
Complexity Theory Through a Spectrum of

Computation Models

by

Ian Mertz

Submitted to the Department of Computer Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Mathematics

at Rutgers University

May 2016

c○Ian Mertz, 2016. All rights reserved.

The author hereby grants to Rutgers University permission to

reproduce and to distribute publicly paper and electronic copies of this

thesis document in whole or in part in any medium now known or

hereafter created.

Author .

Department of Computer Science

April 26, 2016

Certified by. .

Eric Allender

Distinguished Professor

Thesis Supervisor

2

Complexity Theory Through a Spectrum of Computation

Models

by

Ian Mertz

Submitted to the Department of Computer Science
on April 26, 2016, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Computer Science and Mathematics

Abstract

The study of complexity theory is the study of whether or not a given problem
can be solved by a restricted model of computation. The Turing machine model is
often used to define the best-known natural complexity classes such as P and NP.
However, there are other computational models besides Turing machines that are
also worthy of study. In addition to giving an introduction to the overall study of
complexity theory and its value in the field of computer science, we look at the basic
space-bounded Turing machine model before jumping into two different models of
computation, circuits and automata. For Turing machines we attempt to decide the
complexity of a particular reachability problem that falls somewhere between L and
NL. For circuit complexity we give more extensive characterizations of various classes
of polynomial-size logarithmic-depth circuits. For automata we give various upper
bounds on a type of automaton defined by Alur et al. called cost-register automata.

Thesis Supervisor: Eric Allender
Title: Distinguished Professor

3

Acknowledgments

I have had three incredible mentors I would be remiss not to thank. In high school
it was Graciela Elia, who started me on computer science and connected me with
various programs and topics, as well as remaining vigilant against my terribly lax
coding and proof practices. Then it was Rajiv Gandhi, who motivated my choice to
go into theory by pushing me beyond my comfort zone, both in my personal work
and in the collaborative research setting. Finally in college it was Eric Allender, who
made the crazy move of giving a research opportunity to a freshman who barely knew
what complexity theory was. He gave me his time, energy, problems, and funding to
devote three years and two summers to learning and researching. And of course, he
oversaw the writing of this thesis, without which it may have never gotten done.

I want to thank my coauthor Anna Gál for showing up and telling us that our
work in Chapter 3 could go much further than we had taken it. Thanks to Michael
Saks, Swastik Kopparty, Shubhangi Saraf, and Bill Steiger for the fantastic courses
that made my coursework challenging and engaging. And thanks to my classmates
for helping me survive, particularly Amey Bhangale, Mrinal Kumar, and Abhishek
Bhrushundi.

Thanks to all the conference friends and associates I made, which helped keep
me sane where the coffee didn’t. Thanks to all my undergraduate math and com-
puter science friends, who kept me motivated to continue research by being at least
as obsessed with scientific progress as I was. On the other side of the coin thanks to
all my other undergraduate friends for giving me a break from those same people. I
want to especially thank my roommate Stephen Hackler for four years of tolerance
and distractions.

My most emphatic and heartfelt thanks belong to my parents, who have sup-
ported me and remained endlessly positive, throughout both the past four years and
all eighteen before that. You gave me the opportunity to explore my passion for
mathematics my whole life, and ultimately enabled me to meet with all the peers and
mentors who made this possible. And of course, you were my best peers and mentors
yourselves. This thesis is dedicated to you.

4

The author acknowledges the support of the Aresty Research Center for the work
done on Chapter 2. Much of the material in Chapters 3 and 4 appears in [32, 8],
for which the author also acknowledges the support of NSF grants CCF-0832787 and
CCF-1064785, as well as an REU supplement.

5

6

Contents

1 Introduction: what is complexity theory? 9

1.1 Complexity theory . 11

1.1.1 Measuring efficiency: the Turing machine model 11

1.1.2 Formalizing time complexity 12

1.1.3 Complexity classes . 14

1.1.4 Reducibility . 16

1.2 Other models of computation . 19

1.2.1 Connections between time and space 19

1.2.2 Beyond Turing machines . 20

1.3 Our results . 23

2 Gridgraph reachability 25

2.1 Introduction . 25

2.2 Preliminaries . 26

2.3 Our proposed algorithm . 28

2.4 Where our algorithm breaks down . 29

2.5 Conclusion . 33

3 Circuit complexity 35

3.1 Introduction . 35

3.2 Preliminaries . 37

7

3.2.1 New Definitions: Λ-classes . 41

3.3 Subclasses of ACC1 . 43

3.3.1 Comparing ΛP and VP. 49

3.4 Threshold circuits and small degree 49

3.4.1 Degree Reduction . 54

3.5 Conclusions, Discussion, and Open Problems 61

4 Cost-register automata 65

4.1 Introduction . 65

4.2 Preliminaries . 67

4.2.1 Cost-register automata . 68

4.3 CRAs over Monoids . 70

4.3.1 CRAs over the integers . 70

4.3.2 CRAs over (Γ*, ∘) . 73

4.4 CRAs over Semirings . 75

4.4.1 CRAs over the integers. 76

4.5 CRAs over the tropical semiring. 77

4.5.1 Arithmetic Circuit Preliminaries 78

4.5.2 Tropical CRAs . 84

4.6 CRAs over the max-concat semiring. 86

5 Conclusion: future directions 89

A Charts of relevant complexity classes 91

8

Chapter 1

Introduction: what is complexity

theory?

As technology grows more and more powerful, solving larger and more difficult prob-

lems faster than ever before, it is sometimes easy to lose sight of how a computer

actually performs these functions under the hood. With the help of electrical engi-

neers worldwide, hardware continues to develop every year and cut down the time

it takes to run its computations. However, state-of-the-art hardware running at op-

timal capacity is useless without equally good software, built with straightforward

sequential commands and tasked with solving millions of problems in the blink of an

eye.

What is essential to remember about computers is that they operate on a set of

simple instructions that perform the most basic functions given knowledge only of the

physical electrical impulses feeding in, and not of the abstract problem at hand. It

is up to electrical engineers to produce hardware to send and store bits, and it is up

to programmers to use those bits as efficiently as possible. And while there are many

methods to solve a problem, programmers must be efficient with using and moving

bits around in devising their method of choice.

9

As an example of how crucial it is to choose the right method to solve a problem,

consider the task of searching a phone book for a given name. A simple strategy

is to start at the first page and work our way through the book sequentially, name

by name and page by page, until we find the name. This works well for looking up

Scott Aaronson’s phone number, but go looking for Leslie Valient and this could take

hours. We know the book is ordered alphabetically, but we let this crucial piece of

information fall by the wayside.

Now consider the following approach. Open the book right in the center and

look at the first name on the page. If that name matches our target, then we are in

luck, but more often than not we will get a completely different name. But we know

the book is ordered alphabetically, and we instantly know whether our target name

appears in the book before this page or afterwards; if we open up to Richard Lipton

for example, we know that Scott Aaronson comes earlier, while Leslie Valiant comes

later. Now we can throw away the other half of the book, and in one simple step we

have cut the problem in two! Open the relevant half of the book in the middle and

repeat the procedure. You will find your target name in minutes.

While a computer can run billions of instructions per second, there are examples

like the phone book where the wrong strategy can take seconds, minutes, or even

hours, days, or years to solve, where a more clever solution can consistently answer

queries in milliseconds. Thus we have the notion of an algorithm, a precise step-by-

step procedure for carrying out a particular task or solving a particular problem using

only the basic instructions available. In our example, it was “open book”, “flip page”,

“check name”, and “compare words alphabetically”.

Ultimately the design and implementation of good algorithms is the most essen-

tial step in building computers that are as fast and efficient as the modern world

demands. Programmers and software engineers are tasked with both creating newer

better algorithms and coding them on the physical machine in the most efficient

10

ways, balancing their knowledge of software and hardware. But are there limits to

this constant refinement? Increasing hardware efficiency may increase the number of

instructions a computer can perform per second, but is there a software barrier that

allows algorithms to perform only so well, no matter how clever or creative we may

be? Here arises the notion of complexity theory: given a problem, how efficient of an

algorithm could we possibly design to solve it?

1.1 Complexity theory

1.1.1 Measuring efficiency: the Turing machine model

The fundamental question when approaching a problem is how to measure “efficiency”.

Because we are attempting to solve these problems on a computer, it is natural to

think in terms of time, possibly measuring the number of cycles the computer has to

run for before the solution can be found, or in terms of space, the amount of RAM

and/or memory needed to be set aside for the procedure. Even before computers were

in circulation, in a seminal work Alan Turing [54] introduced a theoretical model on

which algorithms could be implemented and analyzed.

Definition 1 A Turing machine is a conceptual machine that solves a given problem

𝐿, and consists of three parts:

∙ three tapes that are each 1×∞ rectangles broken up into sequential 1×1 squares

called cells, each of which holds a single bit of either 0 or 1. We label the tapes

as follows:

1. the input tape, where the input to 𝐿 is written (read-only)

2. the output tape, where we eventually write the solution (write-once)

3. the work tape, where we perform the algorithm (read-write)

11

∙ a head for each tape, each pointing to a single cell

∙ a state machine, where at any current state there is a function that takes as

input the value of the cells pointed to by the heads of the input and work tapes,

and outputs a new value for the cells pointed to on the work and output tapes,

a direction to move each of the heads (left or right), and the next state

This model, while bizarre at first sight, actually contains all the keys we need to

start talking about efficient algorithms. Time can be measured by the number of steps

the head takes from the time it receives the input to the time it finishes writing the

answer on the tape, while space can be measured by the number of cells needed in the

work tape to run the algorithm. If we squint a bit and imagine the three infinite tapes

as keyboard, memory, and screen, and imagine the head and state machine as the

hardware, then it really starts to look like a computer. And in fact this crude abstract

model is enough to analyze the way in which our modern computers operate. Though

the model was proposed decades before the first “computer” would ever be built, time

and space complexity of algorithms on Turing machines is a strong approximation of

how those same algorithms will run on the latest hardware.

1.1.2 Formalizing time complexity

Now that we have a model of computation, we can begin to talk about complexity

theory in earnest. Given an individual problem, we can try and come up with better

algorithms to prove that it can be solved in a certain amount of time, which we

define relative to the length of our input. To visualize why working relative to the

input length is necessary, imagine our phone book example with a preschool directory

instead of the YellowPages. Just because our sloppier first method of searching runs

fast on the former does not imply it will also run fast on the latter. Hence it is useful

to talk not about the absolute time required to solve a problem, but rather how much

12

time it will take given an input of some length, which we classically denote as 𝑛.

