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Chapter 1

Introduction

Proof complexity aims to study proofs. This seems simple and self-evident, but it is worth thinking about what
we computer scientists care about when it comes to studying proofs, or rather studying proof systems. Simple
systems like Resolution have given us insight into the power and limitations of SAT solvers, while saying anything
worthwhile about stronger systems like Extended Frege seems to still pose an indomidable challenge. As a
complexity theorist the first natural way to classify proof systems is the following: given a tautology, is it easy or
hard for the proof system to prove it? Can the system refute a random CNF with a polynomial number of lines, or
can we prove that even the Pigeonhole Principle takes exponential sized proofs? This is a fascinating and central
problem, but it seems to suggest an equally natural yet perhaps more practical and certainly more overlooked
challenge: even if the system has a short proof, can we find it?

The notion of automatizability [11] captures the algorithmic side of proof complexity, asking whether or not
there exists an algorithm that can return some Q-proof of any tautology τ efficiently with regards to the length
of the shortest Q-proof of τ . As proof complexity has found connections to many areas such as learning theory,
SAT solvers, and approximation, the algorithmic question of automatizability has provided a lens and a hammer
for deciding the tractability of many core problems. I stole this next part from the paper. Most notably, the Sum-
of-Squares algorithm has emerged as a very powerful algorithmic tool, as short SoS proofs capture many of our
best known approximation techniques. This idea has led to a flurry of exciting papers that give new and improved
algorithms for a variety of learning problems [6,7,23,27,30], but the runtime of these algorithms is dependent on
the degree of the proofs rather than the size. If small size SoS proofs could also be found efficiently, this would
give rise to an even richer family of algorithms.

At first glance it would seem like the efficiency of finding Q-proofs would have some sort of tradeoff with
the efficiency of Q itself. For example, if we learned some day that Extended Frege could refute random CNFs
in polynomial time, modulo P 6= NP it would be impossible to automatize Extended Frege in polynomial time,
and under something stronger like the Exponential Time Hypothesis even exponential lower bounds could follow.
By contrast the efficiency of all known SAT solvers is implicitly based on the automatizability of Resolution
and tree-like Resolution, and so it would seem beneficial to prove some sort of upper bound on automatizability
therein.

The first question, of lower bounds against strong systems, quickly had some progress. The first observation
was that any propositional proof system which for any τ has poly(|τ |) sized proofs is not polynomially autom-
atizable assuming NP 6⊆ P/poly. This is in line with our earlier intuition about a hypothetical world where
EF could easily refute random CNFs, and uses a very well-believed assumption about NP. Next, using various
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CHAPTER 1. INTRODUCTION 2

cryptographic assumptions a line of work [10, 11, 26] showed that many Frege systems are not polynomially au-
tomatizable. The argument was once again similar to our intuition: if a system has short proofs for hard problems,
we shouldn’t expect to get those proofs too easily.

All these arguments used a similar technique for “solving hard problems” using proofs: first, consider some
decision problem that is hard, perhaps an NP-complete problem or inverting some function believed to be one-
way. Our algorithm first transforms an instance of the problem into a tautology, such that the “yes” instances have
some structure that the proof system can exploit to find a short proof, and such that the “no” instances have strong
lower bounds in the system. By automatizing the proof system the algorithm can obtain a proof that’s not too
large compared to the shortest proof, and then using the gap in the shortest proofs of the yes and no instances can
decide the original problem. Note that we only use the length of the proof the automatizing algorithm outputs and
never look at the proof itself, and so it may not be too surprising that [1] showed that approximating the length of
the shortest proof to within a factor of 2log1−o(1) n for any propositional proof system is NP-hard.

Shockingly this technique also worked for weaker systems like Resolution. In a breakthrough result [2]
showed that Resolution and tree-like Resolution are not polynomially automatizable under a very plausible hy-
pothesis from parameterized complexity, FPT 6= W[P]. The key idea was simple, the same transformation of
instances to tautologies with a gap in the proof lengths as before, and for all the technical considerations involved
the execution was equally simple and beautiful. The same transformation proved to go beyond Resolution; a few
years later [19] proved the same automatizability lower bound for Nullstellensatz and Polynomial Calculus, using
a specialized but morally equivalent lower bound technique. With a number of systems hanging between the fron-
tier these two works carved out and the powerful Frege systems for which lower bounds were known, it seems
natural to see how far this tautology can be pushed, maybe even to the more elusive systems like Sum-of-Squares
and Cutting Planes.

Another question would be if changing the assumption or other fine details of the argument would give a
stronger automatizability lower bound. Until now no lower bounds beyond superpolynomial are known for the
automatizability of any proof system, and in using a parameterized complexity assumption there is an inherent and
insurmountable barrier to going beyond superpolynomial lower bounds. There is also an upper bound hanging
close by: Resolution, tree-like Resolution, Nullstellensatz, Polynomial Calculus, and many other systems are
width (or degree) automatizable in the sense that if there exists a width (degree) d proof, it can be found in time
nO(d), which immediately implies an nO(logS) automatizability upper bound for both tree-like Resolution and
Nullstellensatz (where S := S(τ) is the size of the shortest proof of τ ). Thus if this technique holds for tree-like
Resolution and Nullstellensatz, it cannot prove a lower bound beyond nΩ(logS), whereas for Resolution and many
other systems there’s no reason to rule out even exponential automatizability lower bounds.

In this paper we attempt to capture the core ideas of [2,19] by simplifying the argument, removing many of the
technical details necessary for their arguments to hold. We do so by changing our assumption to the Exponential
Time Hypothesis (ETH) as well as a more recent variant called the Gap Exponential Time Hypothesis (GapETH),
which while both weaker assumptions than FPT 6= W[P] are still very widely believed and (in our estimation)
more well-known in complexity theory. In doing so we also manage to break the superpolynomial wall and get
close to the upper bound stated above.

Theorem 1.1 (Main Theorem). Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}. Assuming GapETH holds, Q
is not nf -automatizable for any f = õ(log logS). Furthermore, assuming ETH holds Q is not nf -automatizable

for any f = O(log1/5 logS).

We also get a comparable statement for a new system, typically referred to as k-Resolution (we use Res(r)
instead of Res(k) due to the use of k as a different parameter in the reduction). In light of the power of Res(r) to
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System Assumption Result Ref

Any PPS NP-hard 2log1−o(1) n [1]
Any poly PPS NP 6⊆ P/poly superpoly(n, S) [11]

AC0-Frege Diffie-Hellman requires superpoly(n, S) [10]
circuits of size 2n

ε

Frege Factoring Blum integers superpoly(n, S) [11]
requires circuits of size nω(1)

E. Frege Discrete log is not in P/poly superpoly(n, S) [26]
Res, TreeRes W[P] 6= FPT superpoly(n, S) [2]
Nullsatz, PC W[P] 6= FPT superpoly(n, S) [19]

Res, TreeRes, GapETH nΩ̃(log log S) this work
Nullsatz, PC ETH nω(log1/5 logS)

Res(r) GapETH nΩ̃(log log S/ exp(r2)) this work
ETH nω(log1/5 logS/ exp(r2))

perform very powerful tasks when r is large, and in particular a plausible break in the argument for r = O(log n),
we get an inherent tradeoff between r and the lower bound. In particular this allows us to give lower bounds
beyond superpolynomial even for superconstant r. By contrast the previous works only allowed superpolynomial
lower bounds for constant r, which is in some sense uninteresting given matching Resolution lower bounds.

Theorem 1.2 (Main Theorem 2). LetQ = Res(r). Assuming GapETH holds,Q is not nf/ exp(r2)-automatizable

for any f = õ(log log n) if r = O(
√

log f). Furthermore, assuming ETH holdsQ is not nf/ exp(r2)-automatizable

for any f = O(log1/5 log n) if r = O(
√

log f).

A summary of all known automatizability results discussed can be found in Table 1. In Chapter 5 we discuss
how the technique may be extended to other systems and what challenges arise.

Before moving into the paper we sketch our version of the technique of [2]. Let I be an instance of some
problem on n variables. Consider some n-variate monotone function fI and let γ(fI) be the minimum weight
of any input on which fI evaluates to 1. Furthermore we assume that for a given I , distinguishing whether
γ(fI) ≤ k or γ(fI) ≥ k2 requires time nΩ(k) assuming ETH for all k up to some value. Our tautology will create
m different inputs to the function fI for some specially chosen m, with the different inputs correlated in such a
way that the following two properties hold: 1) to find the ith bit of the jth input, we need to find the ith bit of
all inputs; 2) no matter how the inputs are chosen, at least one of them evaluates to 1 on fI by having a 1 in the
γ(fI) spots of the minimum weight input. Here we see the trapdoor: in order to show that some input satisfies
fI , it is necessary and sufficient to consider γ(fI) input bits. With the right choice of m and the right correlation,
we end up with a tautology with an nΘ(1) sized proof whenever γ(fI) ≤ k and an nΘ(k) sized proof whenever
γ(fI) ≥ k2. Thus any automatizing algorithm running in time no(k) can distinguish between the two, and in too
little time, contradicting ETH. Fixing k to be the maximum value possible, sayO(log log n), and noting that when
γ(fI) ≤ k we get S = nO(1), this implies that no automatizing algorithm can run in time no(k) = no(log log S).



Chapter 2

Preliminaries

2.1 Proof complexity

Let τ = {C1, C2, . . . , Cm} be an unsatisfiable CNF formula over X = {x1 . . . xn}. We denote by |τ | the size of
τ , and likewise for a proof π refuting τ let |π| denote the size of π. For a proof system Q let SQ(τ) be the size of
the shortest Q-proof refuting τ . A proof system Q is said to be f()-automatizable if there exists an algorithm A

such that for every unsatisfiable τ A runs in time f(|τ |+ SQ(τ)) and outputs a validQ-proof refuting τ . A proof
system Q′ p-simulates Q if for every Q-proof π refuting τ there is a corresponding Q′-proof π′ refuting τ such
that |π′| = |π|O(1).

2.1.1 Proof Systems

A Resolution (Res) refutation of τ is a sequence of clauses π = {D1, D2, . . . , DS} such that DS = ∅, and each
line Di is either some initial clause Cj ∈ τ or is derived from two previous lines using the resolution rule: from
(E ∨ x), (F ∨ x) we derive (E ∨ F ), where x ∈ X , E and F are clauses, and E ∨ F is their disjunction with
repeated literals removed. We can view a Res proof π as a directed acyclic graph with a unique line Di at every
vertex, with initial clauses Cj ∈ τ at the leaves, ∅ at the root, and having an edge from Di to Dj if Di was used to
derive Dj . With this view, a TreeRes refutation requires that all non-leaf vertices of the underlying graph have
outdegree 1 (so the underlying graph of any TreeRes proof is tree-like).

Given a Res or TreeRes refutation π = {D1, D2, . . . , DS}, the size of π is the number of lines in π, in this
case S. The width of a clause Di is the number of literals in it, and the width of π is the maximum width of a
clause in the proof. We denote the width of a clause Di or proof π by w(Di) and w(π), respectively. Clearly Res
can p-simulate TreeRes with respect to size and width, as every TreeRes-proof is also a Res-proof.

