context of uniform circuit complexity:

THEOREM 2.2. (Allender et al.|1998) For any commutative semir-
ing R, VP(R) coincides with the class of families of polynomials
over R represented by logspace-uniform circuit families of polyno-
mial size and logarithmic depth with unbounded fan-in + gates,
and fan-in two X gates.

Note that over [F,, many different polynomials yield the same
function. For example, since z° = x in F3, every function on
n variables has a polynomial of degree at most 2n. Very likely
there are functions represented by polynomials in VP(FF3) of de-
gree, say, n°, but not by any VP polynomial of degree 2n. On the
other hand, there is a case to be made for focusing on the func-
tions in these classes, rather than focusing on the polynomials that
represent those functions. For instance, if the Immerman-Landau
conjecture is true, and TC! is reducible to problems in VP(Q), it
would suffice for every function in TC! = #AC!(F,,) to have a
representation in VP(Q), even though the polynomials represented
by #AC!(F,,) circuits have large degree, and thus cannot be in

any VP class.

In the literature on VP classes, one standard way to focus on
the functions represented by polynomials in VP is to consider what
is called the Boolean Part of VP(R), which is the set of languages
A C{0,1}* such that, for some sequence of polynomials (@Q,,), for
x € A we have Qpz () = 1, and for x € {0, 1}* such that = ¢ A we
have Q) (z) = 0.

When the algebra R is a finite field, considering the Boolean
part of VP(R) captures the relevant complexity aspects, since the
computation of any function represented by a polynomial in VP(R)
(with inputs and outputs coming from R) is logspace-Turing re-
ducible to some language in the Boolean Part of VP(R).

In this paper, we will be concerned exclusively with the “Boolean
Part” of various arithmetic classes. For notational convenience,
we will just refer to these classes using the NVP” notation, rather
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than constantly repeating the phrase “Boolean Part”ﬂ

Following the standard naming conventions of |Vollmer| (1999)),
for any Boolean circuit complexity class C defined in terms of cir-
cuits with AND and OR gates, we define the class #C(R) to be
the class of functions represented by arithmetic circuits defined
over the algebra R, where AND is replaced by x, and OR is re-
placed by + (and NOT gates at the leaves are applied to the {0, 1}
inputs).lﬂ In particular, we will be concerned with the following two
classes:

DEFINITION 2.3. Let R be any suitable semirjngﬁ Then

o #AC'(R) is the class of functions f : {0,1}* — R represented
by families of logspace-uniform circuits of unbounded fan-in
+ and x gates having depth O(logn) and polynomial size.

o #SAC!(R) is the class of functions f : {0,1}* — R repre-
sented by families of logspace-uniform circuits of unbounded
fan-in 4+ gates and x gates of fan-in two, having depth O(logn)
and polynomial size.

Input variables may be negated. Constants from R are also allowed
at the input level. Where no confusion will result, the notation

2 An exception is when an arithmetic function is used as an oracle, as in the

expressions LVP(Q) and LVP@m), Here, we want the logspace-bounded oracle
Turing machine to have access to the full power of functions from VP(Q) and
VP(Z,,), respectively, and not merely the zero-one-valued functions.

3The classes #L, #P and #LogCFL also fit into this naming scheme, using
established connections between Turing machines and circuits.

4Qur primary focus in this paper is on finite semirings, as well as countable
semirings such as Q. We use the standard binary representation of constants
(representing separately the numerator and denominator of a rational) when
constants appear in the description of a circuit. We consider arithmetic circuits
over Q only in the context of arithmetic circuits that have algebraic degree that
is bounded by a polynomial, and thus the length of the binary representation of
any number that is computed by the circuit is itself bounded by a polynomial
in the input length. It is not clear to us which definition would be most
useful in describing a class such as #ACl(]R), and so for now we consider such
semirings to be “unsuitable”. Similarly, Q would be considered “suitable” for
#SACY, but not for #AC, because #AC! circuits have algebraic degree that
is too high.
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#C(R) will also be used to refer to the class of languages whose
characteristic functions lie in the given class.

Hence from [Theorem 2.2] we obtain:

PROPOSITION 2.4. Let p be a prime power. Then VP(F,) =
#SAC!(F,).

PROOF. The inclusion VP(F,) C #SAC!(F,) is immediate from
Theorem 2.2, The #SAC'(F,) circuit that is created for a VP(F,)
circuit has no NOT gates. For the converse inclusion, given a
#SAC!(F,) circuit family, each NOT gate at a leaf, connected to
input z; can be replaced by (z; + (p — 1))% O

2.1. New Definitions: A-classes. In this section, we intro-
duce and define classes that are dual to the #SAC'(R) classes
discussed above. Define #SAC'*(R) to be the class of functions
f:{0,1}* — Rrepresented by families of logspace-uniform circuits
of unbounded fan-in x gates and + gates of fan-in two, having
depth O(logn) and polynomial size. [Proposition 2.4 highlights the
connection between VP and #SAC!; thus we will utilize the conve-
nient notation AP(R) to denote the dual notation, rather than the
more cumbersome #SAC"*(R).

Of course, the set of formal polynomials represented by AP cir-
cuits is not contained in any VP class, because AP contains poly-
nomials of degree n®1°e™  However, as discussed in the previous
section, we are considering the “Boolean Part” of these classes.
More formally:

DEFINITION 2.5. Let p be a prime power. AP(F,) is the class of all
languages A C {0,1}* with the property that there is a logspace-
uniform (and hence polynomial-size) tamily of circuits {C,, : n €
N} such that

o The depth of C,, is O(logn).
o Fach C,, consists of input gates, + gates, and X gates.

o FEach + gate has fan-in two, whereas there is no bound on
the fan-in of the x gates.
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o For each string x of length n, x is in A if and only if C,(z)
evaluates to 1, when the + and X gates are evaluated over
F,. Furthermore, if x ¢ A, then C,(z) evaluates to 0.

Another way of relating arithmetic classes (such as VP and
AP) to complexity classes of languages would be to consider the
languages that are logspace-Turing reducible to the polynomials
in VP(R) or AP(R), via a machine M with a polynomial p as an
oracle, which obtains the value of p(xy,...,z,) when M writes
x1,...T, Oon a query tape. As a side note, throughout the rest
of this work we will be using the identity 7 = ((x + (m — 1))?)
mod m to perform complementation of Boolean values over Z,,,
and as a consequence of having this equation VP = VP and AP =
AP. However, another key trick we use is (27! = 1) mod p, and
when p is not a constant, then this manipulation is sometimes too
expensive to deploy, in the context of VP(IF,).

It is worth mentioning that (the Boolean parts of) both VP(IF,)
and AP(F,) are closed under logspace-Turing reductions, although
this is still open for classes over Z,, when m is not prime.

PROPOSITION 2.6. AP(FF,) = LAP(Fp) and VP(F,) = LVP(Fy)

Proor. We consider VP first. Note that there are only polyno-
mially-many queries that a logspace-Turing reduction can pose, on
a given input x, since the query that is posed is determined entirely
by the worktape configuration of the oracle Turing machine when it
begins to write the query. These queries can be denoted vy, . .., y,x

for some k. If A € LVP(FP), then there is a language B € L such
that * € A iff (z,2) € B where z is the bit string of length n*
recording the oracle answers for each query y;. Since B is in the
deterministic class L, it has “unambiguous” SAC! circuits, meaning
that the corresponding #SAC! circuits always output 0 or 1. By
connecting VP(F,) circuits computing the answer to each oracle
query y; to the input variables for z, one obtains VP(F,) circuits
for A.