Given a problem, we come up with an algorithm that solves it in time 𝑓(𝑛), where

𝑓 is some function. Our first algorithm searched through the phone book one entry

at a time in order, which could take as little time as one step and as much time as

the whole length of the book. Since we generally want to worry about the worst-case

scenario, we say that this algorithm runs in time 𝑓(𝑛) = 𝑛, or linear time, aka it takes

time exactly proportional to the input length.

Our second algorithm by contrast was cutting the length of the input in half

at every step. This algorithm can be seen to to run in 𝑓(𝑛) = log(𝑛) time, where

log(𝑛) is the binary logarithm function. To see the difference between 𝑓(𝑛) = 𝑛 and

𝑓(𝑛) = log(𝑛), let us imagine that the length of our phone book is a million names

long, and thus 𝑛 = 1000000. In our first algorithm we will check at worst 1000000

names (no surprises there), whereas in the absolute worst case our second algorithm

will check 20, an astonishing gap. Even more telling is what happens when 𝑛 doubles

in size: in the first algorithm we check 2000000 names instead of 1000000, but in the

second we check 21 names instead of 20. Our time commitment barely changes.

So the problem of finding a name in a phone book is said to take at most log(𝑛)

time. This is an example of a problem that can be solved without even looking at

the entire input. However, this only holds when we are allowed to access any specific

part of the memory in one step, which would not work in the Turing machine model

given that the head can only move right or left by one step. If we stay true to the

Turing machine model, most useful computations require at least linear time.

Beyond linear time there is time 𝑛𝑐 for a constant 𝑐, which we call polynomial time.

If instead of an ordered phone book we are given a disorganized jumble of names, we

cannot hope to beat 𝑛 time. However, if we wanted to order the list alphabetically,

there are simple algorithms to do it in time 𝑛2, and only slightly more sophisticated

ones that can do it in time 𝑛× log(𝑛).

13

Another good example is the problem of adding two binary numbers that are

roughly the same size. The classic elementary school procedure is to take the least

significant bits, add them together, and then move to next column, bringing with us

the carry if there is one. If we repeat this up until the end of the numbers, we get the

full answer. Note that our input length is 𝑛, and so each number is about 𝑛/2 bits

long, so we take 𝑐 steps per column we end up with 𝑓(𝑛) = 𝑐
2
𝑛, which is linear time.

Note that 𝑛 changes with different inputs, while 𝑐 remains fixed. In practice the

constant often depends less on the inherent structure of the problem and more on

what instructions the computer does and does not allow, which is not true of functions

of the input length. Also, if we had some 𝑓(𝑛) = 𝑛+log(𝑛), note that because log(𝑛)

is a very small additive quantity compared to 𝑛, and so 𝑓(𝑛) < 2𝑛 which is again

linear. However, despite log(𝑛) being much smaller than 𝑛 we hold onto it when

they are multiplied together, as it indicates a dependence on 𝑛, an example being the

𝑛 log(𝑛) time it takes to sort a list, which is between 𝑛 and 𝑛2.

Combining all these notions, when discussing time complexity we reduce 𝑓(𝑛) to

its largest factor, stripped of any constant factors or smaller additive quantities. We

define this notion formally before moving forward.

Definition 2 We say that 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if there exist natural numbers 𝑐, 𝑛0 such

that for all 𝑛 > 𝑛0, 𝑓(𝑛) ≤ 𝑐𝑔(𝑛).

1.1.3 Complexity classes

Note that we have introduced two examples of problems solvable by algorithms run-

ning in linear time, as well as one that runs in time 𝑛 log(𝑛). It also makes sense to

talk about the set of all problems that we can solve in linear time, as there are an

infinite number of such examples. Likewise there is a set of problems that can be

solved in 𝑛 log(𝑛) time, 𝑛2 time, 𝑛3 time, and any other polynomial 𝑓 we can think

of. For each such polynomial, we can assign that set a name: DTIME(𝑓(𝑛)). These

14

are our first examples of complexity classes, which are simply sets of problems that

are all solvable by algorithms that run under the same constraints (in this case the

restraint is that the algorithm must finish in time 𝑓(𝑛)).

One would be hard-pressed to walk into a computer science setting and not here

buzz of the famous P vs NP problem, but we now have the tools to give a formal

definition.

Definition 3 P is the set of all problems that have an algorithm to solve them in

polynomial time. In other words, if 𝑓(𝑛) = 𝑂(𝑛𝑐) for some constant 𝑐, then the

problem belongs in P.

All of our examples thus far have been problems belonging to P. P is often denoted

as ∪𝑐∈NDTIME(𝑂(𝑛𝑐)), or even as DTIME(𝑛𝑂(1)). Note that although 𝑛 log(𝑛) does

not seem to fit this definition, it turns out that 𝑛 log(𝑛) = 𝑂(𝑛2) just by setting 𝑐 = 1

and 𝑛0 = 1, and so the sorting problem also belongs to P.

NP problems are a little trickier. The formal definition of NP involves non-

determinism, which we refrain from defining formally but think of as “guessing”. A

problem is in NP iff it has an algorithm that runs on a Turing machine in polynomial

time where the state machine is allowed to make guesses as to how to proceed, and in

addition we assume that it makes the best possible guess whenever possible. Another

equivalent definition is given as follows: a problem is in NP iff the problem of checking

whether or not a proposed solution to the problem is correct is in P.

It is straightforward to see that P ⊆ NP, given that an NP algorithm is a P

algorithm that is allowed but not required to guess during its execution. So every

problem in P is also in NP. If it also turned out to be the case that NP ⊆ P, then

because they would contain the exact same set of problems, they would be equal.

However, it is widely believed that this is not the case; P = NP would have startling

ramifications in many areas of not just computer science, but society. For example

the current standard scheme for data encryption is in NP, but if P = NP then it could

15

be solved in polynomial time, which would imply that no electronic security system

is safe.

From the P and NP example we see how complexity classes can be defined by

placing restrictions on Turing machines and seeing what problems are solvable, and

so we define a few more. L is the class of problems with an algorithm on a Turing

machine to solve them that only uses log(𝑛) cells on the work tape. We motivate

this as a setting worth analyzing as follows: given an input of length 𝑛, log(𝑛) cells

are enough to write down the number 𝑛 in binary, or any number between 1 and 𝑛.

Therefore an algorithm in L can hold numbers that refer to a specific bit in the input,

but not much more.

In an analog to P and NP, we define NL to be problems with an algorithm that

is allowed only log(𝑛) cells on the work tape, but once again can “guess” using non-

determinism. Later we will see examples of both L and NL problems, but for now it

can be understood that this is a distinction similar to P and NP revolving around space

constraints rather than time constraints. Once again it holds trivially that L ⊆ NL.

However it is not entirely clear that L ̸= NL, and many sane people (myself included)

seriously entertain the notion that they are equal, which while not as earth-shattering

as P = NP would be, would be a tremendous result.

1.1.4 Reducibility

For the sake of the next section we now define two more problems that will be very

useful in the rest of the thesis, both of which rely on the notion of graphs.

Definition 4 A graph 𝐺 is a set of vertices 𝑉 with edges 𝐸, where an edge 𝑒 = (𝑢, 𝑣)

for some vertices 𝑢 and 𝑣. If there is an edge 𝑒 = (𝑢, 𝑣), we say that 𝑣 is adjacent to

𝑢. A path 𝑃 is a set of edges 𝑒1 = (𝑠, 𝑣1), 𝑒2 = (𝑣1, 𝑣2), . . . , 𝑒𝑘 = (𝑣𝑘−1, 𝑡) in the graph,

and if there exists a path between vertices 𝑠 and 𝑡 we say they are connected.

16

Note that edges are ordered pairs of vertices, and so it is possible that (𝑢, 𝑣) is

an edge in the graph while (𝑣, 𝑢) is not. This is called a directed graph, referring

to the direction of the edges. When the order does not matter, i.e. for every 𝑒 =

(𝑢, 𝑣) there is an 𝑒′ = (𝑣, 𝑢) (which we will also label as 𝑒), the graph is called an

undirected graph. These two models seem very similar, but in reality they are very

different algorithmically. For example, note that in a directed graph it may be that

𝑢 is connected to 𝑣 but not the other way around, while in an undirected graph

connectivity is symmetric.

It is a fundamental problem in all areas of computer science to test whether two

vertices are connected. It has been known for a long time that st-connectivity is in

NL [42], as given 𝑠 and 𝑡 we can start at 𝑠 and then repeatedly guess the next edge in

a path to 𝑡. Because we guess optimally we can assume that if 𝑠 and 𝑡 are connected,

our algorithm will find a path connecting them. Additionally we need only store a

pointer to the current vertex in our path, which takes logarithmic space as mentioned

above.

However, a surprising result of Reingold showed that when the graph is undi-

rected, st-connectivity is actually in L [46]. The algorithm involves transforming the

input graph into a new graph where all vertices connected in the original graph are

connected by a path of length at most log(𝑛), and additionally where all vertices

have only a small number of other vertices adjacent to them. Thus given 𝑠 and 𝑡 on

the new graph we simply check every single possible path of length log(𝑛) or less.

Because there are only a polynomial number of such paths, in logspace we can keep

a counter of how many paths we have already checked and thus check all of them in

some canonical order. This transformation was shown to be possible in logspace on

undirected graphs.

Now we will pretend that there exists an algorithm 𝐴 that can solve st-connectivity

on directed graphs. However, we are given an instance of st-connectivity on an undi-

17

rected graph 𝐺 instead, and want to use 𝐴 to solve our problem. After thinking for

a moment, we realize that we can take 𝐺 and produce a directed graph 𝐺′, where

the vertices of 𝐺 and 𝐺′ are the same and every edge 𝑒 = (𝑢, 𝑣) in 𝐺 is two separate

directed edges, 𝑒′ = (𝑢, 𝑣) and 𝑒“ = (𝑣, 𝑢), in 𝐺′. Hence if we run 𝐴 on 𝐺′, it will tell

us whether or not there is a path from 𝑠 to 𝑡 in 𝐺′, which also tells us whether or not

there is a path in 𝐺, and so we are done.

This is an example of a reduction from undirected reachability to directed reach-

ability. We have transformed the input in some small way and fed it into a Turing

machine that decides a completely different problem for us, and yet we get the correct

answer as a result. In some sense, this shows that st-connectivity on directed graphs

is at least as hard as the problem on undirected graphs, as solving the former also

gives us the latter for free. We write this as “undirected st-connectivity ≤𝑚 directed

st-connectivity”.

Now we see the power and elegance of complexity classes. It turns out that for

every problem 𝐶 ∈ NL, there is a reduction from 𝐶 to directed st-connectivity, or

in other words 𝐶 ≤𝑚 directed st-connectivity. Intuitively directed st-connectivity is

“harder” than every other problem 𝐶 in NL, and so we say that directed st-connectivity

is hard for NL, and because it is also contained in NL, it is NL-complete as well.