An r-Resolution (Res(r)) refutation is similar to a Res refutation, but each line Di is an r-DNF instead of a
clause, and the resolution rule is adapted as follows: from (E ∨ (∨j∈Jxj)), (F ∨ (∧j∈Jxj)) we derive (E ∨ F ),
where J ⊆ [n] such that |J | ≤ r, E and F are r-DNFs, and E ∨F is their disjunction with repeated conjunctions
removed (note that ∨j∈Jxj is a DNF with |J | terms while ∧j∈Jxj is a single term). Note that Res(1) = Res.
The size of a Res(r) proof is the number of r-disjunctions in it. (See [33] for more details.)

An algebraic proof system for refuting CNF τ = {C1 . . . Cm′} over variable set X is a proof system where
each of the clauses Ci is converted into a polynomial equality or inequality Pi over X , such that any assignment
of all xj to {0, 1}n satisfies Ci iff it satisfies Pi. For this paper the conversion is done is by sending every positive
literal xj to (1−xj) and every negative literal xj to xj , and Pi is satisfied if the product of all converted literals in
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CHAPTER 2. PRELIMINARIES 5

Ci is 0. For example, the clause Ci = x1 ∨ x2 ∨ x3 is converted to Pi = (1− x1)(x2)(1− x3) = 0. In addition,
we add the equations x2

j − xj = 0 for all j ≤ n. Let the resulting m = m′ + n equations corresponding to τ be
denoted by P = {P1, . . . , Pm}. Since every Pi is of the form pi = 0 we drop the latter part and use Pi to refer to
pi.

The Nullstellensatz (Nullsatz) refutation system [8] is an algebraic proof system that uses Hilbert’s Null-
stellensatz as a certificate of unsatisfiablility. A Nullsatz proof (over a field F) of τ is a set of polynomials
Q1, . . . , Qm such that

∑
i PiQi is the formal polynomial “1”. Note that this contradicts the fact that there exists

an assignment such that Pi = 0 for all i. The size of a Nullsatz refutation π is the sum over all i ∈ [m] of
the number of monomials in the expansion of the term PiQi, while the degree of the refutation is the maximum
degree deg(PiQi) over all i ∈ [m]. It is known that Nullsatz p-simulates TreeRes.

The Polynomial Calculus (PC) system is a dynamic version of Nullsatz [16], where the lines of a PC proof
π are all polynomials Q1, Q2, . . . , QS . The lines Qi can be any of the initial polynomial equations P or can be
derived from previous lines by the following rules: (1) fromQi we can derive xjQi or (1−xj)Qi for any variable
xj ; (2) from Qi, Qj we can derive aQi + bQj for any a, b ∈ R. As with Nullsatz the final line QS is the formal
polynomial “1”. Similarly to Nullsatz the degree of a PC proof π is the maximal degree of any line Qi, and the
size of π is the total number of monomials in the refutation, where multiple occurrences of the same monomial
are counted for each occurrence. PC trivially p-simulates Nullsatz and the simulation is degree-preserving.

The PCR system is a simple modification to the PC proof system so that it can p-simulate Res proofs with
respect to size. For PCR, polynomials are allowed to use additional variables x1, . . . , xn and axioms of the form
1− xj − xj = 0 for all j ∈ [n]. Furthermore all terms (1− xj) in the input polynomials in P are replaced by the
variables xj . Intuitively although the variables xj and xj are distinct they stand for the negations of one another,
which is enforced by the new axiom corresponding to xj . It is not hard to see that PCR can now p-simulate Res
with respect to size.

2.2 Miscellaneous

2.2.1 Gap hitting set

Let S = {S1, . . . , Sn} be a collection of non-empty sets Sj over [n]. A hitting set H ⊆ [n] is a set of elements
such that H ∩ Sj 6= ∅ for all j ∈ [n]. Let γ(S) be the size of the smallest hitting set for S. The gap hitting set

problem is the task of distinguishing, on input (S, k, hk), the following two cases: (1) γ(S) ≤ k; (2) γ(S) > hk.

Definition 2.1. The Exponential Time Hypothesis (ETH) states [25] that for sufficiently large m and n, no algo-
rithm running in time 2o(n) can decide, for given CNF τ with m clauses and n variables, whether all m clauses
of τ are satisfiable or not. The Gap Exponential Time Hypothesis (GapETH) states [18, 28] that for sufficiently
large m and n, no algorithm running in time 2o(n) can decide, for given CNF τ with m clauses and n variables
and any constant ε ∈ (0, 1), whether all m clauses of τ are satisfiable or if at most (1 − ε)m of the clauses are
satisfiable.

We state the following hardness results for the hitting set problem under GapETH and ETH, which can be
inferred from recent work on parameterized complexity ( [12] and [?], respectively). For an overview of how to
find the optimal values in the result, see Appendix A.

Lemma 2.2 (Hardness of Hitting Set). Assuming GapETH, for sufficiently large n and k = Õ(log log n) no

algorithm can solve the gap hitting set problem (S, k, k2) in time no(k). Assuming ETH, for sufficiently large n

and k = O(log1/5 log n) no algorithm can solve the gap hitting set problem (S, k, k2) in time no(k).
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2.2.2 k-universal sets

Consider a set A ⊆ {0, 1}m of m-bit strings such that |A| = m. We say that A is (m, k)-universal if for every
subset J ⊆ [m] of up to k positions in [m], the projection A|J (restricting the strings in A to these positions)
contains all possible 2|J| binary strings of length |J |. Observe that we can take the dual of the set A in the
following sense: if A = {a1, . . . , am}, and let B ⊆ {0, 1}m be the set of all strings bj for j ∈ [m] such that
the ith bit of bj is the jth bit of ai. Another way to think about B is taking the strings of A to be the columns
of an m ×m matrix and letting B be the columns of that matrix’s transpose. We say A is (m, k)-dual-universal

if B is (m, k)-universal. Equivalently A is (m, k)-dual-universal if for every ordered subset I ⊆ A of up to k
strings in A and for every string s ∈ {0, 1}|I|, there exists some position j ∈ [m] such that s is the string formed
by concatenating the jth bit of all strings in I in order. The existence of efficiently constructible (m, logm/4)-
universal sets is known (see [3, 29] for many examples of such sets coming from almost k-wise independent
sample spaces). It is also known that there exist efficiently constructible sets that are both (m, logm/4)-universal
and (m, logm/4)-dual-universal. (For a concrete example, [2] uses the Paley graph Gm on m vertices.) For the
rest of the paper we will fix an arbitrary A that is efficiently computable and is both (m, logm/4)-universal and
(m, logm/4)-dual-universal.



Chapter 3

Main ideas

To prove Theorem 1.1, it is sufficient to have a procedure that efficiently takes a hitting set instance S and construct
from it a tautology τS such that SQ(τS) is closely correlated with γ(S). In this chapter we show that such
a procedure proves Theorem 1.1, and then define τS . To understand why this construction gives the desired
correlation with γ(S) we prove decision tree upper and lower bounds on S(τS). This will also give the strategy
behind the lower bounds for all other Q, which we prove in Chapter 4.

3.1 Proof of main theorem

We first state our main lemma from which Theorem 1.1 is easily proven.

Lemma 3.1. Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}. For sufficiently large n, let (S, k, k2) be an

instance of the gap hitting set problem over [n]. Then there exists a tautology τS which can be computed in time

nO(1) such that SQ(τS) = nΘ(γ(S)/k). Namely the following two properties hold

(1) if γ(S) ≤ k then SQ(τS) ≤ nO(1);

(2) if γ(S) > k2 then SQ(τS) ≥ nΩ(k).

Proof of Theorem 1.1. We prove the statement for GapETH, and defer the proof for ETH to Appendix B. Assum-
ing that Q is nf automatizable for some f := f(n, S) = õ(log logS), we describe an efficient algorithm for the
gap hitting set problem. Given an instance (S, k, k2) of the gap hitting set problem over [n], with n sufficiently
large and k = Õ(log log n), we generate the CNF τS , and simulate the automatizing algorithm on τS for nO(f)

timesteps. If the automatizing algorithm outputs a legal Res refutation of τS within the allotted time, then we
output “γ(S) ≤ k” and otherwise output “γ(S) > k2”. Because S = nO(1) it holds that f = o(k), and so the
correctness is guaranteed by Lemma 3.1. Thus we can decide the gap hitting set problem in time nO(f) = no(k),
which by Lemma 2.2, contradicts GapETH.

3.2 Reduction

The rest of the paper is devoted to the proof of Lemma 3.1. Hereafter, fix k = Õ(log log n) and definem := n1/k.
Observe that k logm = log n and k < logm

4 . In what follows we will abuse notation and xi, yj will denote a
tuple of Boolean variables (rather than a single Boolean variable). The tuple size of xi, yj will be clear from
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CHAPTER 3. MAIN IDEAS 8

context, but generally xi will be a O(logm)-tuple and yj will be a O(log n)-tuple. A vector of ~x = x1, . . . , xn,
~y = y1, . . . , ym will denote a vector of tuples. αi and βj will denote a 0/1 assignment to the tuples xi and yj
respectively, and ~α, ~β will each denote a 0/1 assignment to the vector of tuples ~x, ~y respectively.

3.2.1 The basic reduction

Given a hitting set instance S we will define an unsatisfiable formula ψS . The variables of ψS are:

• ~x = {xi | i ∈ [n]} where xi is a tuple of logm Boolean variables, and

• ~y = {yj | j ∈ [m]} where yj is a tuple of log n Boolean variables.

We will view an assignment αi for xi as choosing a position in [m], and similarly we will view an assignment βj
for yj as choosing a set Sβj from S.

Given an assignment ~α to all of the ~x-variables, we will associate with ~α an n-by-m matrix M~α, where the ith
row of M~α will be the vector aαi ∈ A (interpreting αi as a number in [m]). Similarly given an assignment ~β to
all of the ~y-variables, we will associate with ~β an n-by-m matrix N~β , where column j is the characteristic vector
corresponding to the set Sβj ∈ S (interpreting βj as a number in [n]). In other words, N~β [i, j] is 1 if and only if
set Sβj contains element i.

The CNF formula ψS will say that for any assignments ~α, ~β, there is no location [i, j] where both M~α and N~β

are 1. To motivate this definition, consider the jth column of M~α, and treat it as the characteristic vector of a set
Hj ⊆ [n]. Hj is not a hitting set of S iff there exists some set Sj ∈ S such that Hj ∩ Sj = ∅. Setting βj such
that Sβj = Sj , we find that Hj ∩ Sj = ∅ iff for all i ∈ [n], either M~α[i, j] = 0 or N~β [i, j] = 0. Thus ψS says
that for all j, the set Hj defined by the jth column of Mα is not a hitting set of S. For each Hj , the jth column of
Nβ witnesses this by encoding a set which is not hit by Hj .

Claim 3.2. ψS is unsatisfiable when γ(S) ≤ logm
4 .

Proof. Suppose without loss of generality that H = {1, 2, ..., γ(S)} is a hitting set and γ(S) ≤ logm
4 . Consider

any assignment α1, . . . , αγ(S) to x1 . . . xγ(S), which is a collection of at most γ(S) vectors from A (note that
there may be repetitions). SinceA is (m, logm/4)-dual-universal, and γ(S) ≤ logm/4, there exists a j such that
M~α[i, j] = 1 for all i ∈ [γ(S)]. Since H = [γ(S)] is a hitting set, for any assignment ~β every column of N~β (in
particular j) has a 1 somewhere in the first γ(S) entries. Therefore there exists an i where both M~α and N~β are 1
in entry [i, j], which falsifies ψS .