The argument for AP(F,) is similar, using the fact that B €

L C AC!, along with the fact (which we prove later in|Corollary 3.3))

that AC' C AP(F,) for every p. O
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We mention that VP classes over different fields of the same
characteristic define the same class of languages. This seems to be

one way that the VP and AP classes differ; see [Corollary 3.3

PROPOSITION 2.7. Let p be a prime, and let k > 1. Then
VP(F,) = VP(F ).

PROOF.  One inclusion follows immediately since [, is a subfield
of ¥, . For the other direction, observe that the finite field of size
p¥ is a vector space of dimension k over the field of size p, and
thus can be represented by £ x k matrices over I, as described in
von zur Gathen| (1993)). (See also [Wardlaw| (1994).) Thus each +
and x gate of a AP(FF,«) circuit can be replaced by subcircuits im-
plementing matrix sum and product over F,. (Unbounded fan-in
matrix sum corresponds to unbounded fan-in sum of each compo-
nent. Fan-in two multiplication is implemented by a depth-two
subcircuit, with fan-in two x gates, and with addition gates of
fan-in O(1).) The resulting circuit is a VP(IF,) circuit. O

It is also appropriate to use the VP and AP notation when
referring to the classes defined by Boolean semiunbounded fan-in
circuits with negation gates allowed at the inputs. With this nota-
tion, VP(By) corresponds to the Boolean class SAC!, and AP(By)
corresponds to the complement of SAC! (with bounded fan-in OR
gates, unbounded fan-in AND gates and negation gates allowed
at the inputs). It has been shown by Borodin et al. (1989) that
SAC! is closed under complement. Thus we close this section with
the equality that serves as a springboard for investigating the AP
classes.

THEOREM 2.8. (Borodin et al.|1989) VP(B;) = AP(By)(= SAC! =
LogCFL).

We do not believe that VP(F,) = AP(F,) for any prime p; see
further related discussion in [Section 5l
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3. Subclasses of ACC!

In this section, we first give characterizations of the AP classes, and
then we give characterizations of the VP classes, before comparing
the classes to each other.

3.1. The AP classes. In this subsection, we present our char-
acterizations of ACC! in terms of the AP(F ) classes.

THEOREM 3.1. For any prime p and any k > 1,
AP(F,.) = AC*[Supp(p* — 1)].
(Recall that Supp(m) is defined in [Definition 2.1})

Proor. (C): Consider a AP(F,:) circuit C. We will create a
circuit C” that has subcircuits computing the Boolean value [g = a]
for each gate g in C' and for each a € F,». (We will use the notation
“[B]” to refer to the truth-value of predicate B.) If g is the output
gate of C, then the output gate of C’ is the gate [¢ = 1]. Since the
input gates of C' take on only binary values (by our definition of
AP(FF,x)), if g is an input gate of C, then the subcircuit [g = 1] is
just g, and the subcircuit for [g = 0] is —g. If g is a constant gate,
set to the value a € F, then [g = a] is set to the constant 1, and
[g = d'] is set to the constant 0, for each a’ # a.

If g is a + gate of C' (of fan-in 2), then any gate [¢ = a] can be
simulated with NC° circuitry using the O(1) Boolean gates of the
form [¢' = d'], where ¢’ feeds into g in C.

Now consider a x gate g of C, having unbounded fan-in: ¢ =
1, 7i. The value [g = 0] is obtained by simply checking if there is
some ¢ such that h; = 0.

Now we show how to compute [g = a] for a # 0. Let p* — 1 =
H§:1 q;j where Supp(p® — 1) = {q1,...,q}. Let o be a generator
of the multiplicative group of F,x. Then g = [, h; = [[, 08" =
o2i198hi where “log b” denotes the unique number in {0, ..., p*—1}
such that ¢'°8® = b. Hence the value [g = a] is equivalent to
[loga = >, log h; mod (p* — 1)], which in turn is equivalent to the
AND of the values [loga =, logh; mod (g;”)].

If e; = 1 then the value [loga = ), log h; mod (g;)] is easy to
compute with a MOD,, gate, as follows. Using NC° circuitry, for
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each i, find the unique b such that [h; = b] holds (and for simplicity,
let us refer to this value as h;). Then, for each i, compute the string
x; = 1loghigpt—loghi, (Note that the mapping from gates of the form
[h; = b] to z; is computable in logspace-uniform NC°.) Let X, be
the string that results from concatenating the string 17" loga and
all of the strings x;. Now observe that feeding X, into a MOD,;
gate computes the value [loga = ), log h; mod (g;)].

Now we show how to compute [loga = >°,;logh; mod (g;")]
when e; > 1. For any expression b (such as b = (>, log h; mod
(q;j ))—log a), first observe that [b = 0 mod q;j] can be computed by

b
checking if each of b, ( b ) ( b ) . ( e;—1 ) is equivalent
QJ q] q

to 0 mod g;. (See, e.g. Beigel & Tarui (1994, Fact 2.2).) Observe
also that < cbl ) can be represented as the number of different
AND gates of fan-in d that evaluate to 1, taking inputs from a
string with b ones. Thus all of these conditions can be checked in
constant depth with MOD,; gates and bounded fan-in AND gates,
by constructing the string X, (as in the preceding paragraph), and
using a layer of AND gates of fan-in at most q;jfl

Since C has depth O(logn), and C” consists of layers of constant-
depth circuitry to replace each layer of gates in C, this completes
the proof of this direction.

(2): Given an AC![Supp(p* — 1)] circuit C, we show how to
construct an arithmetic circuit C” that is equivalent to C'. Each
gate g of C' will have an equivalent gate ¢ in C’. The input gates
of C' and of C" are exactly the same.

If g is a NOT gate in C, say g = —h, then in C’ we will have
g=(h+{p—-1)x(h+(-1)).

If g is an AND gate (say, g = A;h;), then in C” we will have

= [, hi- OR gates will be handled the same way, using De
Morgan’s Laws.

Now consider the case when g is a MOD,, gate with inputs
h;. Thus g computes the value [> . h; = 0 mod ¢;]. Let o be a
generator of the multiplicative cyclic subgroup of size g;. First
map each h; to the value b =1+ (0 + (p — 1)) x h;, and observe
that b} = 0" for all h; € {0,1}. Observe that 1 [, hl = 1—g2ih



Dual VP Classes 15

is equal to 0 if ), h; is a multiple of ¢;, and is non-zero otherwise.
Thus 1 — (1 — [T, h4)”"~" is equal to the Boolean value [3, h; =
0 mod g;].

It is easy to verify that C” has logarithmic depth, and uses only
bounded fan-in + gates, as well as unbounded fan-in x gates. [J

COROLLARY 3.2. ACC' = [J, AP(F,).

PrROOF. Let A € ACC'. Thus A € AC'[m] for some modulus m.
By Dirichlet’s Theorem, the arithmetic progression m—+1, 2m+

1,... contains some prime p. Thus AC'[m] C AC![Supp(p — 1)] =
AP(E,)). 0

Note also that several of the AP(F,) classes coincide. This is
neither known nor believed to happen with the VP(F,) classes.

COROLLARY 3.3. o AP(Fy) = AC!, whereas AP(F,) = AC'[3].
Note that this contrasts with the equality VP(Fy) = VP(Fy)
given by [Proposition 2.7,

o Ifp is a Fermat prime (that is, p — 1 is a power of 2, such as
p € {3, 5, 17, 257, 65,537}), then AP(F,) = AC'[2].

o AP(F;) = AP(F;3) = AP(Fy9).

o More generally, Supp(p — 1) = Supp(q — 1) implies AP(F,) =
AP(F,).