Likewise, it is the case that undirected st-connectivity is L-complete. The beauty

of this framework speaks for itself; these two complexity classes, defined with regard to

restrictions on Turing machines, can also be defined as the sets of problems reducible

to two natural st-connectivity problems. Thus even if one were to make the claim

that defining classes based on space and log functions is contrived, it turns out that

the classes L and NL arise in a fundamental way regardless.

18

1.2 Other models of computation

1.2.1 Connections between time and space

The study of Turing machines and complexity classes gives us a very natural way to

characterize problems according to their efficiency, and with it we can take important

computational problems and try and fit them into the framework of complexity the-

ory, either by: a) coming up with an algorithm that solves them under time/space

restrictions; b) reducing them to problems for which efficient solutions are known

(upper bounds); or c) by reducing problems for which no efficient solutions are known

to them (lower bounds).

But how do we relate classes based on different restricted models, such as time-

bounded Turing machines with no space restrictions and space-bounded Turing ma-

chines with no time restrictions? It turns out that complexity theory is incredi-

bly flexible, and it is possible to achieve relations between very different complexity

classes. We already showed that L ⊆ NL and P ⊆ NP, but how do the time bounded

classes relate to the space-bounded classes? It turns out that we can connect these

two relations:

Theorem 1 NL ⊆ P

Proof: Since every problem in NL efficiently reduces to directed st-connectivity, we

need only find a polynomial time algorithm for st-connectivity to prove the theorem.

An example of such an algorithm is given here:

1. Define 𝐶,𝐷 = {𝑠}, 𝑣 = 𝑠 (recall that we are trying to find a path from 𝑠 to 𝑡)

2. If there is an edge (𝑣, 𝑡) then the answer is “true”

3. Otherwise, for all 𝑢 /∈ 𝐷 such that (𝑣, 𝑢) ∈ 𝐸, add 𝑢 to 𝐶 and 𝐷

4. If 𝐶 empty, then the answer is “false”

19

5. Otherwise set 𝑣 = 𝑢 for some 𝑢 ∈ 𝐶 and remove 𝑢 from 𝐶

6. Return to step 2

Note that our general procedure is to keep a list of all vertices that 𝑠 has a path to

(𝐷), and then expand that list by checking vertices adjacent to those we have already

discovered but not yet checked (𝐶). 2

1.2.2 Beyond Turing machines

Just as we have compared different Turing machine restrictions, it turns out we can

also analyze models of computation other than Turing machines. We will focus on

two particular models in this thesis, namely Boolean circuits and automata, which we

define in brief now.

Definition 5 A Boolean circuit is a directed graph where each vertex 𝑣 is labeled with

a symbol 𝜎𝑒 that is either 𝑐, 𝑥𝑘, or 𝑓 , where 𝑐 ∈ {0, 1}, 𝑥𝑘 is the 𝑘th bit of the input

(here we take the input to be boolean), and 𝑓 is a function that takes in boolean values

and outputs either 0 or 1. We also have the following restrictions:

∙ if 𝜎𝑣 = 𝑐 or 𝑥𝑘 for any 𝑘, then there are no edges 𝑒 = (𝑢, 𝑣)

∙ if 𝜎𝑣 = 𝑓 for some function 𝑓 that takes 𝑖 inputs, there are exactly 𝑖 unique

edges 𝑒 = (𝑢, 𝑣)

∙ there exist no vertices 𝑣 such that 𝑣 has a path back to 𝑣

∙ there is a special vertex 𝑜 called the “output gate” with the property that there

are no edges 𝑒 = (𝑜, 𝑣)

Typically the functions 𝑓 are the basic boolean functions AND (∧), OR (∨), and NOT

(¬), which, respectively, return 1 if and only if every input bit is 1, return 0 if and

20

only if every input bit is 0, and return the opposite of the single input bit. We refer

to vertices labeled with functions as gates, and edges are referred to as wires.

Because there are no vertices with paths back to themselves, and 𝑜 has no edges

going out while vertices labeled with constants or input symbols have no vertices

going in, we can draw the graph by putting the vertices in rows such that 𝑜 is alone in

the top row, every vertex 𝑣 which 𝑜 is adjacent to is in a row below 𝑜, every vertex 𝑣′

that 𝑣 is adjacent to is on a row below 𝑣, and so on until we reach the bottom, where

there are only vertices labeled 𝑐 or 𝑥𝑘. If we then evaluate all 𝑓s starting from the

lowest level and working our way up and so on until the function at 𝑜 is evaluated,

which gives us either 0 or 1, and we return “true” iff the function at 𝑜 evaluates to 1.

Definition 6 An automaton is a directed graph with the following properties:

∙ each edge 𝑒 is labeled with a symbol 𝜎𝑒 from a finite alphabet Σ such that there

do not exist edges 𝑒1 = (𝑢, 𝑣1), 𝑒2 = (𝑢, 𝑣2) such that 𝜎𝑒1 = 𝜎𝑒2

∙ for every 𝑢 ∈ 𝑉, 𝜎 ∈ Σ, there exists an edge 𝑒 = (𝑢, 𝑣) such that 𝜎𝑒 = 𝜎

∙ there is a set of vertices 𝐴 in the graph that are called “accept states”, as well

as a special vertex 𝑠 called the “start state”

∙ there is a pointer that points to a specific vertex 𝑣 in the graph, initially pointing

to 𝑣 = 𝑠

On a given input 𝑥 = 𝑥1𝑥2𝑥3 . . . 𝑥𝑛, we consume the first symbol of the input 𝑥1 and

move the pointer from 𝑠 to the vertex 𝑣 such that 𝑒 = (𝑠, 𝑣) is an edge in the graph with

𝜎𝑒 = 𝑥1. We repeat this procedure by consuming 𝑥2 and moving along the appropriate

edge on 𝑣, and continue likewise until the entire input has been used up, at which

point we return “true” iff the current vertex we are pointing to is in 𝐴.

21

Intuitively, an automaton is a state machine where we read each symbol of the input

sequentially and transition to another state according to the symbol, returning “true”

if and only if we end in an accept state.

While automata represent a simplistic decision process where we do not rely on

saving any values for later, only considering the current input symbol and all the ones

we have seen up until now, circuits mirror the process inside a computer where bits

are sequentially put through logic gates until there is only a single bit to indicate

whether or not the circuit returns “true” or “false”. Of course there are natural ways

to model these settings on a Turing machine–indeed the decision process by which a

Turing machine chooses what to do at a given time step is an automaton, and circuits

can be evaluated in polynomial time one piece at a time as described above–they do

represent different restrictions on the Turing machine model, not in terms of time or

space but in terms of how the computation is carried out.

Depending on how these models are restricted, we get very natural complexity

classes that fit into the framework of complexity theory. One such important connec-

tion again relies on the notion of a reduction, though we omit the proof.

Definition 7 The Circuit Evaluation Problem is defined as follows: given a circuit

𝐶 and an input string 𝑥, return the value of 𝐶 evaluated on 𝑥 as described above.

This problem is in P as noted in the above paragraph.

Theorem 2 Every problem in P reduces to the Circuit Evaluation Problem.

Once again we see a natural problem being used as an alternate characterization for

an equally natural complexity class. It is clear from this statement that evaluating

circuits is inherently a Turing machine problem, but from the theorem we also see

that every problem in the class of Turing machine problems P can be rewritten as a

circuit. Hopefully this provides some motivation as to why we deem it useful to study

these alternate models of computation.

22

1.3 Our results

For the rest of the thesis we will dive into various problems across these three models

of computation. For Turing machines we turn our attention to gridgraph reachability,

a highly structured instance of directed st-connectivity that we hoped to put in L.

For circuits we add a host of new characterizations to well-known Boolean circuit

complexity classes in terms of so-called arithmetic circuits, as well as proving stronger

results and even degree reductions on polynomials as a consequence. For automata we

analyze a model introduced by Alur et al. in 2010 called cost-register automata, which

run like normal automata but additionally evaluate some algebraic function along

the way. We reduce the problem over various settings to Turing-machine complexity

classes as well as circuit complexity classes.

With this I hope to survey a number of different computational models in com-

plexity theory, to hopefully motivate the notion that these models are interconnected

and worthy of study. I find it incredible that finding algorithms in one setting can

also affect unrelated problems via reductions and the interconnected structure of

complexity classes, and this has shaped my approach to research for these past four

years.

For a more in-depth introduction to the field of complexity theory, we refer the

reader to an excellent textbook by Sipser [48].

23

24

Chapter 2

Gridgraph reachability

2.1 Introduction

We begin our study into complexity theory with the Turing machine model. In the gap

between L and NL there are many other classes, one of which is UL or “unambiguous

logspace”, the class for which there exist NL algorithms that have only one solution.

Following up on the work done by Allender et. al [33] and Soltys [50] we delve into

a problem known as Shuffle. The Shuffle problem is the following: given three words

𝑎, 𝑏, 𝑐, we want to find out if there is a way of interleaving the letters of 𝑎 and 𝑏

without changing their original order to get 𝑐. For example, if 𝑎 = 01 and 𝑏 = 10,

then Shuffle will accept if 𝑐 = 0110 or 𝑐 = 1010, but not if 𝑐 = 0011.

The Shuffle problem has been discussed in standard texts such as [41], and thanks

to Soltys we know that it can be decided in NL, by using a simple algorithm that

at time 𝑡 chooses whether to take the next letter from 𝑎 or from 𝑏, thus only having

to maintain pointers to the first letter of each we have not yet taken. However, this

uses the guessing power of non-determinism, because if 𝑎 and 𝑏 both match up with

the next letter of 𝑐 at time 𝑡 then trying to work deterministically can either make

us screw up or require us to use more than logarithmic space.

25

We can put Shuffle into the slightly more restricted class UL using a reduction [33]

from Shuffle to a particular directed reachability problem called layered gridgraph.

A gridgraph is a graph where the vertices are the points on an 𝑚 × 𝑘 grid, with

edges only possible between vertices that are adjacent on the grid in the four cardinal

directions (aka no diagonals). We define the vertex in the top left corner of the grid

to be 𝑠 and the vertex in the bottom right to be 𝑡. The layered restriction states that

every edge must point either to the right or downwards, or in other words, no edge

can point away from the 𝑠-to-𝑡 direction. Because planar reachability is in UL [28], it

holds that layered gridgraph–a special case of planar graphs–is also in UL.