Lastly we need to formalize ψS as a collection of clauses. To express that column j doesn’t hit the set Sβj ,
we will define a set Aj of column axioms consisting of clauses which together rule out all of the ways that the
set Hj corresponding to column j of M~α could hit the set Sβj . It is important to view M~α as a sequence of row
vectors, where the ith row is determined by αi, and N~β as a sequence of column vectors where the jth column
is determined by βj . We will sometimes write M~α[i, j] as Mαi [i, j] to stress that the entries [i, ∗] of M~α are
determined by αi. Similarly, we will sometimes write N~β [i, j] as Nβj [i, j].

Definition 3.3. For each j ∈ [m], the set of clauses, Aj , are defined as follows. For every i ∈ [n] and for every
pair of values αi ∈ {0, 1}logm, βj ∈ {0, 1}logn such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we have the clause

xαii ∧ y
βj
j
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where xαii = ∧t∈[n](xi)
(αi)t
t is the conjunction of all variables in xi, each of which occurs positively when the

corresponding bit of αi is 1 and negatively when the corresponding bit of αi is 0 (we define yβjj in the same way).
This axiom is falsified exactly when xi is assigned value αi and yj is assigned value βj .

The formula ψS is the conjunction of all clauses in ∪j∈[m]Aj . It is easy to check that the number of variables
is n logm + m log n. For each j ∈ [m], the number of clauses in Aj is at most n2m, since there are at most
n(nm) triples (i, αi, βj). Thus the total number of clauses is at most n2m2.

3.2.2 A Redundant Encoding

In order to prove our result we will need a way of proving both upper and lower bounds on SQ(ψS), but it turns
out that the lower bounds are difficult to prove if we use ψS as is. Thus, we will employ a standard trick in
proof complexity, which is to redundantly encode the variables in the formula. It is interesting to note that for
our formulas, we are unable to prove even width lower bounds without the redundant encoding. In contrast, most
proof complexity applications use this trick solely for the purpose of reducing size lower bounds to width lower
bounds. To this effect we follow [2] and define a variant of ψS where the x and y variables are redundantly
encoded using error correcting codes.

Definition 3.4. For q, r, s ∈ N, a (q, r, s)-code is a function f from {0, 1}q to {0, 1}r with the property that for
any ρ ∈ {0, 1, ∗}q such that ρ fixes at most s values to {0, 1}, f |ρ is surjective on {0, 1}r. Efficiently computable
constructions using linear codes are known for any r, q = 6r, s = 2r (see e.g. [2]). We say that f is r-surjective.

Let fx : {0, 1}6 logm → [m] be a (6 logm, logm, 2 logm)-code and let fx : {0, 1}6 logn → [n] be a
(6 log n, log n, 2 log n)-code. We will have a vector xi ∈ {0, 1}6 logm for each i ∈ [n] and a vector yj ∈
{0, 1}6 logn for each j ∈ [m]. Given an assignment ~α to all of the ~x-variables, we will associate with ~α an n-
by-m matrix M~α, where the ith row of M~α will be the vector afx(αi) ∈ A. Similarly given an assignment ~β to
all of the ~y-variables, we will associate with ~β an n-by-m matrix N~β , where column j is the characteristic vector
corresponding to the set Sfy(βj) ∈ S In other words, N~β [i, j] is 1 if and only if set Sfy(βj) contains element i.

We now define our unsatisfiable CNF τS in the same way as ψS using these redundant encodings. Note that it
is unsatisfiable for exactly the same reason as stated before.

Definition 3.5. For each j ∈ [m], the clauses Aj of τS are defined as follows. For every i ∈ [n] and for every

pair of assignments (αi, βj) to (xi, yj) such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we have the clause xαii ∧ y
βj
j .

The formula τS is the conjunction of all clauses in ∪j∈[m]Aj . In the redundant encoding we have n · 6 logm

x-variables andm·6 log n y-variables, for a total ofO(n logm) variables whenm = n1/k � n. For each j ∈ [m]

the number of clauses in Aj is at most n7m6 since the total number of triples (i, α, β) is at most n(n6m6). Thus
the size of τS is at most n7m7.

The following two lemmas, which will be the focus of the rest of the paper, give tight upper and lower bounds
on SQ(τS) as a function of γ(S). Since we can clearly construct τS in time polynomial in n, proving these two
lemmas is all we need to finish Lemma 3.1.

Lemma 3.6. For sufficiently large n, let (S, k, k2) be an instance of the gap hitting set problem over [n] such that

γ(S) ≤ k and k < logm. Then SQ(τS) ≤ nO(1) for any Q ∈ {Res, TreeRes, Nullsatz, PC, PCR, Res(r)}.

Lemma 3.7. For sufficiently large n, let (S, k, k2) be an instance of the gap hitting set problem over [n] such that

γ(S) > k2 and k < logm. Then SQ(τS) ≥ nΩ(k) for any Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}.
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3.2.3 Proof sketch

For any unsatisfiable CNF τ , the search problem associated with τ takes as input an assignment ~ρ to the underlying
variables of τ , and should output some clause in τ that is falsified by ~ρ. A decision tree for the search problem is
defined in the obvious way: it is a decision tree over the variables of τ , where every leaf of the tree is labelled by
some clause of τ , and for every assignment ~ρ to the variables, the (unique) path in the tree that is consistent with
~ρ is labelled with a clause that is falsified by ~ρ. It is this search problem that we prove height upper and lower
bounds on in the rest of the chapter, which will serve as a springboard into proving Lemmas 3.6 and 3.7 for all Q
in Theorem 1.1

For the upper bound we simply need to formalize Claim 3.2 as a decision tree. Querying all rows in the
smallest hitting set H will identify the j for which M [i, j] = 1 for all i ∈ H , and then we need only query yj . For
the lower bound we use the fact that if a decision tree queries too few rows then there is a set in S that is not hit by
any row queried, and if it queries too few columns then there is a row vector from the universal set A which is 0 in
all columns queried. Even if the decision tree is allowed to pick the order the rows and columns are queried in, as
long as we pick a row/column that “misses” every column/row queried so far then we can always avoid violating
an axiom. Finally by plugging in O(logm) variables for every row and O(log n) variables for every column we
will get the lower bounds desired.

3.3 Decision tree bounds

3.3.1 Decision tree upper bound

Lemma 3.8 (Height upper bound). If γ(S) ≤ k and k ≤ logm
4 , then there is a decision tree of height O(log n)

solving the search problem on τS .

Proof. We will first show that if γ(S) ≤ k, then there is a height 2 log n decision tree (and therefore size n2) for
the unencoded formula ψS . Since γ(S) ≤ k, assume without loss of generality that H = {1, . . . , k} is a valid
hitting set for S. The decision tree for ψS consists of two phases. In the first phase the decision tree will branch
on all of the Boolean variables in x1, . . . , xk. This will result in a full binary tree, call it T , of depth k logm. In
the second phase, at each leaf vertex of T we will query all of the variables of some yj variable, where the choice
of yj will be a function of the path taken in T .

Consider some path in T leading to the leaf vertex l~α, corresponding to the assignment ~α = α1, . . . αk for
x1, . . . , xk. The assignment ~α corresponds to an ordered set of strings I ⊆ A, where |I| ≤ k. Since k ≤ logm

4 ,
by the (m, logm/4)-dual-universal property of A there is some j ∈ [m] such that I restricted to position j is all
1’s, and thus M~α[i, j] = 1 for all i ∈ [k]. In the second phase, at this leaf vertex l~α of T we will then query all
of the Boolean variables in yj . Let βj be one partial assignment to these variables and consider the path labeled
by ~αβj leading to the leaf vertex l~αβj . Since {1, . . . , k} is a hitting set for S we are guaranteed that N~βj

[i, j] = 1

for at least one i ∈ [k], and since M~α[i, j] = 1 for all i ∈ [k], one of the clauses in Aj must be violated by the
partial assignment ~α, βj , so we label l~αβj with any such clause. The resulting decision tree thus solves the search
problem associated with ψS and has height k logm+ log n = 2 log n.

The decision tree for the redundant version τS is essentially the same but now we query the redundant en-
codings of the variables instead. In the first phase we query x1, . . . , xk, resulting in a full binary tree of height
k · 6 logm, and in the second phase we query a particular yj (depending on the path taken in T ), which is 6 log n

variables, and thus the height is k · 6 logm+ 6 log n = 12 log n.
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Proof of Lemma 3.6. By Lemma 3.8 there is a decision tree solving the search problem for τS of size at most
212 logn = nO(1). It is well-known that there is a simple size-preserving transformation between decision trees
solving the search problem for τ and TreeRes refutations for τ . Therefore SQ(τS) ≤ nO(1) for Q = TreeRes.
The lemma follows by the fact that Res, Nullsatz, PC, PCR, and Res(r) all p-simulate TreeRes.

3.3.2 Decision tree lower bound

We prove a stronger height lower bound as per our proof sketch using the following definitions:

Definition 3.9. For a collection of literals D, let I0(D) be the set of all i ∈ [n] for which there are at least logm

literals in D that correspond to variables from xi. Likewise let J0(D) be the set of all j ∈ [m] for which there are
at least log n literals in D that correspond to variables from yj .

Lemma 3.10 (Height lower bound). If γ(S) ≥ k2 and k ≤ logm
4 , then for any tree π solving the search problem

on τS , there exists a path p ∈ π from the root to a leaf such that |I0(p)| ≥ k2 or |J0(p)| ≥ k.

Proof. Assume for contradiction that |I0(p)| < k2 and |J0(p)| < k for all paths p ∈ π. We will inductively build
a path p such that no clause has been violated as long as these two upper bounds hold, which is a contradiction as
π must find a violated clause. Let z be the variable being queried in the current node. We perform as follows:

• if z is already in p, answer consistently with our previous answer

• if z is a variable in xi:

– if i /∈ I0(p) and after adding z to p there are still less than logm variables from xi in p, we branch
arbitrarily.

– if i /∈ I0(p) but after adding z to p there are logm variables from xi in p, we use the (m, logm/4)-
universal property of A to find a string a0 ∈ A such that a0|J0(p) is the all-zeros string, and use the
surjective property of fx to find an assignment αi consistent with the assignment to the xi variables in
memory such that fx(αi) = a0. We store the assignment αi for xi from now on, and note that I0(p)

now contains i.

– if i ∈ I0(p) then we are maintaining an assignment αi for xi, and we answer according to αi.

• if z is a variable in yj :

– if j /∈ J0(p) and after adding z to p there are still less than log n variables from yj in p, we branch
arbitrarily.

– if j /∈ J0(p) but after adding z to p there are log n variables from yj in p, we use the fact that
|I0| < γ(S) to find a set S0 ∈ S such that S0 does not contain any element of I0 and use the surjective
property of fy to find an assignment βj consistent with the assignment to the yj variables in memory
such that fy(βj) = S0. We store the assignment βj for yj from now on, and note that J0(p) now
contains j.

– if j ∈ J0(p) then we are maintaining an assignment βj for yj , and we answer according to βj .

Clearly no axiom is violated, but for completeness assume for contradiction we reach a leaf labeled with the
axiom xαii ∧ y

βj
j , and thus π claims that M~α[i, j] = N~β [i, j] = 1. First, consider the case when either i /∈ I0 or

j /∈ J0. In either case there are is at least one variable in the axiom that is not in p, which means that it has not
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been falsified, which is a contradiction. So i ∈ I0 and j ∈ J0. Assume that i was added after j. Since j was in J0

at the time we defined αi, Mαi [i, j] = 0 by our choice of αi, which is a contradiction. Finally assume that j was
added after i. Then since i was in I0 at the time we defined βj , fy(βj) does not contain i, and so Nβj [i, j] = 0,
which is also a contradiction.