Augmenting the AP(F),) classes with unbounded fan-in addition
gates increases their computation power only by adding MOD,,
gates, as the following theorem demonstrates.

THEOREM 3.4. For each prime p and each k > 1, #AC (F,.) =
AC'[{p} U Supp(p* —1)].

PrROOF. (C): Again, we use a gate-by-gate simulation, with sub-
circuits recording the value of [¢ = a] for each gate g and each

a € F,r. Multiplication gates are handled as in the proof of
. Consider now the case of an addition gate g = >, h;.
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Since Fx is a vector space of dimension k over I, each element
b € F,x is represented by a vector b= (by,....b) € (F,)*, which
we will represent as a bitstring Y7 = 1010p=b1 | 1%0P=bk . Let us
call the string 1%07~% the j-th component of Y;.

Using NC° circuitry (as in the proof of m, one can
use the gates [h; = b] to compute the string Y- (as in the proof
of [Theorem 3.1} m Let Z,; be the string that is the concatenation
of the j-th component of all of the Yj- with the j-th component of
Y-, and feed each Z, into a MOD,, gate. The gate [g = a] is an
AND gate, verifying that, for all j <k, MOD,(Z,,) = 1.

(2): Asin , we carry out a gate-by-gate simulation,
whereby each gate g in a AC![{p} USupp(p* —1)] circuit C' is equiv-
alent to a gate (also called g) in a #AC!(F,) circuit C’. We only
need to consider the case where g is a MOD,, gate with Boolean

inputs h;. In this case, note that g = 1+ ((32, hy)?" ' x (p—1)). O

COROLLARY 3.5.

ACC! = J, AP(F,) = U, #AC!(E,) = U,, #AC(Z,,).

ProoOF. All inclusions are immediate from [Theorem 3.1 and
[Theorem 3.4, except for #AC!(Z,,) € ACC!. Consider a circuit
C for some function in #AC!(Z,,). Again, we will build an ACC!
circuit C” with gates of the form [¢g = a] for each gate ¢g in C' and
each a € Z,,. Addition is handled as in the proof of [Theorem 3.4 m.
Thus consider a multiplication gate ¢ = [[. h; = a , Where

= [{i : [hi = a;]}|. The sequence (a?,aj,a],...) (where the
product is interpreted in Z,,) is ultimately periodic with a period
less than m, and thus the value of [ajj = b] can be computed using
AC® circuitry and a MOD gate, using inputs of the form [h; = a;]
for various values of 7. Then [g = a] can be computed in NCY using

the O(1) gates of the form [a;j =0l O

COROLLARY 3.6. For any prime p there is a prime q such that
#AC!(F,) C AP(F,).

Proor. By Dirichlet’s Theorem, there is a prime ¢ such that
g — 1 is a multiple of p(p — 1). The claim now follows immediately

from [Theorem 3.4l and [Theorem 3.11 O
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We remark that the proofs of [I'heorem 3.1] and [Theorem 3.4
carry over also for depths log'n for every ¢ > 0. (Related results
for constant-depth unbounded-fan-in circuits can be found already

in |Agrawal et al.| (2000); Smolensky]| (1987)).)

COROLLARY 3.7. For any prime p and for everyi > 0, #SAC™*(F,)
= AC'[Supp(p — 1)] and #AC'(F,) = AC'[p U Supp(p — 1)]. In par-
ticular, ACC' = [, #SAC""(F,).

3.2. The VP classes. It will be useful to bear in mind that
VP(F,) also has a simple characterization in terms of Boolean cir-
cuits. In order to present this characterization, we present a more
general definition, which will be needed later.

DEFINITION 3.8. Let m € N, and let g be any function on N. De-
fine g-AC'[m] to be the class of languages with logspace-uniform cir-
cuits of polynomial size and depth O(log’ n), consisting of MOD,,
gates of unbounded-fan-in, along with AND gates of fan-in O(g(n)).
Clearly g-AC'[m] C AC'[m].

The class CC' is defined to be |J,, CC'[m], analogously to ACC'.

When g(n) = O(1), the class g-AC'[m] coincides with the class
CC'[m], which was defined by (Straubing| 1994, p. 141) for the
special case ¢ = 0, and which has been studied subsequently in e.g.
Hahn et al.| (2015); Hansen & Koucky (2010); Thérien (1994). If
m > 2, then no AND or OR gates are needed at all (Straubing
1994, Chapter VIII, Exercise 9). Thus some authors define CC'[m)
in terms of circuits consisting only of MOD,,, gates, but the original
definition is more convenient for our purposes.

Observe that, since a MOD,, gate can simulate a NOT gate,
g-AC'[m] remains the same if OR gates of fan-in O(g) are also
allowed.

COROLLARY 3.9. For every prime p, VP(F,) = CC'[p] C AC![p].

PROOF. Recall that VP(F,) = #SAC!(F,). Thus we need only
show how to simulate bounded fan-in x gates and unbounded fan-
in + gates. Bounded fan-in x gates can be simulated in O(1)
depth using AND and OR gates of fan-in two (since the values
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being multiplied are of size O(1)). Unbounded fan-in + gates can
be simulated using MOD,, gates, as in the proof of [Theorem 3.4]
For the converse inclusion, consider a CC![p] circuit. Since a
unary MOD,, gate is equivalent to a NOT gate, we can assume
that the circuit has only fan-in two AND gates and unbounded fan-
in MOD,, gates. Thus each Boolean AND gate can be simulated
by a fan-in two multiplication gate, and the MOD,, gates can be

simulated as in the proof of [Theorem 3.4 0

We remark that the same proof shows that, for any m € N,
VP(Z,,) € CC'[m]. However, the converse inclusion is not known,
unless m is prime.

3.3. Comparing AP and VP. How do the AP and VP classes
compare to each other?

As a consequence of |Corollary 3.9 and [Theorem 3.1 VP(FF,) C
AP(F,) whenever p divides ¢ — 1. In particular, VP(Fy) C AP(F,)
for any prime ¢ > 2. No inclusion of any AP class in any VP class
is known unconditionally, although AP(By)(= SAC!) is contained
in every VP(IF,) class in the nonuniform setting (Gal & Wigder-
son! 1996; Reinhardt & Allender|2000), and this holds also in the
uniform setting under a plausible derandomization hypothesis (Al-
lender et al.[1999).

No AP(F,) class can be contained in VP(F,) unless AC! C
VP(F,), since AC' = AP(Fy) C AP(F3) C AP(F,) for every prime
q > 3. AC! is not known to be contained in any VP class, although
we return to this topic again in

4. Threshold circuits and small degree

In this section, we revisit the known connections between threshold
circuits and arithmetic circuits over small (but non-constant) finite
fields, and present some new alternative characterizations of TC!.
This leads to a discussion of the possibility of “degree reduction” —
simulating classes of arithmetic circuits using circuits with smaller
algebraic degree.

4.1. Circuits with growing modulus. The inspiration for the
results in this section comes from the following theorem of (Reif &
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Tate||1992)) (as re-stated by (Buhrman et al.|[2014)):

THEOREM 4.1. TC! = #ACY(F,,).

Here, the class #AC!(F,,) consists of those languages whose
(Boolean) characteristic functions are computed by logspace-uni-
form families of arithmetic circuits of logarithmic depth with un-
bounded fan-in + and x gates, where the arithmetic operations
of the circuit (), are interpreted over I, , where pi,ps,ps,... is
the sequence of all primes 2, 3,5, ... That is, circuits for inputs of
length n use the n-th prime to define the algebraic structure.

This class is closed under logspace-Turing reductions — but
when we consider other circuit complexity classes defined using I, ,
it is not clear that these other classes are closed under logspace-
Turing reductions.