Given an instance of layered gridgraph, it is natural to try to transform the graph

into a state where we can use the considerable power of Reingold’s connectivity al-

gorithm. One naive approach is to simply replace the directed edges in our instance

with undirected edges, which fails in fairly trivial cases. Another approach would

be to try and remove paths that go “backwards”, away from 𝑡 and back towards 𝑠,

but in general layered gridgraphs this is a difficult task. However because we are

reducing Shuffle to the more general layered gridgraph problem, the graphs will be

built in a highly organized fashion that restrict them far beyond normal instances of

layered gridgraph. We hoped to use this additional structure to find an algorithm

that can remove backwards paths and thus be valid instances of undirected reacha-

bility, which would put Shuffle in L. While we did not succeed, we discovered a few

of these structural properties that can hopefully be exploited in future works.

2.2 Preliminaries

Definition 8 (Shuffle) For 𝑎, 𝑏, 𝑐 ∈ Σ* such that |𝑐| = |𝑎| + |𝑏|, SHUFFLE(𝑎 =

𝑎1 . . . 𝑎𝑚, 𝑏 = 𝑏1 . . . 𝑏𝑘, 𝑐 = 𝑐1 . . . 𝑐𝑚+𝑘) accepts iff there is some binary string 𝑠 =

{0, 1}𝑚+𝑘 such that

26

1. 𝑠 has exactly 𝑚 bits equal to 0

2. ∀𝑖 : 1 ≤ 𝑖 ≤ 𝑚+ 𝑘, 𝑐𝑖 = 𝑎𝑗 if 𝑠𝑖 is the 𝑗th 0 in 𝑠, or 𝑐𝑖 = 𝑏𝑗 if 𝑠𝑖 is the 𝑗th 1 in

𝑠

We think of this string 𝑠 as a roadmap for how to interleave 𝑎 and 𝑏 to create 𝑐,

noting that we cannot change the internal ordering of 𝑎 or 𝑏.

Definition 9 (Layered gridgraph) A graph 𝐺 = {𝑉,𝐸} is a layered gridgraph if

there exist 𝑚, 𝑘 ∈ N such that:

1. For each 𝑣 ∈ 𝑉 , 𝑣 is labeled with some coordinate in [𝑚]× [𝑘] (we say 𝑣 = (𝑖, 𝑗)

for some (𝑖, 𝑗) ∈ [𝑚]× [𝑘]). Furthermore, for every coordinate in [𝑚]× [𝑘], there

is exactly one vertex 𝑣 ∈ 𝑉 labeled with that coordinate.

2. For every edge 𝑒 ∈ 𝐸 from vertex 𝑢 = (𝑢1, 𝑢2) to vertex 𝑣 = (𝑣1, 𝑣2), either

𝑣1 = 𝑢1 + 1 or 𝑢2 = 𝑣2 + 1, but not both.

Definition 10 (Layered gridgraph) Let 𝐺 be a layered gridgraph with parameters

𝑚, 𝑘. We define GG(𝐺) to accept iff there is a path 𝑃 from (1, 1) to (𝑚, 𝑘).

Now that we have defined our two problems, we need to make good on our promise

from the introduction.

Theorem 3 ([50]) SHUFFLE ≤𝑚 GG

Because GG is a special case of directed reachability it holds that GG ∈ NL, also

implying that SHUFFLE ∈ NL.

27

2.3 Our proposed algorithm

Our goal now is to build an instance of undirected st-connectivity from layered grid-

graph. Given GG(𝐺), we build graph 𝐺′ = (𝑉 ′, 𝐸 ′) to have 𝑉 ′ = [𝑚] × [𝑘], and

𝐸 ′ = {(𝑢, 𝑣), (𝑣, 𝑢),∀(𝑢, 𝑣) ∈ 𝐸}. For an instance of GG we can build 𝐺′ in logspace,

and as discussed in our introduction there exists an algorithm in L to find a path from

(1, 1) to (𝑚, 𝑘). However, this path does not necessarily correspond to a directed path

in the original GG instance, as the path could go from a point (𝑖, 𝑗) to a new point

(𝑖, 𝑗 − 1) or (𝑖− 1, 𝑗), which would not be possible in GG.

We now propose the following algorithm to solve GG(𝐺):

Algorithm 1 First we build 𝐺′ according to our steps above. Now we build 𝐺′′ as

follows: for each node 𝑣 = (𝑖, 𝑗) in the graph:

1. Set 𝐺𝑣,(1,1) to be 𝐺′ restricted to only vertices 𝑣′ = (𝑖′, 𝑗′) such that 𝑖′ ≤ 𝑖 and

𝑗′ ≤ 𝑗

2. Run Reingold’s undirected st-connectivity algorithm from (1, 1) to 𝑣 on 𝐺𝑣,(1,1),

and if it rejects we “mark” 𝑣

3. Set 𝐺𝑣,(𝑚,𝑘) to be 𝐺′ restricted to only vertices 𝑣′ = (𝑖′, 𝑗′) such that 𝑖′ ≥ 𝑖 and

𝑗′ ≥ 𝑗

4. Run Reingold’s undirected st-connectivity from 𝑣 to (𝑚, 𝑘) on 𝐺′
𝑣,(𝑚,𝑘), and if it

rejects we “mark” 𝑣

We run Reingold’s undirected st-connectivity on 𝐺′′ from (1, 1) to (𝑚, 𝑘), but ignoring

edges (𝑢, 𝑣) where either 𝑢 or 𝑣 was marked by our algorithm. Our algorithm then

accepts iff this st-connectivity accepts.

We now analyze the space requirements of our algorithm. Our first procedure is

to build 𝐺𝑣,(1,1), which we do by simply storing 𝑖 and 𝑗. When we run Reingold’s

28

algorithm on 𝐺𝑣,(1,1), we do so by ignoring any edges that are on a vertex which have

any coordinates not in [𝑖] × [𝑗], which just involves checking each new vertex before

proceeding with the algorithm. We repeat these procedures for 𝐺𝑣,(𝑚,𝑘). Our final

logspace procedure is the last run of Reingold’s algorithm, which runs in logspace

if we have access to the list of vertices marked by our algorithm. While we cannot

store this list, we can simply compute whether or not a vertex is marked when it

is considered by the algorithm, and thus we need not store more than a logarithmic

amount of memory. Thus our algorithm runs in logspace.

Now we check its correctness. If the instance of Shuffle is valid, then there is a

directed path from (1, 1) to (𝑚, 𝑘). For every vertex 𝑣 = (𝑖, 𝑗) along that path there

will be a path from (1, 1) to 𝑣 in 𝐺𝑣,(1,1) and to (𝑚, 𝑘) in 𝐺𝑣,(𝑚,𝑘). Therefore that path

is left intact after vertex checking and removal occurs, and so our algorithm accepts.

Likewise, if it is an invalid instance of Shuffle where there is no undirected path in 𝐺′,

there cannot possibly be a path after the removal step, and so our algorithm rejects.

The last case to consider–the one case that keeps us from just running undirected

reachability on 𝐺′–is the case where Shuffle rejects, implying that there is no directed

path in GG, but there is an undirected path 𝑃 in 𝐺′. We will show that unfortunately

there is a particular circumstance in which our algorithm does not remove this path.

2.4 Where our algorithm breaks down

We consider this final case, where there is no layered path in the instance of GG but

there is an undirected path 𝑃𝑏𝑎𝑑 in 𝐺′. We now attempt to look at what 𝑃𝑏𝑎𝑑 could

look like by attempting to construct a valid path 𝑃 :

1. initialize 𝑃 = ∅, 𝑣 = (1, 1)

2. Add 𝑣 to the path 𝑃 , and guess a neighbor 𝑣′ adjacent to 𝑣 that was not marked

by our algorithm to be the next node in 𝑃

29

3. If 𝑣′ is a layered edge from 𝑣, set 𝑣′ = 𝑣 and return to step 2

4. If 𝑣′ is a non-layered edge from 𝑣, then because it was not eliminated from our

algorithm, there must be a path 𝑃𝑣′,(1,1) from (1, 1) to 𝑣 in 𝐺𝑣′,(1,1), and so if

that path is only made up of layered edges, set 𝑃 = 𝑃𝑣′,(1,1) and return to step

2

5. If this new path 𝑃𝑣′,(1,1) is not completely made up of layered edges, ERROR

By this process, 𝑃 is a layered path at each step that does not return an error,

assuming we guessed optimally in step 2 every time. Now we consider when this

procedure returns ERROR, at vertex 𝑣 = (𝑖, 𝑗), 𝑣′ = (𝑖′, 𝑗′). Because our procedure

has run as normal up until this point, we know that there is a layered path 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑

from (1, 1) to 𝑣. However, because we got ERROR it also must be that there is no

layered path that reaches 𝑣′, and yet it is unmarked by our algorithm. So there must

be an unlayered path 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 to 𝑣′ in 𝐺𝑣′,(1,1).

Assume without loss of generality that 𝑖 = 𝑖′+1. Consider the following gridgraph

𝐺𝑏𝑎𝑑: 𝑚 = 2𝑖 − 1 and 𝑘 = 2𝑗. We have two paths, 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = {𝑒1, 𝑒2, 𝑒3 . . . 𝑒𝑐} and

𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = {𝑓1, 𝑓2, 𝑓3 . . . 𝑓𝑑}, both identical to the ones we considered in the previous

paragraph. Additionally we have an edge from (𝑖−1, 𝑗) to (𝑖, 𝑗). Now we include in our

graph paths 𝑃 ′
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 and 𝑃 ′

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 defined as follows: for every (undirected) edge 𝑒𝑡 =

((𝑢1, 𝑢2), (𝑣1, 𝑣2)) ∈ 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑, set 𝑒𝑐−𝑡 in 𝑃 ′
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 to be ((𝑚−𝑢1, 𝑘−𝑢2), (𝑚−𝑣1, 𝑘−𝑣2)),

and analogously for every edge 𝑓𝑡 ∈ 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑. What we can think of is “rotating” our

original paths by 180∘ around (𝑚/2, 𝑘/2). The end result is that 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 is a layered

path from (1, 1) to (𝑖, 𝑗), while 𝑃 ′
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 is a layered path from (𝑖 − 1, 𝑗) to (𝑚, 𝑘).

Likewise 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 is an unlayered path from (1, 1) to (𝑖 − 1, 𝑗), while 𝑃 ′
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 is an

unlayered path from (𝑖, 𝑗) to (𝑚, 𝑘).