Unlike for Lemma 3.6, Lemma 3.10 is not enough to give a proof of Lemma 3.7 even for TreeRes. Proving
Lemma 3.7 using the adversarial argument of Lemma 3.10 is the subject of our next chapter.



Chapter 4

Lower bounds

The decision tree upper bound given in Chapter 3 is enough to give the upper bound in Lemma 3.6 for Res,
Nullsatz, PC, PCR, and Res(r), since all these systems p-simulate TreeRes. However Lemma 3.7 remains to
be proven for all these proof systems. The core of the argument is analogous to the case of TreeRes, and so we
leverage the same adversarial argument in each of the different settings to give the desired lower bound.

4.1 Res lower bounds

In this section we prove Lemma 3.7 for the case of Q = Res, which implies the result for TreeRes as well.
We begin by proving a wide clause lemma for τS , which alone is enough to prove lower bounds for TreeRes
(using the size-width relationship for TreeRes due to Ben-Sasson and Wigderson [9]); for general Res, we apply
a standard application of random restrictions to reduce to width.

Definition 4.1. For a clause D, let I0(D) be the set of all i ∈ [n] for which there are at least logm literals in D
that correspond to variables from xi. Likewise let J0(D) be the set of all j ∈ [m] for which there are at least log n

literals in D that correspond to variables from yj .

Lemma 4.2 (Wide Clause Lemma). If γ(S) ≥ k2 and fx (fy) is logm-surjective (log n-surjective, respectively),

then for any Res refutation π refuting τS there exists a clause D ∈ π such that |I0(D)| ≥ k2 or |J0(D)| ≥ k.

Proof. We follow the prover-delayer game of [4, 31] in the style of [5]. The width-w game on an unsatisfiable
formula τ is played between a Delayer, who is asserting that she has a satisfying assignment for τ , and a Prover,
who is trying to force the Delayer into a contradiction by asking her values of the underlying variables. However,
the Prover has limited memory and can only remember the values of up to w of the variables at a time.

Both players know τ and the contents of the Prover’s memory, which is initially empty. At the start of each
round there are at most w − 1 values in memory. The Prover asks the Delayer the value of some variable whose
value is not currently in memory. The Delayer responds with an answer (either 0 or 1), and upon receiving the
answer, the Prover adds this assignment to his memory (increasing the number of stored values by 1). He can
then erase (forget) any existing values from memory, possibly decreasing the number of stored values. The Prover
declares victory if at some point, the partial assignment written in his memory falsifies one of the clauses of τ .
The Delayer has a winning strategy for the width-w game on τ if no matter how the Prover plays the game, he
cannot win. It was shown [4, 31] that the Delayer has a winning strategy for the width-w game if and only if the
Res width of τ is at least w.

13
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For our tautology τS , the game proceeds as above, but now let D be the set of literals in the Prover’s memory,
and we demand instead of only holding w variables total in memory that |I0(D)| < k2 and |J0(D)| < k. Now
the Delayer has a winning strategy for this game if and only if the lemma holds. The Delayer’s winning strategy
is nearly identical to in the proof of Lemma 3.10, with the only adjustment being for what to do when a literal is
erased from memory.

• if the Prover asks about a variable in memory, we answer consistently

• If the Prover asks about a variable in xi:

– If i /∈ I0(D) and after adding this bit there are still less than logm variables from xi in memory, the
Delayer can answer with either 0 or 1 arbitrarily.

– If i /∈ I0(D) but after adding this bit to memory there are now logm variables from xi in memory,
the Delayer uses the (m, logm/4)-universal property of A to find a string a0 ∈ A such that a0|J0(D)

is the all-zeros string, and uses the surjective property of fx to find an assignment αi consistent with
the assignment to the xi variables in memory such that fx(αi) = a0. The Delayer will remember the
assignment αi for xi from now on, and note that I0(D) now contains i.

– Finally if i ∈ I0(D) then the Delayer is maintaining an assignment αi for xi, so she answers according
to αi.

• If the Prover asks about a variable in yj :

– If j /∈ J0(D) and after adding this bit there are still less than log n variables from yj in memory, the
Delayer can answer with either 0 or 1 arbitrarily.

– If j /∈ J0(D) but there are now log n variables from yj in memory, the Delayer uses the fact that
|I0(D)| < γ(S) and finds a set S0 that doesn’t contain any element i ∈ I0(D), and uses the surjective
property of fy to find an assignment βj consistent with the assignment to the yj variables in memory
such that fy(βj) = S0. The Delayer will remember the assignment βj for xj , and note that J0(D)

now contains j.

– Finally if j ∈ J0(D) then the Delayer is already maintaining an assignment βj for yj , so she answers
according to βj .

• Whenever the Prover erases a variable from xi from his memory, if i ∈ I0 and now there are less than logm

variables from xi in memory, the Delayer forgets αi. (note that i is no longer in I0) Similarly, whenever
the Prover erases a variable from yj from his memory, if j ∈ J0 and now there are less than log n variables
from yj in memory, the Delayer removes βj from J0. (note that j is no longer in J0)

Assume for contradiction the game ends with the Prover winning. Consider when the game ends, and say the
Prover claims the axiom xαii ∧ y

βj
j was falsified, and thus that M~α[i, j] = N~β [i, j] = 1. First, consider the case

when either i /∈ I0 or j /∈ J0. In either case there are is at least one variable in the axiom that is not in memory,
which means that it has not been falsified, which is a contradiction. So assume that i ∈ I0 and j ∈ J0, and
consider the last time that i was added to I0 and the last time that j was added to J0. Assume that i was added
after j. Since j was in J0 at the time we defined αi, Mαi [i, j] = 0 by our choice of αi, which is a contradiction.
Finally assume that j was added after i. Then since i was in I0 at the time we defined βj , fy(βj) does not contain
i, and so Nβj [i, j] = 0, which is also a contradiction.
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Proof of Lemma 3.7 (TreeRes, Res). Let π be a Res refutation of τS and assume for contradiction that |π| <
nk/16. Let ρxi ∈ {0, 1, ∗}xi and let ρyj ∈ {0, 1, ∗}yj Let R be the set of all ~ρ = {ρx1 . . . ρxn , ρy1 . . . ρym}, such
that for all i ∈ [n] and j ∈ [m], |ρ−1

xi (∗)| = 5 logm and |ρ−1
yj (∗)| = 5 log n. Observe that every such restriction

fixes exactly 5
6 of the variables in each xi and each yj to ∗ and the rest of the variables to {0, 1} uniformly at

random. Also note that fx was 2 logm before the restriction, and since only logm variables are fixed in every
row fx|ρ∼R is still logm surjective (and similarly for fy).

First, consider a clause D ∈ π such that |I0(D)| ≥ k2. For each i ∈ I0(D), the chance that a randomly
chosen ~ρ ∈ R doesn’t set one of the xi literals in D to 1 is less than (1− ( 1

6 ·
1
2 ))logm. Thus the probability that

no i ∈ I0(D) setsD to 1 is at most ( 11
12 )k

2 logm = ( 11
12 )k logn < 1

nk/8
. By a union bound the probability that some

clause D in π satisfying |I0(D)| ≥ k2 survives a random restriction is less than nk/16

nk/8
= 1

nk/16
, using the fact that

|π| < nk/16.

Similarly the probability that some clause D ∈ π satisfying |J0(D)| ≥ k survives a random restriction is
at most 1

nk/16
. Thus with probability at least 1 − 2

nk/16
, all clauses D satisfying |I0(D)| ≥ k2 or |J0(D)| ≥ k

are set to 1 by a random restriction, and thus there exists a restriction ~ρ setting all such clauses to 1. However
even after restricting τS by ~ρ, the function fx is still a (5 logm, logm, logm)-code and the function fy is still a
(5 log n, log n, log n)-code. Thus we can still apply Lemma 4.2 to τS |~ρ, even with logm xi variables missing in
every row and log n yj variables missing in every column. Since π|~ρ is a refutation of τS |~ρ, by Lemma 4.2 it must
have a clause D with either I0(D) ≥ k2 or J0(D) ≥ k, which is a contradiction of the fact that ~ρ sets all such
clauses to 1. Thus SQ(τS) ≥ nclk for cl = 1

16 .

4.2 Nullsatz/PC/PCR lower bounds

Galesi and Lauria [19] extended the argument due to Alekhnovich and Razborov [2] to prove that Nullsatz, PC
and PCR are also not polynomially automatizable. In this section we similarly extend our proof to apply to these
systems, obtaining our improved bounds as well. Namely we prove Lemma 3.7 for the case ofQ = PCR, and by
extension Nullsatz and PC.

The strategy is to prove a degree version of the wide clause lemma for τS in the style of Lemma 4.2, and then
the same random restriction argument as before will prove the size lower bound needed for Lemma 3.7. Recalling
the definitions for I0, J0 in Lemma 4.2, for any monomial t let I0(t) be the set of all i ∈ [n] for which at least
logm variables from xi appear in t, and let J0(t) be the set of all j ∈ [m] for which at least log n variables from
yj appear in t. Recall that for PCR there exist distinct variables z and z, both of which we consider to be variables
from their respective xi or yj .

Lemma 4.3. If γ(S) ≥ k2, then for any PCR refutation π refuting τS , there exists a monomial t ∈ p ∈ π such

that |I0(t)| ≥ k2 or |J0(t)| ≥ k.

Proof. Given a set P = {p1, . . . , pm} of polynomials over F [x1, . . . , xn], we denote by span(P ) the ideal
generated by P – that is the set {

∑
i pifi | fi ∈ F [x1, . . . , xn]}. A set of polynomials f1, . . . , fn semantically

implies a polynomial g if any assignment that satisfies fi = 0 for all i ∈ [n] also satisfies g = 0. Note that
p ∈ span(P ) if and only if P semantically implies p, which we write as P ` p.

Recall that P is our set of input clauses converted to polynomial form, and Aj is the set of clauses associated
with column j. Accordingly let Pj denote the corresponding set of polynomials plus the equations {z2 − z = 0}
for every variable z in τ . For a subset J ⊆ [m] of columns, let PJ denote ∪j∈JPj , and thus span(PJ) is the ideal
generated by the polynomials PJ .
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We will prove our degree bound for PCR refutations of τS by defining a linear operator K which maps
polynomials p where |I0(t)| < k2 and |J0(t)| < k for all t ∈ p to polynomials q, and satisfies the following
conditions:

1. For all initial polynomials p ∈ ∪j∈[m]Pj , K(p) = 0.

2. K is linear: K(ap+ bq) = aK(p) + bK(q) for all constants a, b and polynomials p, q.

3. K(xt) = K(xK(t)) for all x

4. K(1) 6= 0

The existence of such an operator implies our degree bound as follows. Given an alleged PCR refutation
which contains no monomial t where I0(t) ≥ k2 or J0(t) ≥ k, applying K to every line in the proof, we have by
the properties of K in conditions 1, 2, and 3 that K(p) = 0 for every polynomial in the proof. On the other hand
since the final line is 1, by property 4 K(1) 6= 0, which is a contradiction.