As an important example, we mention VP(F, ). As we show
below, this class has an important connection to VP(Q), which
is perhaps the canonical example of a VP class. (Vinay||1991)
proved that VP(Q) has essentially the same computational power
as #LogCFL (which counts among its complete problems the prob-
lem of determining how many distinct parse trees a string x has
in a certain context-free language). Here, we mention one more
alternative characterization of the computational power of VP(Q).

prorosition 4.2. LYPEp) — | VP(Q) _ | #LogCFL

Proor. Consider the first equality. If one wants to compute the
value of a VP(FF,,,) circuit on a given input of length n, in logspace
one can first compute the value of p,. Then one can use a VP(Q)
oracle to evaluate the VP(F,,) circuit over the rationals instead
of over F, , obtaining an integer result. Then one can divide the
result by p, and obtain the remainder, which is the value of the
circuit in [F,, , using the fact that division is computable in logspace
(Chiu et al.[2001; Hesse et al.[2002).

Conversely, if one wants to evaluate a VP(Q) circuit on a given
n-tuple of rationals, one can use the standard technique of com-
puting the numerator and denominator separately; the circuits for
these functions are also in VP(Q). Thus our task boils down to
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evaluating an integer-valued arithmetic circuit C,,. To do this, we
use Chinese remaindering, and evaluate circuits (with some dummy
variables) over the primes p,,, Ppi1, - - -, Pnine fOr some constant c.
Converting between Chinese remainder representation and binary
representation can be accomplished in logspace (Chiu et al. 2001}
Hesse et al.|[2002), which completes the proof of the first equality.

For the second equality, we similarly use the fact that VP(Q)
circuits with integer coefficients and inputs can be evaluated in
#LogCFL, and appeal to Vinay (1991). O

When we consider arithmetic circuits of superpolynomial alge-
braic degree (such as the AP classes), evaluating the circuits over
the integers can produce outputs that require a superpolynomial
number of bits to express in binary. Thus, when we consider such
classes, it will always be in the context of structures (such as F,, )
where the output can always be represented in a polynomial num-
ber of bits.

Our first new result in this section, is to improve [Theorem 4.1]
Note that this result bears some similarity to and

Corollary 3.5 (showing that arithmetic circuits can be simulated
using circuits with bounded fan-in multiplication gates) and
lary 3.6/ (making explicit the change of field required for this sim-
ulation).

THEOREM 4.3. TC' = #AC\(E,, ) = LAP(Fo.),

PROOF. The first equality is due to Reif & Tate (1992). The

inclusion of LAPFr.) in TC1 follows since AP(F,,) is a subclass of
#ACY(F,, ) and TC! is closed under logspace-Turing reducibility.
Consider a logspace-uniform circuit family {C,} where C,, is
a #AC! circuit over F,,.. We will show how to simulate C,, by
making calls to an appropriate function in AP(F,, ). The first step
is to find a prime ¢ that is not too much larger than p,, such
that ¢ — 1 is a multiple of p,(p, — 1). (Xylouris 2011)) has shown
that the sequence 1+p,(p, —1),14+2p,(pp— 1), 14+ 3pp(pn—1) ...
contains a prime of size O(pl>*). Thus our logspace oracle machine
will begin by enumerating the elements of this sequence, and is
guaranteed to find some such prime ¢q. Note that this means that
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q—1 = {lp,(p, — 1) for some ¢, and note also that, for all large
n, this means that ¢ < (p,)'°. We will show how to construct a
logspace-uniform AP(F,, ) circuit family {D,,} defining a function
that our logspace oracle Turing machine can query, in order to
simulate C,,. (In order to avoid confusion, we use “m” to index the
AP circuit family, and denote the sequence of primes as ¢, o, . . .
for this family, although of course p; = ¢; for all i.)

The logspace machine that creates D,, on input 1™ (by the
logspace uniformity condition) operates as follows: Find g,,, and
then find the prime factorization of ¢, — 1. If there is no prime p
such that ¢, — 1 = p(p — 1)£ for some ¢ < p'°, then D,, is a circuit
that computes the constant zero polynomial. Otherwise, note that
there can be at most ten different primes p,, < p,, < ..., pn,, for
which ¢, —1 = pp, (Pn, —1)ln, for £, < p,llg, since otherwise ¢,,—1 =
Py Py — 1)pny -+ - Py U for some 0/ where £, = pu, Doy, 0 >
p}ﬂ. Assume therefore that there are 1 < ¢ < 10 such primes
DPny < Pny < --.,Dn.. The arithmetic circuit D,, operating over [F,
will compute a polynomial of the form 25:1 Y- Po;(x1,...,2,;) 00
the variables {y1,...,y.} U{x1,..., 2, }. (Note that the number
of variables is at most 10 + n., which is less than m for all large
m.) Here, the polynomial P, is computed by a subcircuit that
is constructed to simulate C,;. (Note that if the logspace oracle
machine wants to simulate C,; on input (z1,os,...,2,,), then it
can query the oracle (computed by D,,) by setting variable y,; to
1 and all of the other variables y; to zero, and providing the input
(w1,72,...,7,,), (and setting all of the rest of the m variables to
zero).) In what follows, we let n = n;, and we show how to build
the subcircuit C}, of D,, that will allow us to simulate C,.

For each gate g of C,, and each a € F, , C} will have a gate
computing the Boolean value [g = a]. If ¢ is an input gate, say
g = x;, then the Boolean value [g = a] is given by ((z; — a)P»~! +
(b — 1)

Let us now consider the case when g is a + gate, g = >, h;. Let
~ be a generator of the cyclic subgroup of the multiplicative group
of F, of order p,. Our circuit C] will have gates h;, computing
the value

hig = ([hi = a] x (3 = 1) +1).
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Observe that [], i, is equal to v". C! will have a gate ¢’ com-
puting the value ¢’ = []; , hiq- Note that ¢’ is equal to y2i" = ~9
(since v has order p,). The value of the gate [ = b] (for a
given b € F,) is thus ¢, ' x [], (77 — ¢'), where the constant
¢y = [1,,(77 —b) can be computed in logspace and is thus avail-
able as a constant in CJ,.

It remains only to deal with the case when ¢ is a X gate, g =
[L Ao In €}, the gate [g =0]is 1 — [[,(1 — [h; = 0]).

Let 1 be a generator of the multiplicative group of I, , and let
a be a generator of the subgroup of the multiplicative group of F,
of order p, — 1. If g does not evaluate to 0, then g is equal to u® for
some b. Our circuit C}, will have gates h; , computing the values

hiw = ([hs = 1] x (@7 — 1) + 1).

Our circuit C], will have gates h; computing the value h] = []_ h; -
Observe that R is equal to a® if h; = p, and R} is equal to 1 if
h; = 0.

In CJ, there will be a gate ¢’ that computes the following
value: ¢ = (1—[g = ONIL 0 = (lg # O)IT e — (lg £
0])axil8uhs = ([g # 0])al°8r9. Observe that, if g # 0, then g = u°
for some b, and in this case ¢’ evaluates to a’. The value of the gate
lg = 1] (for a given b € F,, ) is thus ¢, x [],,(a” — ¢'), where
the constant ¢, = [, (a7 — ©’) can be computed in logspace and
is thus available as a constant in C. O

For completeness, we add two more relevant characterizations

of TC!. (Recall the definition of g-AC'[m] from [Definition 3.8])

THEOREM 4.4.
TC! = #AC!(E,,) = LAP ) = aC!p,) = CC'lp .

PrROOF. We need only consider the last two equalities.