To see why this is a counterexample, consider running Algorithm 1 on 𝐺𝑏𝑎𝑑. We

will mark some vertices along both 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 and 𝑃 ′
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑, but leave 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 and

30

𝑃 ′
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 untouched, as well as leaving the edge ((𝑖− 1, 𝑗), (𝑖, 𝑗)) untouched due to the

presence of 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 and 𝑃 ′
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑. Thus our last execution of Reingold’s algorithm

will take 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 from (1, 1) to (𝑖, 𝑗), follow the edge back to (𝑖− 1, 𝑗), and then take

𝑃 ′
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 from (𝑖 − 1, 𝑗) to (𝑚, 𝑘). Note that there was no layered path in 𝐺𝑏𝑎𝑑, and

yet our algorithm will return true.

In the general layered gridgraph problem, such a counterexample would instantly

break our algorithm. However, when constructing the layered gridgraph for Shuffle,

there are many more restrictions that have to be followed.

Theorem 4 The following equalities hold in any gridgraph constructed according to

the reduction in [50] from Shuffle:

∙ if there exist two edges 𝑒 = ((𝑖, 𝑗), (𝑖+ 1, 𝑗)), 𝑒′ = ((𝑖, 𝑗′), (𝑖+ 1, 𝑗′)),

then 𝑐𝑖+𝑗 = 𝑎𝑖 = 𝑐𝑖+𝑗′

∙ if there exist two edges 𝑒 = ((𝑖, 𝑗), (𝑖, 𝑗 + 1)), 𝑒′ = ((𝑖′, 𝑗), (𝑖′, 𝑗 + 1)),

then 𝑐𝑖+𝑗 = 𝑏𝑗 = 𝑐𝑖′+𝑗

∙ if there exist two edges 𝑒 = ((𝑖, 𝑗), (𝑖+ 1, 𝑗)), 𝑒′ = ((𝑖′, 𝑗′), (𝑖′, 𝑗′ + 1))

such that 𝑖+ 𝑗 = 𝑖′ + 𝑗′, then 𝑎𝑖 = 𝑐𝑖+𝑗 = 𝑐𝑖′+𝑗′ = 𝑏𝑗′

This theorem follows as a consequence of how the graph was originally constructed.

Thus immediately by attempting to construct a counterexample like the one listed

above, we note that we have a directed path and an undirected path that do not

intersect and have the same opposite corners, meaning we have a closed polygon

shape in our grid. But in an enclosed area, using the three rules established in the

theorem we can draw equalities between all the various regions on the perimeter of

the polygon, and see where equalities between various regions in 𝑎, 𝑏, and 𝑐 also force

more edges on the inside of the region into existence. By doing so we had hoped

to show that all the vertices on the unlayered path also have layered paths, thus

rendering the counterexample harmless.

31

Unfortunately we did discover such a counterexample using the following values:

𝑎 : 01000001000000000000000000001000001000000000010000

00001000000000010000010000000000000000000010000010

𝑏 : 01000001000000000000000000100000100000000001000

000010000000000100000100000000000000000010000010

𝑐 : 0100000100000000000000000010000010000000000100000

1000001000000000000000000001000001000000000010000

000100000000001000001000000000000000000001000001

0000010000000000100000100000000000000000010000010

We visualized this example using Java as seen in Fig. 2-1. Note that there seem to

be a very dense structure within the initial polygon in (a), and so doing the rotation

to create (b) gave us hope that some other layered path from the start to the goal

would emerge. However, as we can see in (c), after we run Algorithm 1 the only path

left is exactly the unlayered path we predicted when defining these polygons. This

was the smallest counterexample we could find via computer-assisted search, so it is

clear that due to the edges that are forced to appear with our equalities such examples

are rarer than not, but still our algorithm at the current time does not work.

In light of this example, our next step is to test the power of iterating the deletion

step of Algorithm 1. It turns out that running it twice in succession solves this

example correctly, and as long as we limit ourselves to a constant number of iterations

we can perform the calculations in logspace. However, it may be possible to nest these

counterexamples within each other, which would remove any hope of our algorithm

working. Because we have not analyzed the restrictions on Shuffle graphs to the

32

Figure 2-1: (a) a bad polygon, outlined in blue with necessary edges in black; (b)
the full counterexample from before; (c) the result of running our algorithm on the
counterexample, with the backwards edge colored red

fullest, it is hard to say at the current time whether or not this will work.

2.5 Conclusion

We have given Shuffle as an example of a problem that fits into the framework of

complexity theory. We show a reduction to a reachability problem that is solvable in

a class contained in NP but is not known to be as hard as directed reachability nor

as easy as undirected reachability. We examine one algorithm that seemed to get us

close to proving the latter, and discussed where it breaks down. In the process we

give some theorems pertaining to the structure of the layered gridgraphs in question,

which can hopefully be analyzed in the future along with possible adjustments to our

33

algorithm that could lead to putting Shuffle into L.

34

Chapter 3

Circuit complexity

3.1 Introduction

The next setting we will analyze is the circuit model of complexity theory, which has

strong ties to the basic digital logic used in modern computers. We introduced the

model at the beginning of this work in relation to graphs which have nodes repre-

senting either input variables, the constants 0 and 1, or the basic Boolean functions

∧, ∨, and ¬. Furthermore we gave a visualization of these nodes as being organized

into layers where the top layer contains the single function returning the output of

the circuit, and every gate takes inputs only from layers below it.

With this organization, we can define properties of the circuit that will be useful

to restrict in our computation models. The fan-in of a gate is the number of inputs it

takes, and while some gates such as the NOT gate can only ever take one input, AND

and OR gates can take any positive number of inputs unless restricted by the model.

For the purposes of this work we define the size of a circuit to be the number of nodes

in the graph, although we could have also chosen the number of wires as well. Finally,

the depth of a circuit is the number of layers in the graph, which is equivalent to the

length of the longest path from a node labeled with an input variable or constant to

35

the output gate.

Our focus in this section will be on circuits that have polynomial size and loga-

rithmic depth in relation to the number of input variables to the circuit, 𝑛. There

are many important circuit classes that have different restrictions than this model,

such as constant depth circuits, but while many of our results carry over to differ-

ent classes we will only mention such extensions in passing, leaving it to the more

interested reader to find such places as they see fit.

There are two other gates we will use throughout this section that have not been

discussed thus far. The MOD𝑚 gate takes as input any positive number of Boolean

values and returns 1 iff the number of 1-valued inputs is a multiple of𝑚. For example,

theMOD2 gate, more commonly known as the PARITY gate (⊕), returns 1 iff there

are an even number of 1-valued inputs. The other gate is the MAJORITY gate,

which again takes any positive number of Boolean inputs and returns 1 iff there are

at least as many 1-inputs as 0-inputs, or in other words, returns whether the majority

of the inputs are 1 or 0.

An important study in circuit complexity is that of arithmetic circuits, circuits

whose underlying expression is a polynomial over a field rather than a Boolean for-

mula. The changes from Boolean circuits are that wires now carry numbers rather

than just Boolean bits, and gates are labeled by arithmetic functions such as + or ×

rather than Boolean functions such as ∧ and ∨. In the settings we will analyze, there

is an underlying ring restricting the circuit, and so all computations are carried out

within that field. Furthermore in this work we generally restrict ourselves to finite

fields or rings, namely F𝑝 and Z𝑚. For completeness sake the basic field identities

used in this work will be included in the preliminaries in brief.

Perhaps the most famous class of arithmetic circuits is VP(F𝑝). This class was

originally introduced by Valiant [55] as the class of polynomials 𝑓 over F𝑝 that have

polynomial degree and can be represented by poly-size arithmetic circuits, which is

36

equivalent to the class of poly-size log-depth arithmetic circuits over F𝑝 where + gates

have unbounded fan-in and × gates have fan-in two [56, 2]. Though the arithmetic

circuits tend to receive less attention than Boolean circuits, we will see that this

class, along with other arithmetic circuit models under consideration, can be seen as

an “arithmetic version” of natural Boolean circuit classes. Thus we will attempt to

better characterize arithmetic circuit complexity classes in the classical framework of

Boolean circuit complexity and vice versa.

Our other goal besides characterizing these lesser-known classes will be fan-in

reductions, seeing how much power is lost–if any–by restricting the fan-in of certain

gates in a given model. Note that in the arithmetic complexity setting, restricting the

fan-in of × gates is the same as restricting the degree of the underlying polynomials,

which mathematics tells us should yield a strictly weaker class of circuits. Yet over

F2 we show that the problem of querying a polynomial of degree 𝑛log𝑛 reduces to the

problem of querying a polynomial of degree 𝑛log log𝑛.

3.2 Preliminaries

Before introducing our main circuit classes, we will make good on our promise from

before and introduce a few equations necessary for understanding our reductions, as

well as DeMorgan’s Laws, a staple in Boolean circuit complexity.

Definition 11 (DeMorgan’s Laws) For Boolean variables 𝑥1 . . . 𝑥𝑚,

¬(∧(𝑥1 . . . 𝑥𝑚)) = ∨(𝑥1 . . . 𝑥𝑚) and ¬(∨(𝑥1 . . . 𝑥𝑚)) = ∧(𝑥1 . . . 𝑥𝑛), where 𝑥𝑖 denotes

¬𝑥𝑖.

Definition 12 (Fermat’s Little Theorem) For all prime 𝑝 and 𝑥 ∈ Z, (𝑥𝑝−1 ≡

1)mod 𝑝. Equivalently, 𝑥𝑝−1 = 1 over F𝑝.

Although we do not assume that the reader is familiar with Boolean circuit com-

plexity classes such as AC0 and ACC0, we recommend an excellent text by Vollmer

37

[58], which sums up relevant circuit classes, commonly used notation in the field, and

important results in circuit complexity.

Definition 13 ∙ A family of circuits {𝐶𝑛 | 𝑛 ∈ N} is logspace uniform if it can

be defined by a logspace algorithm 𝐴 that maps 1𝑛 to 𝐶𝑛, the unique circuit in

the family that takes 𝑛 inputs.

∙ AC𝑖 is the class of languages accepted by logspace uniform circuit families of

polynomial size and depth 𝑂(log𝑖 𝑛), consisting of unbounded fan-in AND, and

OR gates, along with NOT gates.

∙ AC𝑖[𝑚] is defined as AC𝑖, but in addition unbounded fan-in MOD𝑚 gates are

allowed, which output 1 iff the number of input wires carrying a value of 1 is a

multiple of 𝑚.

∙ For any finite set 𝑆 ⊂ N, AC𝑖[𝑆] is defined analogously to AC𝑖[𝑚], but now the

circuit families are allowed to use MOD𝑟 gates for any 𝑟 ∈ 𝑆. It is known

that, for any 𝑚 ∈ N,AC𝑖[𝑚] = AC𝑖[Supp(𝑚)], where – following the notation of

[29] – Supp(𝑚) ={𝑝 : 𝑝 is prime and 𝑝 divides 𝑚} [49]. Thus, in particular

AC𝑖[6] = AC𝑖[2, 3] and AC𝑖 = AC𝑖[∅]. (When it will not cause confusion, we omit

unnecessary brackets, writing for instance AC𝑖[2, 3] instead of AC𝑖[{2, 3}].)