We fix the grlex (graded lexicographical) ordering on all polynomials over F [x1, . . . , xn]. Given a polynomial
q and J ⊆ [m], let RJ(q) be the minimal (with respect to <) polynomial p such that q − p ∈ span(PJ). For
every monomial t we set K(t) = RJ0(t)(t), and for p =

∑
i citi set K(p) =

∑
i ciK(ti). Intuitively K(t) is how

“close” t is to being in the span of the axioms in all columns with many variables in t. Note that this definition is
asymmetric with respect to ~x and ~y.

We now show the conditions of the linear operator are fulfilled. Consider any initial polynomial, p. If p is
z2 − z, then since K[z2] = K[z], K[z2 − z] = 0 as required. Otherwise p is of the form xαii y

βi
j = 0. Note

that p is a single monomial with 4 log n variables of the form yj and no variables of the form yj′ for j 6= j′.
So J0(p) = {j} and thus RJ0(p)(p) = 0, which fulfills condition 1. By definition K is a linear operator, which
fulfills 2. Because J0(1) = ∅, 1 /∈ span(PJ0(1)), and so condition 4 is satisfied.

To prove condition 3, let us first prove the intuitive direction of the equality, namely that K(xt) ≥ K(xK(t)).
We repeatedly make use of the fact that if J ⊆ J ′ then RJ(t) ≥ RJ′(t).

K(xt) = RJ0(xt)(xt)

= RJ0(xt)(xRJ0(xt)(t))

≥ RJ0(xt)(xRJ0(t)(t)) (1)

= RJ0(xt)(xK(t))

≥ RJ0(xK(t))(xK(t)) (2)

= K(xK(t))

In order to get equality, it is enough to show that (1) and (2) can be made equalities. For (2) note that if we
expand xK(t) as a polynomial and apply the linear operator RJ0(xt) to each term, we get that equality holds iff
for all monomials t′ in xK(t),

RJ0(xt)(t
′) = RJ0(xK(t))(t

′).

We now observe that J0(xt) ⊆ J0(t) and J0(t′) ⊆ J0(xt), J0(xK(t)). Therefore to finish the proof of condi-
tion 3 and thus the lemma, we prove the following claim:

Claim 4.4. For all t where |I0(t)| < k2 and all J ⊇ J0(t) such that |J | < k, RJ0(t)(t) = RJ(t).

We need to show that RJ0(t)(t) ≥ RJ(t) and RJ0(t)(t) ≤ RJ(t). The first inequality holds trivially because
J0(t) ⊆ J , meaning that any p ∈ span(PJ0(t)) is also in span(PJ) as well. Now we prove the other direction,
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RJ0(t)(t) ≤ RJ(t). If we can show that t− RJ(t) ∈ span(PJ0(t)), then since RJ0(t) is the smallest polynomial
p for which t − p ∈ span(PJ0(t)), it follows that RJ(t) ≥ RJ0(t) as desired. This is equivalent to showing that
PJ0(t) ` t−RJ(t) by definition of span, which is the statement we will now prove.

Assume for contradiction that there exists an assignment ~α, ~β that satisfies all axioms in PJ0(t) but falsifies
t−RJ(t). We then prove that there exists an assignment ~α′, ~β′ that satisfies all axioms inPJ but doesn’t touch any
variables in t−RJ(t), This means that PJ doesn’t imply t−RJ(t), which contradicts the fact that by definition of
R, t−RJ(t) ∈ span(PJ). For this we note that the set of variables in t is a superset of the variables in t−RJ(t),
and thus |I0(t−RJ(t))| < k2 and |J0(t−RJ(t))| < k as per the claim. For simplicity we will refer to these sets
as simply I0 and J0.

Consider a row i ∈ [n] − I0. By the (m, logm/4)-universal property of A there exists a string a ∈ A which
is zero in all positions j ∈ J . Since there are at most logm xi variables in t−RJ(t), we can leave αi untouched
on those variables and change the rest to give us α′i, such that fx(α′i) = a. We do this for all such i, noting that
no variables in t−RJ(t) have been changed.

Now consider a row j ∈ J − J0. Let S0 be a set that doesn’t contain any i ∈ I0, given to us by the fact that
I0 < k2 < γ(S). Since there are at most log n yj variables in t − RJ(t), we can leave βj untouched on those
variables and change the rest to give us β′j , such that fy(β′j) = S0. We do this for all such β′j , noting again that
no variables in t−RJ(t) have been changed.

We now claim that ~α′, ~β′ satisfies all axioms in PJ . Consider a row j ∈ J0. Assume an axiom for row i and
column j was violated. If i /∈ I0, we are guaranteed that fx(α′i) is 0 in the jth entry, so it must be that i ∈ I0. But
then we haven’t changed αi or βj , and since the original assignment satisfied all axioms in PJ0 the axiom could
not have been violated by ~α′, ~β′. Now consider a row j ∈ J − J0. Assume an axiom for row i and column j was
violated. Again if i /∈ I0, we are guaranteed that fx(α′i) is 0 in the jth entry, so it must be that i ∈ I0. But then
we changed βj such that fy(β′j) is 0 in the ith row, and so the axiom could not have been violated by ~α′, ~β′.

Proof of Lemma 3.7 (Nullsatz, PC, PCR). Assume for contradiction that there exists a PCR proof π refuting τS
in size less than nk/16. We apply the same restriction from the proof of Lemma 3.7 to the positive variables ~x, ~y
in every line . Then for the negative variables we set z to be ∗ if z is set to ∗ and 1 − z otherwise. The same
analysis proves that there exists a restriction ρ which sets every monomial t with |I(t)| ≥ k2 or |J(t)| ≥ k to 0,
and the remaining proof π|ρ is a refutation of τS |ρ. Because fx is still a (5 logm, logm, logm) code and fy is
still a (5 log n, log n, log n) code, π|ρ still requires such a monomial by Lemma 4.3, which is a contradiction.

4.3 Res(r) lower bounds

There is an inherent tradeoff between the lower bound on SQ(τS) for Q = Res(r) and the width of the terms r.
In Chapter 5 we will see a generalization of Res(r) for which Lemma 3.7 does not hold, and in fact the argument
holds for Res(r) where r = Ω(log n). We prove a version of Lemma 3.7 that reflects this tradeoff and then state
Theorem 1.1 in the case of Res(r), along with the two most extreme settings for r.

Lemma 4.5 (Lemma 3.7 for Res(r)). For sufficiently large n, let (S, k, k2) be an instance of the gap hitting set

problem over [n] such that γ(S) > k2 and k2 < logm. Then for Q = Res(r), SQ(τS) ≥ nk/ exp(r2).

Proof. Suppose that π is a small Res(r) refutation of τS ; thus each line of the proof is a disjunction of size-r
conjunctions (where r � log n). At a high level, we will show that there exists a random restriction ρ ∈ R
(defined in the proof of Lemma 3.7) such that π|ρ is a small-width Res proof refuting τS |ρ, which contradicts the
Wide Clause Lemma (Lemma 4.2).
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In order to prove the existence of such a restriction, we will apply the switching lemma proven in [33] which
is specifically designed to work for Res(r). More specifically, the restriction will leave a constant fraction of the
variables unset. In contrast, standard switching lemmas such as those used to prove bounded-depth circuit lower
bounds leave at most 1/ log n variables unset. The fact that the restriction is small (sets only a constant fraction
of variables) will allow us to maintain that τS |ρ is still an encoded version of τS , but where the encoding length
is somewhat smaller. Whereas standard switching lemmas typically convert disjunctions of r-conjunctions to
decision trees of height r (in order to apply it repeatedly), in our case, we only need to apply the switching lemma
once, and therefore we are content with converting disjunctions of r-conjunctions to decision trees of height w,
where r is much smaller than w. This setting of parameters is what makes it possible to obtain a switching lemma
that sets only a constant fraction of the inputs. After applying the restriction, the proof is a sequence of sound
inferences, where each line is a height-w decision tree. [33] show how to convert such a refutation into a width w′

refutation, where w′ is not much larger than w, and thus we can apply our Wide Clause Lemma in order to obtain
a contradiction.

The switching lemma (showing the existence of the restriction ρ) is argued in stages; in stage i we show that
for any i-DNF D either there exist many restrictions inR that set D to 1 or we can create a small height decision
tree with each leaf labeled by D restricted by the path to the leaf leaf, and such that the resulting DNF at every
leaf is a (i− 1)-DNF. To do this we take the i-DNF from the previous round consider its covering number, where
the covering number c(D) is the size of the smallest set of variables which intersects every term in D. If the
covering number is large, then many terms are independent and are thus set to 1 by a random restriction with
high probability. If the covering number is small, then we can query all variables in the cover to turn D into a
(i − 1)-DNF. Continuing until i = r gives us a small height decision tree for all D ∈ π with small c(D), while
taking a union bound over all D ∈ π with large c(D) ensures that there exists a restriction ρ ∈ R that kills off
all such DNFs. The resulting proof π can then be shown to have a small Res proof given these two facts, which
completes the proof.

Let s be a parameter to be set later, and assume for contradiction that there exists a Res(r) proof π such that
|π| < ns. Define sequences s0 . . . sr, p1 . . . pr as follows:

s0 = (

r∏
i=1

2(6/5)i+1

i
)s log n

si = (
i

2(6/5)i+1
)si−1

pi = 2−2si

Observe that that sk = s log n, and that si � si+1

4 .

Consider any i-DNF D such that c(D) > si. By the pigeonhole principle there exist si/i terms T1 . . . Tsi/i in
D which are mutually disjoint. Let ρ ∼ R be defined as in Lemma ??. Then the probability that D is not set to 1
by ρ is at most the probability that no term Tj is set to 1, and since they are disjoint this happens with probability
(1− ( 5

6 )i)si/i = e−(6/5)isi/i < 2−2si+1 = pi+1.

Now consider an r-DNF D. We claim that

Pr
ρ∼R

[dt(F |ρ) >
r−1∑
i=0

si] ≤
r∑
i=1

2(
∑r−1
j=i sj)pi

where dt(F |ρ) is the height of a minimal decision tree for F |ρ. We prove this claim by induction on r. In the case
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when r = 1, either c(D) ≤ s0, in which case the claim holds trivially, or c(D) > s0, in which case it is killed off
with probability p1 = p12

∑r−1
j=1 sj for r − 1 = 0.

Inductively assume the claim holds for all r − 1-DNFs and consider an r-DNF D. Again we consider two
cases, when c(D) ≤ sr−1 and when c(D) > sr−1. In the former case, let H be the set of sr−1 variables needed
to cover all terms of D, and note that dt(D) ≤ dt(D/H) + sr−1 as we can query all variables in H first. Since
D/H is an r-DNF, applying the induction hypothesis along with a union bound over all 2sr−1 settings of H gives

Pr
ρ∼R

[dt(D|ρ) >
r−1∑
i=0

si] ≤ 2sr−1 Pr
ρ∼R

[dt((D/H)|ρ) >
r−2∑
i=0

si] ≤ 2sr−1

r−1∑
i=1

2(
∑r−2
j=i sj)pi ≤

r∑
i=1

2(
∑r−1
j=i sj)pi

In the latter case, when c(D) > sr−1, as shown before

Pr
ρ∼R

[dt(D|ρ) >
r−1∑
i=0

si] ≤ Pr
ρ∼R

[dt(D|ρ) > 0] ≤ pr �
r∑
i=1

2(
∑r−1
j=i sj)pi

We now use this claim and take a union bound over all D ∈ π to show that there exists a restriction ρ which
makes all D ∈ π have a small decision tree, which we then connect to the width of any Res proof of τS |ρ to get
a contradiction.