(D): MAJORITY gates can simulate AND, OR, and MOD,,,
gates in constant depth; thus this direction is easy.

(©): Let € be chosen so that 2n¢ < p, for every n. Any
MAJORITY gate (of fan-in n*) can be simulated by an AC’-
reduction to MAJORITY gates having fan-in n¢ (Allender &
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Koucky|2010). Thus if A € TC!, then A is accepted by a fam-
ily of circuits of AND, OR, and MAJORITY gates, where the
MAJORITY gates have fan-in at most n¢. It suffices to show how
to simulate a MAJORITY gate with inputs A, ..., h,. Note that
MOD,,, (hy,. .., hy, 1P27°) computes the value [b = Y, h;]. Thus
the MAJORITY of the h; is simply the OR, over all b > ¢/2 of
the subcircuits computing [b =, h;].

For the final equality, first note any AND or OR gate with fan-
in at least p, can be replaced by a constant-depth tree of AND
and OR gates of fan-in strictly less than p,,. Next, use DeMorgan’s
laws to remove all of the AND gates. Thus the circuit has only
MOD gates and small fan-in OR gates. But note that if we feed
the wires from an OR gate into a MOD,, gate, then the result is
the NOR of the inputs (since if all of the wires are zero, the MOD
gate outputs 1, and otherwise the number of wires that are one is
less than p,, and thus the MOD gate outputs zero. Negating each
such NOR (again using a MOD gate) completes the proof. O

We also mention that generalizes to other depths,
in a way analogous to [Corollary 3.7}

COROLLARY 4.5. TC' = #AC(F,.) = AC'[p,] = CC[p,].

For i > 1 the equality TC' = L#SACM(FP”) also holds, but fori =0
a more careful argument is needed, using AC’-Turing reducibility
in place of logspace-Turing reducibility.

In the next section, it will be necessary to consider arithmetic
circuits over certain rings (especially the ring of integers mod m for
composite m). We present the definition here, rather than in the
next section, because this new definition also provides additional
characterizations of TC', which is the topic of this section.

DEFINITION 4.6. Let (m,) be any sequence of natural numbers
(where each m,, > 1) such that the mapping 1" — m,, is com-
putable in logspace. We use the notation #ACY(Z,,,) to denote
the class of functions f with domain {0,1}* such that there is a
logspace-uniform family of arithmetic circuits {C,} of logarithmic
depth with unbounded fan-in + and X gates, where the arith-
metic operations of the circuit C,, are interpreted over Z,,, , and
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for any input x of length n, f(x) = C,(x). We use the notation
#ACl(ZL) to denote the union, over all logspace-computable se-
quences of moduli (m,,), of #ACY(Z,,, ).

Since the sequence of primes (p,,) is logspace-computable, TC!(=
#AC!(F,,)) is clearly contained in #AC'(Z| ). Conversely, all of
the functions in #AC'(Z| ) are computable in TC'. To see this,
consider a function f € #AC'(Z ). To evaluate f(x) for an input
of length n, first we compute the modulus m,, and the circuit C,,.
To evaluate each gate g of C), (in binary), first we compute the
sum or product of the values that feed into g (which can be done
in constant depth using threshold circuits) and then we reduce
the result modulo m,, (which involves division, which can also be
computed in constant depth). Thus, arithmetic circuits over the
integers mod m,, for reasonable sequences of moduli m,, give yet
another arithmetic characterization of TC!.

4.2. Degree Reduction. The results of [Section 3fand [Section 4]
gave examples of fan-in reduction for arithmetic circuits (show-
ing that ACC! and TC! can be characterized either in terms of
unbounded fan-in or semiunbounded fan-in arithmetic circuits).
However, those theorems showed only how to reduce the fan-in of
addition gates; thus they did not involve decreasing the algebraic
degree of the circuits under consideration. Degree reduction is the
topic to which we turn now.

In this subsection, we introduce a class of circuits that is inter-
mediate between the unbounded fan-in circuit model and the semi-
unbounded fan-in model, for the purposes of investigating when
arithmetic circuits of superpolynomial algebraic degree can be sim-
ulated by arithmetic circuits (possibly over a different algebra) with
much smaller algebraic degree.

The starting point for this subsection is Theorem 4.3 in |Allender
et al| (1998), which states that every problem in AC! is reducible
to a function computable by polynomial-size arithmetic circuits of
degree n@Uogloen) In this section, we refine the result of |Allender
et al. (1998), and put it in context with the theorems about TC!
that were presented in the previous subsection. Those results show
that TC! reduces to semiunbounded fan-in arithmetic circuits in
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the AP(FF,, ) model, but leave open the question of whether TC! also
reduces to semiunbounded fan-in arithmetic circuits in the VP(F,,)
model (which coincides with VP(Q)). We are unable to answer
this question, but we do show that some interesting inclusions can
be demonstrated if we relax the VP model, by imposing a less-
stringent restriction on the fan-in of the x gates.

DEFINITION 4.7. Let (m,) be any sequence of natural numbers
(where each m,, > 1) such that the mapping 1" — m,, is com-
putable in logspace. #WSAC(Z,,,) is the class of functions repre-
sented by logspace-uniform arithmetic circuit families {C,,}, where
C,, is interpreted over Z,,,, where each C,, has size polynomial in
n, and depth O(logn), and where the + gates have unbounded
fan-in, and the x gates have fan-in O(logn). We use the notation
#WSACl(ZL) to denote the union, over all logspace-computable
sequences of moduli (m,,), of #WSAC(Z,,,). In the special case
when m,, = p for all n, we obtain the class #WSAC!(F,).

Note that with the O(logn) fan-in restriction on the x gates
these circuits are not semiunbounded, but do have a “weak” form
of the semiunbounded fan-in restriction. We refrain from defining
a weakly semiunbounded analog of the AP classes, because it is
easy to show that they are equivalent to the AP classes, since AC°
circuits can add logarithmically-many numbers, given in binary.

We improve on Allender et al.| (1998, Theorem 4.3) by showing
AC! is contained in #WSAC!(F,); note that all polynomials in
#WSACL(F,) have degree n®(°81%6™) " and note also that the class
of functions considered in |Allender et al| (1998) is not obviously
even in TC!. In addition, we improve on |Allender et al. (1998) by
reducing not merely AC!, but also AC![p| for any prime p. This
includes AP(F,) for any p such that Supp(p — 1) C {2}. Also, we
obtain an exact characterization of AC![p|, whereas [Allender et al.
(1998)) presented merely an inclusion.

THEOREM 4.8. Let p be any prime. Then AC![p] = #WSAC!(F,).

PROOF. The inclusion #WSAC!(F,) C AC![p] is straightforward.
The proof of shows how to simulate semiunbounded

fan-in circuits over F, by AC![p] circuits. We merely need to add
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to that construction, to show how to handle multiplication gates of
logarithmic fan-in. Let g be a multiplication gate computing the
product of the gates h1,. .., hclogn. As in the proof of [Corollary 3.9,
the simulating AC![p] circuit will have gates of the form [h; = b] for
all b € F,. Thus the value of g depends on only O(logn) binary bits
of the simulating circuit, and the value of [g = a] can be computed
by a logspace-uniform DNF expression. This yields the desired
AC![p] circuit.

For the proof of the converse inclusion, the main technical ingre-
dient involved is the following lemma from |Allender et al. (1998).
(In|Allender et al|(1998) the lemma is stated only for MOD,, but
the proof carries over to any MOD,, gate with only trivial changes.
(See also the very similar result of [Hansen & Koucky| (2010, Propo-
sition 3.4).) For completeness, a detailed proof may be found in
Appendix A.)