∙ ACC𝑖 =
⋃︀

𝑚 AC𝑖[𝑚].

∙ TC𝑖 is the class of languages accepted by Dlogtime-uniform circuit families of

polynomial size and depth 𝑂(log𝑖 𝑛), consisting of unbounded fan-in MAJOR-

ITY gates, along with NOT gates.

∙ SAC𝑖 is the class of languages accepted by Dlogtime-uniform circuit families of

polynomial size and depth 𝑂(log𝑖 𝑛), consisting of unbounded fan-in OR gates

and bounded fan-in AND gates, along with NOT gates at (some of) the leaves.

38

Note that the restriction that NOT gates appear only at the leaves in SAC𝑖 circuits

is essential; if NOT gates were allowed to appear everywhere, then using DeMorgan’s

Laws we could get unbounded fan-in gates of both types, and these classes would

coincide with AC𝑖. Similarly, note that we do not bother to define a complexity class

SAC𝑖[𝑚], since a MOD𝑚 gate with a single input wire is equivalent to a NOT gate,

and thus SAC𝑖[𝑚] would be the same as AC𝑖[𝑚].

In this paper, we focus on uniform circuit families, and thus we use the notation

VP(𝑅) to denote the families of polynomials that result when we impose a logspace-

uniformity condition on the circuit families. The algebraic complexity classes VP(𝑅)

for various algebraic structures 𝑅 were originally defined [55] in the context of nonuni-

form circuit complexity, as classes of families of 𝑛-variate polynomials of degree 𝑛𝑂(1)

that can be represented by polynomial-size arithmetic circuits over 𝑅. (For more on

VP, see, e.g. [23, 22, 34, 44].) In the original nonuniform setting, it was shown by

[56] that the circuits defining polynomials in VP(𝑅) can be assumed to have small

depth. Later [2] a slightly improved characterization was provided, that works also

in the context of uniform circuit complexity:

Theorem 5 [2] For any commutative semiring 𝑅, VP(𝑅) coincides with the class

of families of polynomials over 𝑅 represented by logspace-uniform circuit families of

polynomial size and logarithmic depth with unbounded fan-in + gates, and fan-in two

× gates.

Note that over F𝑝, many different polynomials yield the same function. For ex-

ample, since 𝑥3 = 𝑥 in F3, every function on 𝑛 variables has a polynomial of degree

at most 2𝑛. Very likely there are functions represented by polynomials in VP(F3) of

degree, say, 𝑛5, but not by any VP polynomial of degree 2𝑛. On the other hand, there

is a case to be made for focusing on the functions in these classes, rather than focusing

on the polynomials that represent those functions. For instance, one bold conjecture

posed by Immerman and Landau posits that TC1 is reducible to problems in VP(Q),

39

and it would suffice for every function in TC1 = #AC1(F𝑝𝑛) to have a representation

in VP(Q), even though the polynomials represented by #AC1(F𝑝𝑛) circuits have large

degree, and thus cannot be in any VP class.

In the literature on VP classes, one standard way to focus on the functions repre-

sented by polynomials in VP is to consider what is called the Boolean Part of VP(𝑅),

which is the set of languages 𝐴 ⊆ {0, 1}* such that, for some sequence of polynomials

(𝑄𝑛), for 𝑥 ∈ 𝐴 we have 𝑄|𝑥|(𝑥) = 1, and for 𝑥 ∈ {0, 1}* such that 𝑥 /∈ 𝐴 we have

𝑄|𝑥|(𝑥) = 0.

When the algebra 𝑅 is a finite field, considering the Boolean part of VP(𝑅) cap-

tures the relevant complexity aspects, since the computation of any function rep-

resented by a polynomial in VP(𝑅) (with inputs and outputs coming from 𝑅) is

logspace-Turing reducible to some language in the Boolean Part of VP(𝑅).

In this paper, we will be concerned exclusively with the “Boolean Part“ of various

arithmetic classes. For notational convenience, we will just refer to these classes

using the “VP“ notation, rather than constantly repeating the phrase “Boolean Part“.

Following the standard naming conventions of [58], for any Boolean circuit com-

plexity class 𝒞 defined in terms of circuits with AND and OR gates, we define the

class #𝒞(𝑅) to be the class of functions represented by arithmetic circuits defined

over the algebra 𝑅, where AND is replaced by ×, and OR is replaced by + (and

NOT gates at the leaves are applied to the {0, 1} inputs).1 In particular, we will be

concerned with the following two classes:

Definition 14 Let 𝑅 be any suitable semiring.2 Then

∙ #AC1(𝑅) is the class of functions 𝑓 : {0, 1}* → 𝑅 represented by families

1The classes #L,#P and #LogCFL also fit into this naming scheme, using established connections
between Turing machines and circuits.

2Our primary focus in this paper is on finite semirings, as well as countable semirings such as Q,
where we use the standard binary representation of constants (say, as a numerator and denominator)
when a logspace uniformity machine makes use of constants in the description of a circuit. It is not
clear to us which definition would be most useful in describing a class such as #AC1(R), and so for
now we consider such semirings to be “unsuitable“.

40

of logspace-uniform circuits of unbounded fan-in + and × gates having depth

𝑂(log 𝑛) and polynomial size.

∙ #SAC1(𝑅) is the class of functions 𝑓 : {0, 1}* → 𝑅 represented by families of

logspace-uniform circuits of unbounded fan-in + gates and × gates of fan-in

two, having depth 𝑂(log 𝑛) and polynomial size.

Input variables may be negated. Where no confusion will result, the notation #𝒞(𝑅)

will also be used to refer to the class of languages whose characteristic functions lie

in the given class.

Hence from Theorem 5 we obtain:

Proposition 1 Let 𝑝 be a prime power. Then VP(F𝑝) = #SAC1(F𝑝).

Proof: The inclusion VP(F𝑝) ⊆ #SAC1(F𝑝) is immediate from Theorem 5. The

#SAC1(F𝑝) circuit that is created for a VP(F𝑝) circuit has no NOT gates. For the

converse inclusion, given a #SAC1(F𝑝) circuit family, each NOT gate at a leaf, con-

nected to input 𝑥𝑖 can be replaced by (𝑥𝑖 + (𝑝− 1))2. 2

3.2.1 New Definitions: Λ-classes

In this section, we introduce and define classes that are dual to the #SAC1(𝑅) classes

discussed above. Define #SAC1,*(𝑅) to be the class of functions 𝑓 : {0, 1}* → 𝑅

represented by families of logspace-uniform circuits of unbounded fan-in × gates and

+ gates of fan-in two, having depth 𝑂(log 𝑛) and polynomial size. Proposition 1

highlights the connection between VP and #SAC1; thus we will utilize the conve-

nient notation ΛP(𝑅) to denote the dual notation, rather than the more cumbersome

#SAC1,*(𝑅).

Of course, the set of formal polynomials represented by ΛP circuits is not contained

in any VP class, because ΛP contains polynomials of degree 𝑛𝑂(log𝑛). However, as

41

discussed in the previous section, we are considering the “Boolean Part“ of these

classes. More formally:

Definition 15 Let 𝑝 be a prime power. ΛP(F𝑝) is the class of all languages 𝐴 ⊆

{0, 1}* with the property that there is a logspace-uniform family of circuits {𝐶𝑛 : 𝑛 ∈

N} such that

∙ The depth of 𝐶𝑛 is 𝑂(log 𝑛).

∙ Each 𝐶𝑛 consists of input gates, + gates, and × gates.

∙ Each + gate has fan-in two, whereas there is no bound on the fan-in of the ×

gates.3

∙ For each string 𝑥 of length 𝑛, 𝑥 is in 𝐴 if and only if 𝐶𝑛(𝑥) evaluates to 1, when

the + and × gates are evaluated over F𝑝. Furthermore, if 𝑥 ̸∈ 𝐴, then 𝐶𝑛(𝑥)

evaluates to 0.

Another way of relating arithmetic classes (such as VP and ΛP) to complexity

classes of languages would be to consider the languages that are logspace-Turing

reducible to the polynomials in VP(𝑅) or ΛP(𝑅), via a machine 𝑀 with a polynomial

𝑝 as an oracle, which obtains the value of 𝑝(𝑥1, . . . , 𝑥𝑛) when 𝑀 writes 𝑥1, . . . 𝑥𝑛 on

a query tape. It is worth mentioning that (the Boolean parts of) both VP(F𝑝) and

ΛP(F𝑝) are closed under logspace-Turing reductions, although this is still open for

classes over Z𝑚 when 𝑚 is not prime.

We mention that VP classes over different fields of the same characteristic define

the same class of languages. This seems to be one way that the VP and ΛP classes

differ; see Corollary 2.

Proposition 2 Let 𝑝 be a prime, and let 𝑘 ≥ 1. Then VP(F𝑝) = VP(F𝑝𝑘).

3The uniformity condition imposes an implicit polynomial bound on the fan-in of any gate.

42

Proof: One inclusion follows immediately since F𝑝 is a subfield of F𝑝𝑘 . For the other

direction, observe that the finite field of size 𝑝𝑘 is a vector space of dimension 𝑘 over

the field of size 𝑝, and thus can be represented by 𝑘×𝑘 matrices over F𝑝, as described

in [35]. (See also [59].) Thus each + and × gate of a ΛP(F𝑝𝑘) circuit can be replaced

by subcircuits implementing matrix sum and product over F𝑝. (Unbounded fan-in

matrix sum corresponds to unbounded fan-in sum of each component. Fan-in two

multiplication is implemented by a depth-two subcircuit, with fan-in two × gates,

and with addition gates of fan-in 𝑂(1).) The resulting circuit is a VP(F𝑝) circuit. 2

It is also appropriate to use the VP and ΛP notation when referring to the classes

defined by Boolean semiunbounded fan-in circuits with negation gates allowed at

the inputs. With this notation, VP(𝐵2) corresponds to the Boolean class SAC1, and

ΛP(𝐵2) corresponds to the complement of SAC1 (with bounded fan-in OR gates,

unbounded fan-in AND gates and negation gates allowed at the inputs). It has been

shown by [20] that SAC1 is closed under complement. Thus we close this section with

the equality that serves as a springboard for investigating the ΛP classes.

Theorem 6 [20] VP(𝐵2) = ΛP(𝐵2)(= SAC1 = LogCFL).

We do not believe that VP(F𝑝) = ΛP(F𝑝) for any prime 𝑝; see further related

discussion in Section 3.5.