Pr
ρ∼R

[∃D ∈ π | dt(D|ρ) >
r−1∑
i=0

si] ≤ ns
r∑
i=1

2(
∑r−1
j=i sj)pi

≤
r∑
i=1

2(
∑r−1
j=i sj)+s lognpi

≤
r∑
i=1

2(
∑r
j=i sj)pi

≤
r∑
i=1

2
4
3 si2−2si

≤
r∑
i=1

2−
2
3 si

≤ r2−
2
3 sr

≤ 2log r− 2
3 s logn

� 1
2

Thus there exists a ρ ∈ R such that for all D ∈ π,

dt(D|ρ) ≤
r−1∑
i=0

si ≤ r · s0 ≤ r((
r∏
i=1

2(6/5)i+1

i
)s log n)� 2r

2

r
s log n

Set s = k
2r2

, and thus dt(D|ρ) � k logn
r . So π|ρ is a Res(r) proof where every line can be represented by a

decision tree of height k logn
r . It was shown (Theorem 5.1 in [33]) that these clauses can be made into a Res

proof π′ refuting τS |ρ such that w(π′) � r k logn
r = k log n. But as usual we can still apply Lemma 4.2 after

restricting τS by ρ, and thus we get a contradiction.

Theorem 4.6 (Theorem ). Let Q = Res(r). Assuming GapETH holds, Q is not nf/ exp(r2)-automatizable for

any f = õ(log log n) if r = O(
√

log f). Furthermore, assuming ETH holds Q is not nf/ exp(r2)-automatizable

for any f = O(log1/5 log n) if r = O(
√

log f).
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Corollary 4.7. Assuming GapETH, for any constant c, Res(c) is not automatizable in time nk for any k =

Õ(log logS). Assuming ETH, for any constant c, Res(c) is not automatizable in time nk for any k = O(log1/5 logS).

Corollary 4.8. Assuming GapETH, Res(r) is not automatizable for any r = õ(
√

log log log n). Assuming ETH,

Res(r) is not automatizable for any r = o(

√
log log1/5 log n).



Chapter 5

Other proof systems

We have now proved Theorem 1.1 in full, getting lower bounds for Res, Nullsatz, PC, PCR, and Res(r).
Following this program the next step would be to extend the argument for other well-known proof systems for
which we believe the lower bound in Lemma 3.7 holds. In this chapter we address the two most logical choices,
Sherali-Adams and Cutting Planes. We give an overview of known lower bounds techniques for both systems and
how they apply to our tautology τS .

5.1 Sherali-Adams (SA)

5.1.1 Sherali-Adams and pseudodistributions

The Sherali-Adams (SA) refutation system was originally conceived [34] as a hierarchy of linear programs, where
the 0th level is defined by a set of inequalities A = {P1 ≥ 0, P2 ≥ 0, . . . , P|A| ≥ 0} on n variables, and the nth
level is the true feasible region A ∩ {0, 1}n over the boolean hypercube. Each level i ∈ [0, n] has

(
n
i

)
elements,

each of which is defined by the inequalities A restricted to all {0, 1} assignments to a different set of i variables.
When A is infeasible over the Boolean hypercube, the nth level will be empty, but it’s possible that there will
be some level d < n for which the feasible region is already empty, which we call a degree-d Sherali-Adams

refutation.

This hierarchy can be formalized in a different way. For disjoint sets S, T ⊆ X , we callQ =
∏
s∈S xs

∏
t∈T (1−

xt) a junta. Define J = {Q | S, T ⊆ X} to be the set of all juntas, and let Q1, Q2, . . . , Q|J| be an arbitrary order-
ing on J. A Sherali-Adams derivation of a constant k from the axioms A = {P1 ≥ 0, P2 ≥ 0, . . . , P|A| ≥ 0} is a
set of non-negative constants C = {ci,j ∈ R≥0 | i ∈ |A|, j ∈ |J|} such that R :=

∑
i,j ci,jPiQj = k as a formal

polynomial. The juntas Qj naturally act as the restriction of the axiom Pi to an assignment of the variables in the
hierarchy.

We say that Sherali-Adams refutes A if it can derive a negative value from A. Note that setting ci,j = 0 for all
i, j allows us to derive 0 trivially from any set A, and that if we can derive any negative value −a with C, we can
derive any other negative value −b with b

aC , where kC is entrywise multiplication of C by positive constant k.
Hence we usually focus on deriving R = −1 without loss of generality. A degree-d Sherali-Adams refutation is a
Sherali-Adams refutation in which ci,j = 0 whenever deg(PiQj) > d.

In this paper we assume that all axioms Pi are translated from clauses as per Chapter 2 (e.g. x1 ∨ x2 →
(1 − x1)(x2) = 0 → ±(1 − x1)(x2) ≥ 0), and thus have degree equal to the width of the original clause. Note

21
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that when we translate the equality Pi = 0 into two inequalities ±Pi ≥ 0, the positive version is captured by
some junta Qj , so we think of A as having the negative versions only. Additionally A contains the inequality
±(z2 − z) ≥ 0 for each variable z, as well as the axiom 1 ≥ 0. Note that this last axiom was not present in
Nullsatz or PC, as it would immediately give us the target line 1 = 0. Without this axiom, SA would be strictly
weaker than Nullsatz, but with it we are allowed to add juntas to the left hand side.

If there existed a satisfying assignment to A, then plugging in the assignment would always give us R ≥ 0,
and so it would be impossible to derive R = −1 as a formal polynomial. Likewise if there existed a distribution

on satisfying assignments to A, then plugging in the expectations of each variable being 1 under the distribution
would also always give us R ≥ 0. More formally we consider the following multilinear map from the variable set
of A to positive real numbers.

Definition 5.1. Let A = {P1 ≥ 0 . . . Pm ≥ 0} be a given set of axioms on the variablesX = {x1 . . . xn}. For all
S ⊆ X , let φS be a map from {0, 1}S to R, and let Eφ be the multilinear map on F[X] where for any monomial
t over the variables S, Eφ[t] = φS(t).

Note that for a monomial t with variable set S, Eφ[t] is the value of φS on the all-ones assignment to S.
However since this map is actually multilinear, we can also define Eφ[Qj ] for a junta Qj to be φS on the unique
assignment that satisfiesQj . Assuming φ is a distribution over satisfying assignments to A, Eφ provides a witness
to the fact that there does not exist any SA refutation.

Lemma 5.2 (Distribution). φ is a probability distribution on assignments {0, 1}X that satisfy A iff the following

properties hold:

1. Eφ[1] = 1

2. Eφ[PiQj ] ≥ 0 for all Pi ∈ A, Qj ∈ J

Note that for an unsatisfiable A, there cannot exist such an operatorE. However, when we restrict our attention
to distributions only defined over smaller sets of variables, it may be possible to define a pseudodistribution over
the assignments to those variables such that no axiom is falsified. We can think of pseudodistributions as fooling
low levels of the Sherali-Adams hierarchy by having a locally consistent distribution on satisfying assignments
that do not actually exist.

Definition 5.3 (Sherali-Adams Pseudodistribution). We refer to φ as a degree-d SA pseudodistribution for A iff
the following properties hold:

O1. Eφ[1] = 1

O2. Eφ is a multilinear map

O3. For any Pi ∈ A and Qj ∈ J, if deg(PiQj) ≤ d then Eφ[PiQj ] ≥ 0

Our last job is to ensure that a degree-d pseudodistribution does actually “fool” degree-d Sherali-Adams.

Theorem 5.4. There does not exist a degree-d Sherali-Adams refutation of A iff there exists a degree-d pseudodis-

tribution for A.

Proof. Let R =
∑
i,j cijPiQj . Define xS =

∏
X∈S x and for any polynomial P let PS be the coefficient of xS

in the fully expanded P . Note that if C is a degree-d Sherali-Adams refutation of A, then RS = 0 if S 6= ∅ and
R∅ = k for some negative k. We will have a linear program minimizing the value of k which we can derive, and



CHAPTER 5. OTHER PROOF SYSTEMS 23

note that if there exists a refutation of A then k will be undefined. Taking the dual of this linear program will give
us a program that has a trivial optimum of 0 subject to the existence of a degree-d pseudodistribution, and so by
duality a pseudodistribution exists iff the smallest constant that degree-d Sherali-Adams can derive is 0.

To make the duality work, let us observe the fact that there exists C such that R∅ = k and RS = 0 for all
S 6= ∅ iff there exists C such that R∅ = k and RS ≤ 0 for all S 6= ∅. The forward direction is obvious, so
consider some C where RS < 0 for some S. Consider Qj =

∏
s∈S xS , and let i be such that Pi is the axiom 1.

Then setting cij+ = RS yields a C where RS = 0 and all other RS are unchanged (including S = ∅). Repeating
this procedure for all S gives us the original definition. Therefore for now we assume without loss of generality
that RS ≤ 0 instead of RS = 0.

We now present the primal linear program, whose variables are the entries in C:

minimizeC
∑
i,j

(PiQj)∅cij (recall that R =
∑
i,j cijPiQj)

subject to −
∑
i,j

(PiQj)Scij ≥ 0 for all S : 1 ≤ |S| ≤ d

cij ≥ 0 for all i, j

Taking the dual, because we have one constraint for every set S of size between 1 and d, we let xS be a
variable rather than a product, and obtain the following duall:

maximizexS 0

subject to −
∑

S:1≤|S|≤d

(PiQj)SxS ≤ (PiQj)∅ for all i, j

xS ≥ 0 for all S : 1 ≤ |S| ≤ d

Note that if we group the terms in the constraints, we have the constraint that
∑
S:|S|≤d(PiQj)SxS ≥ 0, where

x∅ := 1. This constraint is clearly satisfiable iff there exists a degree-d pseudodistributionEφ whereEφ[S] = xS ,
as E[1] = x∅ = 1 and E[PiQj ] =

∑
S(PiQj)SxS ≥ 0 whenever deg(PiQj)S ≤ d. Finally as stated above, this

dual program has solution 0 if there exists any E satisfying the constraint and is undefined otherwise, while the
primal has solution 0 if there is no refutation of A and is undefined otherwise.

5.1.2 Lower bounds for τS

Our job now reduces to finding a pseudodistribution for τS in the same way as a wide clause lemma or linear
functional from Chapter 4. We prove a much simpler but necessary step to obtaining a pseudodistribution for
τS . Namely we prove the (m, logm/4)-universal property of A itself has a degree O(k logm) pseudodistribution
when the rows are described by an error-correcting code as in τS . The tautology τ will consist of xi variables for
every i ∈ [k], where k ≤ logm

4 and xi is of length 6 logm, and fix some 2 logm-surjective function fx. We view
an assignment of x1 . . . xk to α1 . . . αk as a k ×m matrix M where row i is the adjacency vector of the vertex
fx(αi). τ claims that for any α1 . . . αk there is no column j ∈ [m] of M which is all 1s. To formalize this we
have a clause Pj in τ for every column j as follows:∑

i∈[k]

∑
αi:(fx(αi))|j=0

xαii − 1 ≥ 0

We fix our universal set A to be the Paley graph, which exhibits a stronger notion of universality: for any set S of
size at most logm

4 and any partition of S into A,B, the number of rows in A which are 1 in A and 0 in B is m
2|S|

.
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This clearly implies the universal property, but also gives us much more structure to exploit. This structure will
turn out to be necessary in order to make the marginals definition work.

Lemma 5.5. There exists a degree k
2 logm pseudodistribution for τ .