LEMMA 4.9. (Allender et al.||1998) Let m be any natural num-
ber, m > 1. For each { € N, there is a family of constant-depth,
polynomial-size, probabilistic circuits consisting of unbounded-fan-
in MOD,, gates, AND gates of fan-in O(logn), and O(logn) prob-
abilistic bits, computing the OR of n bits, with error probability
< 1/n".

Now we follow closely the proof of |Allender et al.| (1998, Theo-
rem 4.3).

Take an AC![p] circuit, replace all AND gates by OR and
MOD,, gates (using DeMorgan’s laws), and then replace each OR
gate in the resulting circuit with the sub-circuit guaranteed by
Lemma 4.9| (for ¢ chosen so that n‘ is much larger than the size
of the original circuit), with the same O(logn) probabilistic bits
re-used in each replacement circuit. The result is a probabilistic,
polynomial-size circuit that, with high probability, provides the
same output as the original circuit. (This assertion may not be
obvious to the reader. We provide a careful proof in Appendix B.)

Note that replacing AND gates by x and replacing each MOD,,
gate g having wires from h; with a subcircuit of the form 1+ (p —
1)(3>, hi)P~!, one obtains an arithmetic circuit over the integers,
whose value mod p is equal to the output of the original AC![p]
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circuit with high probability. (This is one place where we use the
fact that p is prime.) The circuit has depth O(logn), and has
unbounded fan-in + gates, and all x gates have fan-in O(logn),
and thus it is a weakly semiunbounded fan-in circuit.

Create n°®®" copies of this probabilistic circuit, one copy for
each sequence of probabilistic bits; call these circuits Dy, ..., D,e.
Note that each D; computes a value in {0, 1}. Note also that 1—D;
is also computable in #WSAC!(F,,). Thus we can feed these values
into an arithmetic NC! circuit computing MAJORITY (using the
fact that all functions in NC! are in #NC! (Caussinus et al.|[1998).
The resulting circuit is equivalent to our original AC![p] circuit. OJ

We especially call attention to the following corollary, which
shows that, over 5, polynomial size logarithmic depth arithmetic
circuits of degree n®1°e™ and of degree n©(°81e™) represent pre-
cisely the same functions!

COROLLARY 4.10. #WSAC!(Fy) = #AC! (Fy) = AC'[2] = AP(F3).

PROOF. The containment #WSAC!(Fy) C #AC!(F,) is immedi-
ate from the definition (since #WSAC!(F;) circuits are a restricted
form of #AC!(F,) circuits). The second equality is from [Theo-
rem 3.4, The equality AC![2] = AP(F3) is from [Theorem 3.1] The
inclusion AC'[2] C #WSAC!(Fy) is from [Theorem 4.8| O

If we focus on the Boolean classes, rather than on the arithmetic
classes, then we obtain a remarkable collapse.

THEOREM 4.11. Let 1 < m € N. Then AC'[m] = log-AC'[m)].

ProOOF. The proof of begins with the statement
of [Lemma 4.9, which holds for any modulus m. The proof then

uses to replace a general AC![m] circuit by an equiva-
lent probabilistic circuit with unbounded fan-in MOD,,, gates and
AND gates with logarithmic fan-in, using only O(log n) probabilis-
tic bits.

The proof of proceeds to modify this to obtain an
arithmetic circuit. Instead, we simply make polynomially-many
copies of this Boolean circuit (one copy for each probabilistic se-
quence), and take the majority vote of these copies. 0
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Using Theorem [Theorem 3.4|it follows that arithmetic AC! cir-

cuits over any finite field I, can be simulated by Boolean circuits
with MOD gates and small fan-in AND gates. It remains open
whether this in turn leads to small-degree arithmetic circuits over
F, when p > 2, and also whether the fan-in of the AND gates can
be sublogarithmic, without loss of power.

When m is composite, can be improved to obtain
an even more striking collapse, by invoking the work of (Hansen &
Koucky2010).

THEOREM 4.12. Let m > 1 not be a prime power. Then AC![m] =
CC'm).

PROOF. Let p # q where {p,q} C Supp(m). It suffices to show
how to construct a family of CC'[m] circuits to simulate a given
AC![m] circuit family.

Hansen and Koucky showed (Hansen & Koucky| 2010, Lemma
3.5) that, for every ¢ > 1 there is a constant-depth probabilistic
circuit composed of MOD,, gates that computes the OR of n vari-
ables, using only O(logn) probabilistic bits, and having error prob-
ability less than 1/n¢. Thus we can replace each unbounded fan-in
AND and OR gate in the AC![m] circuit with the correspond-
ing circuit (possibly with negation gates) guaranteed by Hansen &
Koucky] (2010). The MOD,, gates can be replaced with MOD,,
gates via standard techniques, as in the proof of [Theorem 3.1} By
choosing a suitably large value for ¢, the resulting probabilistic
circuit simulates the original circuit with small error probability.

Now, as in the proof of we can make polynomially-
many copies of the probabilistic circuit, hardwiring in different val-

ues for the probabilistic bits, and take the majority vote.
O

COROLLARY 4.13.
ACC! = Up AP(F,) = Up #ACl(IF‘p) =U,, #ACY(Z,,) = CCL.

COROLLARY 4.14. ACC' = CC for all i > 1.
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This equality is still open for the case ¢ = 0, although Hansen
and Koucky show that the probabilistic versions of ACC® and CC°
coincide (Hansen & Kouckyi[2010)).

Note that
J cc') = v, c | JLVPE c acct = cc.
p prime p>2 m

The right-most class corresponds to uniform families of MOD,,
gates (for composite m), and to arithmetic circuits of degree nOUlogn)
The left-most class consists of uniform families of MOD,, gates for
prime p, and to arithmetic circuits of degree n®®. The intermedi-
ate class corresponds to arithmetic circuits of polynomial degree,
but having access to composite moduli. It is natural to wonder how
much the composite moduli can help, in simulating higher-degree
arithmetic circuits using small degree.

It might be useful to have additional examples of algebras,
where some degree reduction can be accomplished. Thus we also
offer the following theorem:

THEOREM 4.15. Let p be any prime. Then

PROOF.  As in[Theorem 4.8 here we need to simulate AC![p] cir-
cuits. The proof proceeds precisely as in the proof of [Theorem 4.§]
up to the construction of the sequence of circuits Dy, Ds, ..., D,
(in the final paragraph of the proof of [Theorem 4.8). (These are
the copies of the probabilistic circuit simulating the original AC![p]
circuit, with different copies of the probabilistic bits hardwired in.)

We now make use of the “Toda polynomials” introduced in
Toda| (1991). For example, there is an explicit construction in
Beigel & Tarui| (1994) of a polynomial P, of degree 2k —1 such that
(y mod p) € {0, 1} implies P (y) mod p* =y mod p. It is observed
in |Allender & Gore| (1994) that, for & = O(logn), the polyno-
mial P, can be implemented via logspace-uniform constant-depth
circuits over the integers. Thus, by replacing each multiplication
gate with a tree of fan-in two, the polynomial can be implemented
by a semiunbounded fan-in circuit of logarithmic depth.
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Applying this polynomial to the output of each circuit D;, we
obtain a #WSAC!(Z) circuit whose value mod p is the same as
the output of the original AC![p] circuit with high probability, and
with the additional property that the output of the circuit, when
represented in p-ary notation, has all of the clogn low-order sym-
bols of the result equal to zero (except possibly the lowest-order
symbol). We will choose ¢ to be the constant such that there are
clogn probabilistic bits). Call the resulting circuit £;.