3.3 Subclasses of ACC1

In this section, we present our characterizations of ACC1 in terms of the ΛP(F𝑝𝑘)

classes.

Theorem 7 For any prime 𝑝 and any 𝑘 ≥ 1, ΛP(F𝑝𝑘) = AC1[Supp(𝑝𝑘 − 1)]. (Recall

that Supp(𝑚) is defined in Definition 13.)

43

Proof: (⊆): Consider a ΛP(F𝑝𝑘) circuit 𝐶. We will create a circuit 𝐶 ′ that has

subcircuits computing the Boolean value [𝑔 = 𝑎] for each gate 𝑔 in 𝐶 and for each

𝑎 ∈ F𝑝𝑘 . (We will use the notation “[𝐵]“ to refer to the truth-value of predicate 𝐵.)

If 𝑔 is the output gate of 𝐶, then the output gate of 𝐶 ′ is the gate [𝑔 = 1]. Since the

input gates of 𝐶 take on only binary values (by our definition of ΛP(F𝑝𝑘)), if 𝑔 is an

input gate of 𝐶, then the subcircuit [𝑔 = 1] is just 𝑔, and the subcircuit for [𝑔 = 0] is

¬𝑔. If 𝑔 is a constant gate, set to the value 𝑎 ∈ F𝑝𝑘 , then [𝑔 = 𝑎] is set to the constant

1, and [𝑔 = 𝑎′] is set to the constant 0, for each 𝑎′ ̸= 𝑎.

If 𝑔 is a + gate of 𝐶 (of fan-in 2), then any gate [𝑔 = 𝑎] can be simulated with

NC0 circuitry using the 𝑂(1) Boolean gates of the form [𝑔′ = 𝑎′], where 𝑔′ feeds into

𝑔 in 𝐶.

Now consider a × gate 𝑔 of 𝐶, having unbounded fan-in: 𝑔 =
∏︀

𝑖 ℎ𝑖. The value

[𝑔 = 0] is obtained by simply checking if there is some 𝑖 such that ℎ𝑖 = 0.

Now we show how to compute [𝑔 = 𝑎] for 𝑎 ̸= 0. Let 𝑝𝑘 − 1 =
∏︀ℓ

𝑗=1 𝑞
𝑒𝑗
𝑗 where

Supp(𝑝𝑘 − 1) = {𝑞1, . . . , 𝑞ℓ}. Let 𝜎 be a generator of the multiplicative group of F𝑝𝑘 .

Then 𝑔 =
∏︀

𝑖 ℎ𝑖 =
∏︀

𝑖 𝜎
log ℎ𝑖 = 𝜎

∑︀
𝑖 log ℎ𝑖 where “log 𝑏“ denotes the unique element of

F𝑝𝑘 such that 𝜎log 𝑏 = 𝑏. Hence the value [𝑔 = 𝑎] is equivalent to [log 𝑎 ≡
∑︀

𝑖 log ℎ𝑖 mod

(𝑝𝑘−1)], which in turn is equivalent to the AND of the values [log 𝑎 ≡
∑︀

𝑖 log ℎ𝑖 mod

(𝑞
𝑒𝑗
𝑗)].

If 𝑒𝑗 = 1 then the value [log 𝑎 ≡
∑︀

𝑖 log ℎ𝑖 mod (𝑞𝑗)] is easy to compute with a

MOD𝑞𝑗 gate, as follows. Using NC
0 circuitry, for each 𝑖, find the unique 𝑏 such that

[ℎ𝑖 = 𝑏] holds (and for simplicity, let us refer to this value as ℎ𝑖). Then, for each

𝑖, compute the string 𝑥𝑖 = 1log ℎ𝑖0𝑝−log ℎ𝑖 . (Note that the mapping from gates of the

form [ℎ𝑖 = 𝑏] to 𝑥𝑖 is computable in logspace-uniform NC0.) Let 𝑋𝑎 be the string that

results from concatenating the string 1(𝑝−1)−log 𝑎 and all of the strings 𝑥𝑖. Now observe

that feeding 𝑋𝑎 into a MOD𝑞𝑗 gate computes the value [log 𝑎 ≡
∑︀

𝑖 log ℎ𝑖 mod (𝑞𝑗)].

44

If 𝑒𝑗 > 1, then first observe that [𝑏 ≡ 0 mod 𝑞
𝑒𝑗
𝑗] can be computed by checking if

each of 𝑏,

⎛⎜⎝ 𝑏

𝑞𝑗

⎞⎟⎠ ,

⎛⎜⎝ 𝑏

𝑞2𝑗

⎞⎟⎠ , . . .

⎛⎜⎝ 𝑏

𝑞
𝑒𝑗−1
𝑗

⎞⎟⎠ is equivalent to 0 mod 𝑞𝑗. (See, e.g. [18,

Fact 2.2].) Observe also that

⎛⎜⎝ 𝑏

𝑑

⎞⎟⎠ can be represented as the number of different

AND gates of fan-in 𝑑 that evaluate to 1, taking inputs from the string 𝑋𝑏. Thus all

of these conditions can be checked in constant depth withMOD𝑞𝑗 gates and bounded

fan-in AND gates.

Since 𝐶 has depth 𝑂(log 𝑛), and 𝐶 ′ consists of layers of constant-depth circuitry

to replace each layer of gates in 𝐶, this completes the proof of this direction.

(⊇): Given an AC1[Supp(𝑝𝑘−1)] circuit 𝐶, we show how to construct an arithmetic

circuit 𝐶 ′ that is equivalent to 𝐶. Each gate 𝑔 of 𝐶 will have an equivalent gate 𝑔 in

𝐶 ′. The input gates of 𝐶 and of 𝐶 ′ are exactly the same.

If 𝑔 is a NOT gate in 𝐶, say 𝑔 = ¬ℎ, then in 𝐶 ′ we will have 𝑔 = (ℎ+ (𝑝− 1))×

(ℎ+ (𝑝− 1)).

If 𝑔 is an AND gate (say, 𝑔 = ∧𝑖ℎ𝑖), then in 𝐶 ′ we will have 𝑔 =
∏︀

𝑖 ℎ𝑖. OR gates

will be handled the same way, using De Morgan’s Laws.

Now consider the case when 𝑔 is a MOD𝑞𝑗 gate with inputs ℎ𝑖. Thus 𝑔 computes

the value [
∑︀

𝑖 ℎ𝑖 ≡ 0 mod 𝑞𝑗]. Let 𝜎 be a generator of the multiplicative cyclic sub-

group of size 𝑞𝑗. First map each ℎ𝑖 to the value ℎ′
𝑖 = 1 + ((𝜎 + (𝑝𝑘 − 1)) × ℎ𝑖, and

observe that ℎ′
𝑖 = 𝜎ℎ𝑖 for all ℎ𝑖 ∈ {0, 1}. Observe that 1−

∏︀
𝑖 ℎ

′
𝑖 = 1− 𝜎

∑︀
𝑖 ℎ𝑖 is equal

to 0 if
∑︀

𝑖 ℎ𝑖 is a multiple of 𝑞𝑗, and is non-zero otherwise. Thus 1− (1−
∏︀

𝑖 ℎ
′
𝑖)
𝑝𝑘−1

is equal to the Boolean value [
∑︀

𝑖 ℎ𝑖 ≡ 0 mod 𝑞𝑗].

It is easy to verify that 𝐶 ′ has logarithmic depth, and uses only bounded fan-in

+ gates, as well as unbounded fan-in × gates. 2

Corollary 1 ACC1 =
⋃︀

𝑝 ΛP(F𝑝).

45

Proof: Let 𝐴 ∈ ACC1. Thus 𝐴 ∈ AC1[𝑚] for some modulus 𝑚.

By Dirichlet’s Theorem, the arithmetic progression 𝑚 + 1, 2𝑚 + 1, . . . contains

some prime 𝑝. Thus AC1[𝑚] ⊆ AC1[Supp(𝑝− 1)] = ΛP(F𝑝). 2

Note also that several of the ΛP(F𝑝) classes coincide. This is neither known nor

believed to happen with the VP(F𝑝) classes.

Corollary 2 ∙ ΛP(F2) = AC1, whereas ΛP(F4) = AC1[3]. Note that this contrasts

with the equality VP(F2) = VP(F4) given by Proposition 2.

∙ If 𝑝 is a Fermat prime (that is, 𝑝 − 1 is a power of 2, such as 𝑝 ∈ {3, 5, 17,

257, 65,537}), then ΛP(F𝑝) = AC1[2].

∙ ΛP(F7) = ΛP(F13) = ΛP(F19).

∙ More generally, Supp(𝑝− 1) = Supp(𝑞 − 1) implies ΛP(F𝑝) = ΛP(F𝑞).

Augmenting the ΛP(F𝑝) classes with unbounded fan-in addition gates increases

their computation power only by adding MOD𝑝 gates, as the following theorem

demonstrates.

Theorem 8 For each prime 𝑝 and each 𝑘 ≥ 1, #AC1(F𝑝𝑘) = AC1[{𝑝}∪Supp(𝑝𝑘−1)].

Proof: (⊆): Again, we use a gate-by-gate simulation, with subcircuits recording the

value of [𝑔 = 𝑎] for each gate 𝑔 and each 𝑎 ∈ F𝑝. Multiplication gates are handled as

in the proof of Theorem 7. Consider now the case of an addition gate 𝑔 =
∑︀

𝑖 ℎ𝑖.

Using NC0 circuitry, one can use the gates [ℎ𝑖 = 𝑏] to compute the string 𝑦𝑖 =

1ℎ𝑖0𝑝−ℎ𝑖 (as in the proof of Theorem 7). Let 𝑌𝑎 be the string 1𝑝−𝑎 concatenated

with all of the strings 𝑦𝑖. Feeding 𝑌𝑎 into a MOD𝑝 gate computes the Boolean value

[𝑔 = 𝑎].

(⊇): As in Theorem 7, we carry out a gate-by-gate simulation, whereby each gate

𝑔 in a AC1[{𝑝} ∪ Supp(𝑝𝑘 − 1)] circuit 𝐶 is equivalent to a gate (also called 𝑔) in a

46

#AC1(F𝑝) circuit 𝐶 ′. We only need to consider the case where 𝑔 is a MOD𝑝 gate

with Boolean inputs ℎ𝑖. In this case, note that 𝑔 = 1 + ((
∑︀

𝑖 ℎ𝑖)
𝑝𝑘−1 × (𝑝− 1)). 2

Corollary 3 ACC1 =
⋃︀

𝑝 ΛP(F𝑝) =
⋃︀

𝑝#AC
1(F𝑝) =

⋃︀
𝑚#AC1(Z𝑚).