Proof. For any monomial t of degree at most k2 logm, we simply set Ẽ[t] = 2−|t|. First note that this satisfies
linearity of Ẽ, and φ∅(1) = 1. Finally we need to verify that for all Pj ∈ τ , Ẽ[QPj ] is nonnegative for any Q
such that |Q| ≤ k

2 logm. Recall that Pj is of the form∑
i∈[k]

∑
αi:(fx(αi))|j=0

xαii − 1

As a sanity check let us first verify that Ẽ[Pj ] ≥ 0. The number of terms in this sum is km
6

2 , using the surjectivity
of fx and the fact that half of the rows in A satisfy fx(αi)j = 0 (here we crucially use our choice of A). Each
term has degree 6 logm, and since all variables are assigned 1

2 by the pseudodistribution the pseudoexpectation
value for each term is 2−6 logm. Therefore Ẽ[Pj ] ≈ km6

2 2−6 logm − 1 = k
2 − 1� 0.

Now consider multiplying Pj by some variable z. For every term in Pj which has a (1− z) in it, the term will
be set to 0 by the pseudodistribution as any assignment of z to 0 or 1 will force either z or 1− z to be 0. Let i(J)

be the number of xi variables in J and let I0 be the set of i ∈ [k] such that i(J) ≤ logm. Using the surjectivity
of fx, for any i ∈ I0 we get that the number of terms in the expression J(

∑
αi:(fx(αi))|j=0 x

αi
i ) is m6/2

2i(J) , as each

variable in J can only force about half the terms in the sum to 0. The degree of each surviving term Jx
α′i
i is

|J | + 6 logm − i(J), because while every variable z ∈ xi in J kills all terms with (1 − z), the rest of the terms
already have z in them, and when we apply Ẽ we multilinearize. Finally we observe that |I0| ≥ k

2 , and so

Ẽ[JPj ] = Ẽ[J(
∑
i∈[k]

∑
αi:(fx(αi))|j=0

xαii − 1)]

=
∑
i∈[k]

∑
αi:(fx(αi))|j=0

Ẽ[Jxαii ]− Ẽ[J ]

≥
∑
i∈I0

∑
α′i:(fx|J (α′i))|j=0

Ẽ[Jx
α′i
i ]− Ẽ[J ]

≥ k
2
m6/2
2i(J) 2−(|J|+6 logm−i(J)) − 2−|J|

≥ k
4
m6

2i(J)
2i(J)

m6 2−|J| − 2−|J|

≥ 2−|J|(k4 − 1) ≥ 0

Another sanity check we can do is verify that there does not exist a pseudodistribution of degree 6k logm,
aka over all the variables in the tautology (recall that τ is unsatisfiable). This follows from the fact that if |J | =

6k logm, then I0 could potentially be empty, at which point the only term would be −Ẽ[J ] and we would
necessarily violate one of our conditions on Ẽ.

While this lower bound was fairly straightforward, to extend this to a pseudodistribution for τS may take a
lot more work. First, τ was restricted to the assignments for a fixed set of k rows, but in τS we need to prove a
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pseudodistribution for any set of k rows from Mx, which has n rows in total. This was never an issue before, as
we were proving the lower bounds in a query-type manner where the refutation’s best option was to focus on the
hitting set of size k, but in Sherali-Adams the proof may have a number of different sets of rows it focuses on, and
we need to ensure the marginals for any such choice. Furthermore we haven’t taken the columns into account,
and while choosing the universal set to be the Paley graph may give us nice regularity properties in the rows the
hitting set instance S certainly may be too erratic to rely on.

When the axioms of A are defined by products as in Nullsatz and PC, there is an equivalent and easier
definition to use. The reader should be aware, however, that if the axioms are presented in alternate forms,
particularly any form involving large sums of low degree monomials, such as in τ above, this definition may not
hold.

Definition 5.6 (Sherali-Adams Pseudodistribution (marginals)). φ is a degree-d pseudodistribution for A iff the
following properties hold:

M1. φ∅[1] = 1

M2. For any S ⊆ T ⊆ X where |T | ≤ d and any µ ∈ {0, 1}S , φS(µ) =
∑
η∈{0,1}T ,η|S=µ φT (η)

M3. For any Pi ∈ A over the variable set S and any T ⊇ S such that |T | ≤ d, every assignment in the support
of φT satisfies Pi ≥ 0.

Proof. First we show that Definition 5.3 implies Definition 5.6. Clearly M1 is equivalent to O1. To prove M2,
consider sets S ⊆ T where |T | ≤ d. For µ ∈ {0, 1}S , let Qµ be the unique junta set to 1 by µ, and likewise define
η ∈ {0, 1}T and Qη . Letting Pi = 1 and summing up we get∑
η∈{0,1}T ,η|S=µ

φT (η) =
∑

η∈{0,1}T ,η|S=µ

Eφ[PiQη] = Eφ[PiQµ]
∏

xj∈T−S
Eφ[xj + (1− xj)] = PiQµ = φS(µ)

where the last equality uses O1 and O2. M3 follows from O3 by letting Qj is the assignment to the variables of
T − S.

Now we show that Definition 5.6 implies Definition 5.3. Set Eφ[t] = φS(t) for all monomials t with variable
set S and extend it multilinearly, which is possible because of M2. Again O1 is equivalent to M1 and O2 is by
definition. To prove O3 it is important that each PiQj is a single junta, and so we consider any assignment in the
support of φT where Pi has variable set S and Qj has variable set T −S. Applying this assignment to Pi satisfies
Pi ≥ 0 by M3, and applying it to Qj satisfies Qj ≥ 0 because Qj is a junta. Therefore since all assignments in
the support of φT satisfy PiQj ≥ 0, it follows that Eφ[PiQj ] ≥ 0.

In other words, to get a degree-d lower bound on SA for τS it is necessary and sufficient to define, for all
variable sets S of size at most d, a probability distribution on assignments to S such that no axiom is violated
on any assignment with nonzero probability, with the additional condition that the distribution value on any
assignment µ to S is the sum of the marginal distributions on assignments to any variable set T ⊇ S consistent
with µ (as long as |T | ≤ d). Following the conventions of the other lower bounds we say τS has an (a, b)-
pseudodistribution if φ is defined for all variable sets D such that I0(D) ≤ a and J0(D) ≤ b.
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5.2 Cutting Planes (CP)

5.2.1 The CP proof system

The Cutting Planes(CP) refutation system [15, 20] is a dynamic semi-algebraic system where every line in the
proof is of the form a1x1 + . . .+ anxn ≥ c for constants a1, . . . , an, c. Like SA we are given the input clauses in
the form of inequalities, but we require that they be of degree 1 with the constant terms all on the right hand side of
the inequality. Instead of converting the clauseC = x1∨x2∨x3 to the dual inequalities±(1−x1)(x2)(1−x3) ≥ 0

as in the conversion from Nullsatz to SA, we instead convert C to the single inequality x1 + (1− x2) + x3 ≥ 1,
which we then homogenize to get x1 − x2 + x3 ≥ 0.

In contrast to SA, a CP proof is dynamic, and as with Res there is a tree-like variant TreeCP where the
underlying graph is restricted to be a tree instead of a DAG. The final line in a CP proof is the inequality “0 ≥ 1”.
Let L1 = “a1x1 + . . .+ anxn ≥ c” and L2 = “b1x1 + . . .+ bnxn ≥ d” be two lines in a CP proof. Then we can
derive a new line L via the following rules:

• addition: L = L1 + L2 = “(a1 + b1)x1 + . . .+ (an + bn)xn ≥ c+ d”

• multiplication: L = kL1 = “ka1x1 + . . .+ kanxn ≥ kc”

• integer division: L = L1

k = “a1k x1 + . . .+ an
k xn ≥ d

c
k e” if and only if k | a1, . . . , an

It is very important that we can only apply division when the left hand side evenly divides every coefficient. This
ensures that all coefficients are integers, but also allows us to take the ceiling of the right hand side after dividing,
which is one of CP’s main tools for shrinking the feasible region of the input inequalities.

5.2.2 Lifting theorems

It is known that TreeCP p-simulates TreeRes and CP p-simulates Res. Thus the upper bound in Lemma 3.6
holds for both systems, and the lower bound in Lemma 3.7 remains to be proven. However the techniques for
getting CP seem to require a lower bound on τS that is far too difficult, if not impossible. Thus we focus on
the main technique for TreeCP lower bounds, known as lifting theorems, which take a weak lower bound for a
tautology τ , namely query (decision tree) lower bounds, and convert τ into τ ′ such that the lower bounds “lift” to
a stronger model such as communication complexity.

Query-to-communication lifting theorems have been proven in many recent papers, and used to resolve several
open problems in game theory, proof complexity, circuit complexity as well as to understand the limitations of
linear and semidefinite programming via extension complexity. The basic idea of a query-to-communication
lifting theorem is as follows. Let C be a complexity class, such as P, NP, BPP. Let f : {0, 1}n → R be
any Boolean function or relation with range R, and let g : X × Y → {0, 1}, where X ,Y = {0, 1}c(n). Their
composition f ◦ gn : Xn × Yn → R is defined by (f ◦ gn)(x, y) = f(g(x1, y1), . . . , g(xn, yn)). We view
f ◦ gn as a communication complexity problem where Alice holds x ∈ Xn and Bob holds y ∈ Yn. Let Cdt(f)

denote the query complexity of f under the model C, and similarly let Ccc(f ◦ gn) denote the corresponding
communication complexity of f ◦ gn under the model C. Namely if C = P then Pdt(f) is the deterministic query
complexity of f and Pcc(f ◦ gn) is the deterministic communication complexity of f ◦ gn. A general lifting
theorem for C with gadget size c(n) states that for any f , and a specific good gadget g : X × Y → {0, 1}, that
the optimal communication protocol for the composed function is that obtained by simulating the corresponding
optimal decision tree for f : Cdt(f) = Θ(c(n)× Ccc(f ◦ gn)).
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Lifting theorems have been proven for many complexity classes, including P,NP and BPP (see eg [13, 22,
24, 32, 35]). However, all of the general lifting theorems that have been proven so far require gadgets whose size
depends logarithmically on n, and it is a well-known open problem to prove (or disprove) the following conjecture,
asserting the existence of a constant-sized gadget lifting theorem for P. For special cases of f , constant-sized
lifting theorems have been shown [21].

Conjecture 5.7. (Constant-Gadget Lifting Conjecture for P)

For any function or relation f(z1, . . . , zn) there exists a constant c > 1 and a gadget g : X × Y → {0, 1}
where X ,Y = {0, 1}c such that Pdt(f) = Θ(Pcc(f ◦ gn)).

In real communication, denoted Prcc, instead of Alice and Bob sending bits to one another, in each round they
send a real value to a referee who tells them both who had the larger value, where the cost of a query to the referee
is just one. In [24], the lifting theorem due to Raz and McKenzie [32] was generalized to show that deterministic
query complexity can actually be lifted to real communication complexity. Similarly, the recent BPP lifting
theorem [22] can also be extended to the real communication complexity setting. Thus it is natural to make the
following conjecture, asserting a constant-sized gadget lifting theorem from deterministic query complexity to
real communication complexity.

Conjecture 5.8. (Constant-Gadget Real Lifting Conjecture for P)

For any function or relation f(z1, . . . , zn) there exists a constant c > 1 and a gadget g : X × Y → {0, 1}
where X ,Y = {0, 1}c such that Pdt(f) = Θ(Prcc(f ◦ gn)).