Now create a circuit whose output gate computes ) . E;. The
output gate of the resulting #WSAC!(Z) circuit records a number
whose low-order clogn positions (in p-ary notation) records the
number of the n® copies that output 1. If this number is greater
than n¢/2, then the original circuit accepted its input; otherwise it
rejected its input.

In order to compute this number using #WSAC!(Z ) instead of
#WSACY(Z), we use this logspace-computable sequence of moduli:
m, = p". Evaluating the arithmetic over Z,. gives the number
represented by the low-order n positions of the result, in p-ary
notation. A logspace oracle machine, upon being given this number
(say, in binary notation) can compute the value of this number
modulo p'*¢l°&™ and determine if that number is greater than n/2,

and can thereby determine if the original circuit accepted its input.
O

It is natural to wonder whether this theorem can be extended,
to allow composite moduli. A direct application of the techniques
of |Allender & Gore, (1994); Beigel & Taruil (1994); [Yao| (1990) re-
quires multiple applications of the Toda polynomials, and this in
turn results in circuits of superlogarithmic depth.

Using [I'heorem 3.1| and [['heorem 4.15| we obtain the following.

COROLLARY 4.16. If p is a Fermat prime, then

AP(F,) C L#WSACH(Z)).
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5. Conclusions, Discussion, and Open Problems

We have introduced the complexity classes AP(R) for various alge-
braic structures R, and have shown that they provide alternative
characterizations of well-known complexity classes. Furthermore,
we have shown that arithmetic circuit complexity classes corre-
sponding to polynomials of degree n®(°81em) also yield new char-
acterizations of complexity classes, such as the equality

ACL[p] = log-AC![p] = #WSACL(F,).

Furthermore, in the case when p = 2, we obtain the additional
collapse

H#ACY(F,) = AC[2] = log-AC![2] = #WSACL(F,),

O(logn O(loglogn

showing that algebraic degree n ) and n ) have equiva-
lent expressive power, in this setting.
We have obtained new characterizations of ACC! in terms of

restricted fan-in:

ACC! = J#AC\(F,) = JAP(F,) = CC.

That is, although ACC! corresponds to unbounded fan-in arith-
metic circuits of logarithmic depth, and to unbounded fan-in Bool-
ean circuits with modular counting gates, no power is lost if the
addition gates have bounded fan-in (in the arithmetic case) or if
only the modular counting gates have unbounded fan-in (in the
Boolean case). It remains unknown if every problem in ACC! is re-
ducible to a problem in J,, VP(Z,,), although we believe that our
theorems suggest that this is likely. It would be highly interesting
to see such a connection between ACC and VP.

We believe that it is fairly likely that several of our theorems
can be improved. For instance:

o Perhaps [['heorem 4.11| and [I'heorem 4.12| can be improved,
to show that for all m, AC'[m| = CC}[m]. Note that this
is already known to hold if m is not a prime power. By
Corollary 3.9 this would show that VP(F,) = AC![p] for all
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primes p. It would also show that #AC!(Fy) = VP(Fy) =
AP(F,) for every Fermat prime p. (We should point out
that this would imply that AC! C VP(F,) for every prime
p, whereas even the weaker inclusion SAC! C VP(F,) is only
known to hold non-uniformly (Gal & Wigderson |1996).)

o Can |Corollary 4.16| be improved to hold for all primes p, or
even for AP(F,,)? The latter improvement would show that

o Perhaps one can improve [Theorem 4.15| to achieve a simu-
lation of degree n®®. Why should nfele™) he optimal?
Perhaps this could also be improved to hold for composite
moduli?

o If some combinations of the preceding improvements are pos-
sible, TC! would reduce to VP(Q), which would be a signifi-
cant step toward the Immerman-Landau conjecture.

We began this investigation, wondering if the equality VP(Bs) =
AP(Bs) could carry over to any other algebraic structure. We
think that it appears as if VP(FF,) and AP(F,) are incomparable
for every non-Fermat prime p > 2, since VP(F,) = CC!'[p] and
AP(F,) = CCSupp(p — 1)]. That is, these classes correspond to
circuits consisting of modular counting gates for completely differ-
ent sets of primes. For Fermat primes we have AP(F,) = log-AC'[2]
and again the VP and AP classes seem incomparable.

For the special case of p = 2, we have VP(F,) = CC![2] and
AP(F;) = AC'. We hold out some hope that VP(F,) = AC'[2],
in which case it would appear that the VP class could be more
powerful than the AP class — but based on current knowledge it
also appears possible that the VP and AP classes are incomparable
even for p = 2.

Some of our theorems overcome various hurdles that would
appear to stand in the way of a proof of our conjecture that

ACC! = J,, LVYP@) B First, recall that VP(Z,,) € CC'm] (Corol-

°Here, “VP(Z,,)” refers to the class of functions defined on Z,, that are
represented by VP circuits, rather than to a class of languages. The distinction
is significant, as is discussed in [Allender & Goodwillie (2015).
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lary 3.9). Thus, if the conjecture is correct, then unbounded fan-in
AND and OR gates would have to be simulated efficiently with
bounded fan-in AND and OR gates (which in turn can be replaced
by MOD gates). But this is true in this context: AC![m] = CC![m],
if m is not a prime power (Theorem 4.12). If m is a prime power,

then the fan-in can be reduced to logn (Theorem 4.11)). If the fan-

in can be reduced to O(1) also in the case of prime power moduli,
then AC'[p] = CC![p] = VP(F,). If CC! circuits can be simulated
using an oracle for functions in VP(Z,,) for some m’, then the con-
jecture holds. (The latter simulation is possible if the MOD gates
in the CC! circuits are for a prime modulus; see )

A second objection that might be raised against the conjec-
ture deals with algebraic degree. ACC! corresponds precisely to
polynomial-size logarithmic depth unbounded fan-in arithmetic cir-
cuits over finite fields . Such circuits represent poly-
nomials of degree n©(1°6™) whereas VP circuits represent polynomi-
als of degree only n®1). One might assume that there are languages
represented by polynomial-size log-depth arithmetic circuits of de-
gree n@U°e™) that actually require such large degree in order to be
represented by arithmetic circuits of small size and depth.

Our degree-reduction theorem (Corollary 4.10|) shows that this
assumption is incorrect. Every Boolean function that can be repre-
sented by an arithmetic AC' circuit over Fy (with algebraic degree
nP0e™)) can be represented by an arithmetic AC' circuit over Fy
where the multiplication gates have fan-in O(logn) (and thus the
arithmetic circuit has algebraic degree n(cglogn)),
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A. Appendix: Proof of [Lemma 4.9

In this section, we present a detailed proof of [Lemma 4.9] show-

ing the adjustments that need to be made, in order to deal with
arbitrary MOD,,, gates.

Here is a reminder of the statement of [Lemma 4.9t Let m be
any natural number, m > 1. For each ¢ € N, there is a family
of constant-depth, polynomial-size, probabilistic circuits consisting
of unbounded-fan-in MOD,,, gates, AND gates of fan-in O(logn),
and O(logn) probabilistic bits, computing the OR of n bits, with
error probability < 1/n’.

PrRoOOF. Our presentation here is a slight adjustment of the proof
in |Allender et al.| (1998). There are no significant changes in the
proof, which relies crucially on the fact that one can replace an OR
gate with a MOD gate, when there is a guarantee that at most
one of the inputs to the OR gate evaluates to 1.