Assuming the above conjecture, the GapETH hardness of automatizability for tree-like Cutting Planes follows
from the following Lemma, which is a restatement of our Main Lemma 3.1 for the case of TreeCP.

Lemma 5.9. LetQ = TreeCP and suppose Conjecture 5.8 holds. Let n be sufficiently large and let (S, k, k2) be

an instance of the gap hitting set problem. Then there exists a tautology τ cpS which can be computed in time nO(1)

such that the following two properties hold:

(1) if γ(S) ≤ k then SQ(τ cpS ) ≤ nO(1);

(2) if γ(S) > k2 then SQ(τ cpS ) ≥ nΩ(k).

Proof. Let τS be the tautology defined in Section 3.1, and let n′ := n logm+m log n be the number of variables
in τS . We obtain τ cpS ◦ gn

′
by replacing every variable z ∈ τS by g(xz, yz), xz, yz ∈ {0, 1}c, where g is the

gadget and c is the constant given by Conjecture 5.8. We want the composed formula to also be in CNF form, so
we convert it in the obvious way: convert each composed clause into an equivalent CNF formula, and then the
conjunction of these CNFs will be the new CNF formula τ cpS over the xz, yz variables. Since each original clause
of size t = logm + log n becomes a conjunction of clauses, each involving 2ct variables, the width of τ cpS is
2ct = O(t), and the size increases by a factor of 22ct = nO(1).

First, we observe the upper bound. We can solve the search problem via the same decision tree as in Section
3.3, but now whenever we want to query a variable z ∈ τS we instead query the vectors xz, yz ∈ τ cpS . Thus we
incur a factor of 2c = O(1) in the decision tree height, which translates to an upper bound of nO(1) for TreeRes.
Since TreeCP p-simulates TreeRes by size this gives the upper bound.

To obtain the lower bound we note that Section 3.3 gives a lower bound on the decision tree height of τS .
Thus the decision tree complexity of τS , Pdt(τS), is Ω(k log n), which by our assumption of g implies that the
real communication complexity of the search problem associated with τ cpS , Prcc(τ cpS ), equals Prcc(τS ◦ gn

′
) =

Θ(Pdt(τS)) = Ω(k log n).
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Assume for contradiction that τ cpS has a TreeCP refutation π of size s = no(k). Let T be the underlying tree
of π with vertices labeled with the corresponding lines of π. First we find a line L ∈ π such that the subtree
rooted at L contains between s

3 and 2s
3 lines. Let T1 be the subtree rooted at L and let T2 be T with T1 removed.

Our protocol first evaluates line L in one round of real communication as follows: let L = “a1x1 + . . .+ auxu +

b1y1 + . . . + bvyv ≥ t” where Alice has the x variables and Bob has the y variables. Alice sends the referee
a1x1 + . . .+auxu and Bob sends the referee t− (b1y1 + . . .+bvyv). If the referee returns “Alice< Bob” then the
line is falsified, and we repeat this procedure on T1. Otherwise the line is satisfied and we repeat this procedure
on T2. We recurse until we reach a leaf, which must be labeled with a falsified clause since at every step the root
of the current tree is labeled with a falsified line. Recursively this will find a falsified clause in log s = o(k log n)

rounds, which is a contradiction because Prcc(τ cpS ) = Ω(k log n).

We note that while a constant-sized gadget lifting theorem gives a lower bound to match Theorem 1.1 for
TreeCP, we could get away with a somewhat larger gadget size. In particular, a lifting theorem with gadget size
õ(log log n) will still be enough to refute polynomial automatizability for TreeCP under GapETH. Secondly,
we note that we only need a constant-sized gadget lifting theorem for our specific search problem to get the
nonautomatizability result, as opposed to a more general lifting theorem that would have to work for tautologies
with much decision tree complexity, such as Ω(n).
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Conclusions

The automatizability problem is still far from closed, and while this work makes significant strides towards opti-
mality for TreeRes and Nullsatz there are many further directions to take from here on out:

• as we saw in Chapter 5, the next systems worth considering for the program of [2] are SA and CP, which
should pose a decent challenge for those looking to test their knowledge of this technique. SA will be
a purely proof complexity problem, of finding a pseudodistribution for τS or possibly a variant τ ′S more
amiable to proving lower bounds. CP on the other hand seems to be in the realm of lifting theorems, which
has more to do with communication complexity and entropy arguments. Either one would be a significant
breakthrough; SA automatizability lower bounds may help us close in on the jewel of SoS, while the lifting
theorem needed for CP automatizability lower bounds is perhaps an even larger discovery in and of itself.

• to improve the results of this work, it is worth observing that the constructions in [12, 17] are not known
to be optimal, and any hardness results against approximating the gap hitting set problem in time no(k) for
a larger value of k immediately gives a lower bound of no(k) against automatizability. By the crucial fact
that k ≤ logm

4 = logn
4k , this technique can’t be strengthened past the k = o(log1/2 n) threshold, but with

the TreeRes and Nullsatz upper bounds at k = O(log n) (and perhaps not-so-coincidentally the ability to
approximate minimum hitting set size to within an O(log n) factor in polynomial time) this would be close
to optimal.

• for those interested in strong automatizability lower bounds who are not attached to this particular program,
to avoid this O(log n) barrier we will need to come up with a transformation such that the upper bound
in the “yes” instances fails for TreeRes and Nullsatz. There are a number of examples of tautologies for
which TreeRes and Res have an exponential gap, but one might even consider focusing only on much
stronger systems such as SoS and thus being able to choose a much more subtle type of trapdoor. One
promising direction is the recent versions of Feige’s hypothesis that have evolved out of the work on SoS
lower bounds. However ultimately it would be extremely practical to resolve the automatizability of Res,
which is tied to SAT solvers. The only known automatizability upper bound is nO(

√
n logS), and our lower

bound is nΩ̃(log log S), so the door is wide open for tightening either bound.

We started this work in order to understand the technique of [2], as the first paper to prove automatizability
lower bounds for a “practical” proof system. Since then there have been many connections found between proof
complexity and other areas of theoretical computer science, and so the problem of automatizability has only

29
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grown in importance since then. We feel that it provides another method of attack for problems in learning theory,
approximation, SAT solving, and possibly more, and while also being one of the most fundamental questions to a
fundamental field in complexity theory.
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Chapter A

Hardness assumptions

The statement of Lemma 2.2 is not clear from the results in [12] or [17], and takes a small bit of inspection and
parameter fixing as both results were proved in the setting of parameterized complexity. We provide a guide to
obtaining Lemma 2.2 from the papers by tracking the optimal values of all parameters. Note that while we provide
references to the theorems used, we defer the formal definitions and proofs to their respective papers.

A.1 Hardness of hitting set under GapETH

In this section we prove Lemma 2.2 in the case of GapETH. The proof follows the reduction in [12] from the
label cover problem to the gap hitting set problem, but the definitions of the problem and details of the reduction
are omitted as we only need to focus on how the parameters change at each step. We restate the lemma now for
convenience.

Lemma A.1 (Lemma 2.2 under GapETH). Assuming GapETH, for sufficiently large n and k = Õ(log log n)

no algorithm can solve the gap hitting set problem (S, k, k2) in time no(k).

Proof. LetK(n) be a function such thatKKO(K)

= 2O(n/K), and note thatK ∈ ω( logn
log logn ). Following the proof

of Theorems 4.3 and 4.4 of [12] consider an arbitrary label cover instance Γ = (G = (U, V,E),ΣU ,ΣV ,Π),
where:

• |U | = n

• |V | = O(n)

• |ΣU | = O(1)

• |ΣV | = O(1)

• |Π| = O(|ΣU ||ΣV |) = O(1)

Assuming GapETH it is known that no 2o(|U |)-time algorithm distinguishes between a max covering of size |U |
and a max covering of size less than (1− ε)|U | for any sufficiently large (constant) ε > 0. We can transform this
into a new label cover instance Γ′ = (G′ = (U ′, V ′, E′),ΣU ′ ,ΣV ′ ,Π

′) where

• |U ′| =
( |U |

(K lnK)/ε

)
= nO(K lnK)

34
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• |V ′| = K

• |ΣU ′ | = |ΣU |(K lnK)/ε = KO(K)

• |ΣV ′ | = |ΣV |n/K = 2O(n/K)

• |Π′| = O(|ΣU ′ ||ΣV ′ |) = 2O(n/K)

• Γ has a max covering of size |U | iff Γ′ has a max covering of size |U ′|

• Γ has no max covering of size (1− ε)|U | iff Γ′ has no max covering of size 1
KK |U ′|

For our choice of K, it holds that |Γ′| is dominated by |ΣV ′ | = 2O(n/K). So under GapETH it is impossible to
distinguish between Γ′ having a max covering of size |U ′| and not having a max covering of size 1

KK |U ′| in time
2o(n) = |Γ′|o(K). Theorem 4.4 of [12] shows that distinguishing these two cases on Γ′ implies distinguishing
min-right coverings of size at most |V ′| = K and those of size greater than K2 for the same label cover instance
|Γ′|. Using this fact and following Theorem 5.4 of the same paper, we transform Γ′ in time poly(|Γ′|) into a
hitting set instanceH = (U ,S), where

• |U| = |U ′||V ′||ΣU′ | = nO(K lnK)KKO(K)

= KKO(K)

• |S| = |V ||ΣV | = K2O(n/K) = 2O(n/K)

• γ(S) is equivalent to the min-right covering number of |Γ′|

Define N = |H|, and because KKO(K)

= 2O(n/K) we get N = |U||S| = 2O(n/K). We now define k(n) to be
such that k(N) = K(n), which can be shown to be Õ(log log n) (suppressing log log log n factors). Therefore
under GapETH there doesn’t exist any algorithm that can distinguish between γ(H) ≤ k(N) and γ(H) > k2(N)

in time No(k(N)) for hitting set instancesH of size N .

A.2 Hardness of hitting set under ETH

In this section we prove Lemma 2.2 in the case of ETH. The proof follows the reduction in [17], but once again
we omit the definitions and proofs of their reduction and focus on how the parameters are restricted therein.

Lemma A.2 (Lemma 2.2 under ETH). Assuming ETH, for sufficiently large n and k = O(log1/5 log n) no

algorithm can solve the gap hitting set problem (S, k, k2) in time no(k).

Proof. By Corollary 7.2 of [17] there is a (0, O((logm)2), (logm)/2k, (1/m)1/O(kt)) efficient protocol for the
MULTEQm,k,t problem. By Corollary 5.2 if there exists a (w, r, l, s)-efficient protocol for MULTEQm,k,t such
that w+ r+ lk = o(m), and l < (logm)/β · k for constant β > 1 then no algorithm can distinguish, for a hitting
set instance S over the universe [O(N)], whether γ(S) ≤ k or γ(S) ≥ (1/s)1/k · k in time No(k). Putting these
two facts together we get that no algorithm can distinguish whether γ(S) ≤ k or γ(S) ≥ m1/k2t ·k in timeNo(k).
The proof of Corollary 5.2 relies on Definition 4.11, which defines t = k +

(
k
2

)
+
(
k
3

)
and m = t(1 + k logN).

Therefore we get t = O(k3) and m = O(k4 logN), and so we get that no algorithm can distinguish whether
γ(S) ≤ k or γ(S) ≥ (k4 logN)1/k5 · k. Setting (k4 logN)1/k5 · k = k2 gives us k = O(log logN)1/5.