The construction in |Chari et al.| (1995)) gives a depth 5 prob-
abilistic circuit that computes the NOR correctly with probabil-
ity at least 3 and uses O(logn) random bits. More precisely, us-
ing the terminology of (Chari et al. (1995), let m’ = [logn], let
S ={1,...,m'}, and let F be the collection of subsets of S, such
that A € F iff the bit string k of length m’ = [log n| representing
the characteristic sequence of A corresponds to a binary number
k < n such that the k-th bit of the input sequence z1,...,x, has
value 1. That is, the OR of xy,...,z, evaluates to 1 iff F is not
empty. The strategy of (Chari et al. (1995)) is to use probabilistic
bits to define a way of assigning a “weight” to each set Ay € F
so that if F is not empty, then with high probability there is a
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unique element of F having minimum weight. The next paragraph
explains how this is done.

Let ¢ = [logm'] and let t = [m//c]. For any 1 < ¢ < m/ and
0 <j <t—1, define b; ; as follows:

s [ 2 ifje<i<(j+1)e
“ 0 otherwise

(It may help the reader’s intuition to consider an m’-bit sequence
k = ki,...,ky. Divide this sequence into blocks; Block(j) has
positions kjci1,Kjeyo, ..., kG1e.  Clearly, ks is in Block(ki—1).
Now, if k; & Block(j), then b;; = 0, else b;; = 2°77°. Note that
i — jc is the position of k; within Block(j). )

Choose t numbers 79, ..., 1~ in the range 1 < r; < 50 log® n
uniformly and independently at random (and note that this in-
volves choosing O(logn) random bits). Finally, define w; to be
equal to ZE;}) bijrj. The weight of a set A is then ) ,_, w;. The
analysis in Proposition 2 of |Chari et al| (1995) shows that if F
is not empty, then with probability at least .99, there is a unique
minimal weight set in F.

This paragraph explains how to implement this system as a
uniform constant-depth circuit. Note first that for any £ < n and
for any fixed p < log” n, there is a depth 2 circuit of MOD,,, gates
and small-fan-in AND gates that evaluates to 1 iff the weight of
Ay is equal to p. Here Ay is that subset of S whose characteristic
sequence is the binary representation of k. (To see this, note that
the only inputs to this circuit are the O(logn) probabilistic bits.
Thus the DNF for this function can be computed in logspace, and
the OR gate at the root can be replaced by a MOD,,, gate with
m — 1 additional 1 inputs. Here we are making use of the fact
that there can only be one of the AND gates that feed into to the
MOD,, gate that returns 1, namely the one where the weight of

Taking the AND of this circuit with the input bit z; results in
a depth three circuit that evaluates to 1 iff Ay € F and the weight
of Ay is equal to p. Thus there is a polynomial-size depth-4 circuit
with a MOD,, gate at the root (with m — 1 additional 1 inputs)
that evaluates to 1 iff the number of sets in F that have weight p
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is equivalent to 1 mod m. Hence there is a uniform depth-5 circuit
with an OR at the root that evaluates to 1 iff there is some weight
p < log”n such that the number of sets in F having weight p is
equivalent to 1 mod m. By the remarks in the preceding paragraph,
if the OR of x4, ..., z, evaluates to 1, then with probability at least
.99, our depth-5 circuit will also. (Clearly, if the OR is zero, then
the depth-5 circuit also evaluates to zero.) If we replace the OR
gate at the root with AND and negate each of the MOD,,, gates
that feed into that OR gate (recalling that a unary MOD,,, gate is
a NOT gate) we obtain our desired circuit for the NOR function —
except that the fan-in of the gate at the root is log” n, and our goal
is for the AND gates to have fan-in at most logn. But replacing
this AND gate with a depth-7 tree of AND gates of fan-in logn
yields an equivalent circuit of the desired form. Let us denote this
circuit by C(x,r).

It remains only to reduce the error probability from ﬁ to %,
without using too many additional probabilistic bits. We accom-
plish this using a standard construction, as in|/Allender et al. (1998):
Consider a graph with vertices for each of our O(logn)-bit prob-
abilistic sequences, the edge relation is given by the construction
of an expander graph presented in (Gabber & Galil (1981), where
each vertex has degree five. Inspection of (Gabber & Galil (1981)
shows that, in logspace, one can take as input one of our original
probabilistic sequences r as well as a new probabilistic sequence
s € {1,2,3,4,5}e" (for some constants ¢ and f) and output
the vertex 7’ reached by starting in vertex r and following the se-
quence of edges indicated by s. Since this function depends on
only O(logn) bits, the DNF for this function can be computed in
logspace, and (as above) can be implemented using a MOD,,, gate
and AND gates of small fan-in. Let this circuit be denoted by
R(r,s).

Thus we can construct a constant-depth circuit that computes
the AND for all i < cllogn of C(x, R(r, s[1..7])) (where s[1..i] de-
notes the prefix of s of length i, where r and s are probabilistically
chosen. By Section 2 of [Impagliazzo & Zuckerman| (1989)), this cir-
cuit computes the NOR correctly with probability 1 — % Adding
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a MOD,, gate at the root allows us to compute the OR, as de-
sired. This completes the proof of the lemma. O

B. Appendix: An assertion from [Theorem 4.8§|

In this appendix, we provide a careful proof of the following asser-
tion, which was made in the proof of [Theorem 4.8}

Let C' be a polynomial-size circuit of MOD,, gates and OR
gates. Replace each OR gate in the resulting circuit with the
sub-circuit guaranteed by (for ¢ chosen so that n’ is
much larger than the size of the original circuit C'), with the same
O(logn) probabilistic bits re-used in each replacement circuit. Call
the resulting circuit C’. Then C” is a probabilistic, polynomial-size
circuit that, with high probability, provides the same output as the
original circuit.

This follows from the following, slightly stronger claim.

Let C, be the probabilistic subcircuit of C’ that replaces an OR
gate g of C. Let ¢’ be the output gate of C,. We claim that, for
every input z, for most settings of the probabilistic bits, the values
of each gate g of C' agrees with the value of the corresponding gate
g of C' on input x.

To establish this claim, consider some topological sort of the
OR gates; i.e., a linear order so that if g comes before h, then
there is no path from h to g. Choose any input z. Let E, be
the event that ¢ is the first gate in this order such that ¢’ and g
take on different values on input x. The probability that there is
any gate g such that g and ¢’ take on different values is equal to
Pr(U, Ey) < >, Pr(E,). Let z, be the sequence of bits that is
input to gate g in C' on input . Then

Pr(E,) = Pr(¢ # OR(z,) and —E), for all h < g)
< Pr(g £ OR(z))

By [Lemma 4.9, Pr(¢’ # OR(z,)) < 1/n‘. Thus Pr(U, Ey) <
> g1 /n, which can be made as small as n~¢ by appropriate choice
of the constant ¢.)
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C. Appendix: diagram of new macro and micro
inclusions

TC! = #AC (Fy,) = LAP(Fru) = ACp,] = CC'[pn]

ACC! = U, #ACL(F,) = UpAP(F,) =

WSATL(Z
L# Z0) Upy...pi ACL[p1 ... p] = Upy CCllm] = CC!

LVP(Fp,) — | #SAC (Fp,) — L VP@

AC![p] = log-ACl[p] = #WSACL(F,)

#SAC! (Fp) = VP(Fp) = CC'[p] AC!
SAC?

Figure C.1: Macro inclusions within TC!
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Dual VP Classes

#ACH(F7) = AP(F43)

#ACL(F5) = AP(F11) #ACL(Fs) = AP(F7) = AP(F13) P(F29)

1 — 1
#WSACH(F5) ﬁV\ASP/?%ggmﬁ )A_P Zﬂ%‘?)cz(].F.Q;#WSAcl (F3¥WSAC! (F7)

SAC!

Figure C.2: Micro inclusions within ACC!
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