Proof: All inclusions are immediate from Theorems 7 and 8, except for #AC1(Z𝑚) ⊆

ACC1. Consider a circuit 𝐶 for some function in #AC1(Z𝑚). Again, we will build an

ACC1 circuit 𝐶 ′ with gates of the form [𝑔 = 𝑎] for each gate 𝑔 in 𝐶 and each 𝑎 ∈ Z𝑚.

Addition is handled as in the proof of Theorem 8. Thus consider a multiplication gate

𝑔 =
∏︀

𝑖 ℎ𝑖 =
∏︀

𝑗 𝑎
𝑒𝑗
𝑗 , where 𝑒𝑗 = |{𝑖 : [ℎ𝑖 = 𝑎𝑗]}|. The sequence (𝑎0𝑗 , 𝑎

1
𝑗 , 𝑎

2
𝑗 , . . .) (where

the product is interpreted in Z𝑚) is ultimately periodic with a period less than 𝑚,

and thus the value of [𝑎𝑒𝑗𝑗 = 𝑏] can be computed using AC0 circuitry and a MOD

gate, using inputs of the form [ℎ𝑖 = 𝑎𝑗] for various values of 𝑖. Then [𝑔 = 𝑎] can be

computed in NC0 using the 𝑂(1) gates of the form [𝑎
𝑒𝑗
𝑗 = 𝑏]. 2

Corollary 4 For any prime 𝑝 there is a prime 𝑞 such that #AC1(F𝑝) ⊆ ΛP(F𝑞).

Proof: By Dirichlet’s Theorem, there is a prime 𝑞 such that 𝑞 − 1 is a multiple of

𝑝(𝑝− 1). The claim now follows immediately from Theorems 8 and 7. 2

It will be useful to bear in mind that VP(F𝑝) also has a simple characterization

in terms of Boolean circuits. In order to present this characterization, we present a

more general definition, which will be needed later.

Definition 16 Let 𝑚 ∈ N, and let 𝑔 be any function on N. Define 𝑔-AC𝑖[𝑚] to

be the class of languages with logspace-uniform circuits of polynomial size and depth

𝑂(log𝑖 𝑛), consisting of unbounded-fan-in MOD𝑚 gates, along with AND gates of

fan-in 𝑂(𝑔(𝑛)). Clearly 𝑔-AC𝑖[𝑚] ⊆ AC𝑖[𝑚].

When 𝑔(𝑛) = 𝑂(1), the class 𝑔-AC𝑖[𝑚] coincides with the class CC𝑖[𝑚], which was

defined by Straubing [51, p. 141] for the special case 𝑖 = 0, and which has been studied

47

subsequently in e.g. [37, 52, 36]. If 𝑚 > 2, then no AND or OR gates are needed

at all [51, Chapter VIII, Exercise 9]. Thus some authors define CC𝑖[𝑚] in terms of

circuits consisting only ofMOD𝑚 gates, but the original definition is more convenient

for our purposes. The class CC𝑖 is defined to be
⋃︀

𝑚 CC𝑖[𝑚], analogously to ACC𝑖.

Observe that, since a MOD𝑚 gate can simulate a NOT gate, 𝑔-AC1[𝑚] remains the

same if OR gates of fan-in 𝑂(𝑔) are also allowed.

Corollary 5 For every prime 𝑝, VP(F𝑝) = CC1[𝑝] ⊆ AC1[𝑝].

Proof: Recall that VP(F𝑝) = #SAC1(F𝑝). Thus we need only show how to simulate

bounded fan-in × gates and unbounded fan-in + gates. Bounded fan-in × gates can

be simulated in 𝑂(1) depth using AND and OR gates of fan-in two (since the values

being multiplied are of size 𝑂(1)). Unbounded fan-in + gates can be simulated using

MOD𝑝 gates, as in the proof of Theorem 7.

For the converse inclusion, consider a CC1[𝑝] circuit. Since a unary MOD𝑝 gate is

equivalent to a NOT gate, we can assume that the circuit has only fan-in two AND

gates and unbounded fan-in MOD𝑝 gates. Thus each Boolean AND gate can be

simulated by a fan-in two multiplication gate, and the MOD𝑝 gates can be simulated

as in the proof of Theorem 8. 2

We remark that the same proof shows that, for any 𝑚 ∈ N, VP(Z𝑚) ⊆ CC1[𝑚].

However, the converse inclusion is not known, unless 𝑚 is prime.

We remark that the proofs of Theorems 7 and 8 carry over also for depths log𝑖 𝑛

for every 𝑖 ≥ 0. (Related results for constant-depth unbounded-fan-in circuits can be

found already in [49, 1].)

Corollary 6 For any prime 𝑝 and for every 𝑖 ≥ 0, #SAC𝑖,*(F𝑝) = AC𝑖[Supp(𝑝 − 1)]

and #AC𝑖(F𝑝) = AC𝑖[𝑝 ∪ Supp(𝑝− 1)]. In particular, ACC𝑖 =
⋃︀

𝑝#SAC
𝑖,*(F𝑝).

48

3.3.1 Comparing ΛP and VP.

How do the ΛP and VP classes compare to each other?

As a consequence of Corollary 5 and Theorem 7, VP(F𝑝) ⊆ ΛP(F𝑞) whenever 𝑝

divides 𝑞 − 1. In particular, VP(F2) ⊆ ΛP(F𝑞) for any prime 𝑞 > 2. No inclusion of

any ΛP class in any VP class is known unconditionally, although ΛP(𝐵2)(= SAC1) is

contained in every VP(F𝑝) class in the nonuniform setting [34, 47], and this holds also

in the uniform setting under a plausible derandomization hypothesis [5].

No ΛP(F𝑞) class can be contained in VP(F𝑝) unless AC1 ⊆ VP(F𝑝), since AC1 =

ΛP(F2) ⊆ ΛP(F3) ⊆ ΛP(F𝑞) for every prime 𝑞 ≥ 3. AC1 is not known to be contained

in any VP class, although we return to this topic again in Section 3.4

3.4 Threshold circuits and small degree

The inspiration for the results in this section comes from the following theorem of

Reif and Tate [45] (as re-stated by Buhrman et al. [21]):

Theorem 9 TC1 = #AC1(F𝑝𝑛).

Here, the class #AC1(F𝑝𝑛) consists of the languages whose (Boolean) character-

istic functions are computed by logspace-uniform families of arithmetic circuits of

logarithmic depth with unbounded fan-in + and × gates, where the arithmetic oper-

ations of the circuit 𝐶𝑛 are interpreted over F𝑝𝑛 , where 𝑝1, 𝑝2, 𝑝3, . . . is the sequence

of all primes 2, 3, 5, . . . That is, circuits for inputs of length 𝑛 use the 𝑛-th prime to

define the algebraic structure.

This class is closed under logspace-Turing reductions – but when we consider other

circuit complexity classes defined using F𝑝𝑛 , it is not clear that these other classes are

closed under logspace-Turing reductions.

As an important example, we mention VP(F𝑝𝑛). As we show below, this class has

an important connection to VP(Q), which is perhaps the canonical example of a VP

49

class. Vinay [57] proved that VP(Q) has essentially the same computational power

as #LogCFL (which counts among its complete problems the problem of determining

how many distinct parse trees a string 𝑥 has in a certain context-free language).

Here, we mention one more alternative characterization of the computational power

of VP(Q).

Proposition 3 LVP(F𝑝𝑛) = LVP(Q) = L#LogCFL.

Proof: Consider the first equality. If one wants to compute the value of a VP(F𝑝𝑛)

circuit on a given input of length 𝑛, in logspace one can first compute the value of 𝑝𝑛.

Then one can use a VP(Q) oracle to evaluate the VP(F𝑝𝑛) circuit over the rationals

instead of over F𝑝𝑛 , obtaining an integer result. Then one can divide the result by 𝑝𝑛

and obtain the remainder, which is the value of the circuit in F𝑝𝑛 , using the fact that

division is computable in logspace [27, 38].

Conversely, if one wants to evaluate a VP(Q) circuit on a given 𝑛-tuple of rationals,

one can use the standard technique of computing the numerator and denominator sep-

arately; the circuits for these functions are also in VP(Q). Thus our task boils down

to evaluating an integer-valued arithmetic circuit 𝐶𝑛. To do this, we use Chinese

remaindering, and evaluate circuits (with some dummy variables) over the primes

𝑝𝑛, 𝑝𝑛+1, . . . , 𝑝𝑛+𝑛𝑐 for some constant 𝑐. Converting between Chinese remainder rep-

resentation and binary representation can be accomplished in logspace [27, 38], which

completes the proof of the first equality.

For the second equality, we similarly use the fact that VP(Q) circuits with integer

coefficients and inputs can be evaluated in #LogCFL, and appeal to [57]. 2

When we consider arithmetic circuits of superpolynomial algebraic degree (such

as the ΛP classes), evaluating the circuits over the integers can produce outputs

that require a superpolynomial number of bits to express in binary. Thus, when we

50

consider such classes, it will always be in the context of structures (such as F𝑝𝑛) where

the output can always be represented in a polynomial number of bits.

Our first new result in this section, is to improve Theorem 9.

Theorem 10 TC1 = #AC1(F𝑝𝑛) = LΛP(F𝑝𝑛).

Proof: The first equality is due to [45]. The inclusion of LΛP(F𝑝𝑛) in TC1 follows

since ΛP(F𝑝𝑛) is a subclass of #AC1(F𝑝𝑛) and TC1 is closed under logspace-Turing

reducibility.

We will show how to simulate a #AC1(F𝑝𝑛) circuit 𝐶, by making calls to an

appropriate function in ΛP(F𝑝𝑛). The first step is to find a prime 𝑞 that is not too

much larger than 𝑝𝑛, such that 𝑞 − 1 is a multiple of 𝑝𝑛(𝑝𝑛 − 1). Xylouris [60] has

shown that the sequence 1 + 𝑝𝑛(𝑝𝑛 − 1), 1 + 2𝑝𝑛(𝑝𝑛 − 1), 1 + 3𝑝𝑛(𝑝𝑛 − 1) . . . contains

a prime of size 𝑂(𝑝10.4𝑛). Thus our logspace procedure will begin by enumerating the

elements of this sequence, and is guaranteed to find some such prime 𝑞. We will

create an arithmetic circuit 𝐶 ′ operating over F𝑞 that will allow us to simulate 𝐶.

(The logspace-uniform ΛP(F𝑝𝑛) family will actually have a circuit 𝐶 ′
𝑞 for each prime

𝑞 in a polynomially-large range. The logspace oracle machine will thus first find the

appropriate 𝑞, and then pick the appropriate length for its queries, so that it will

obtain the values of the appropriate 𝐶 ′
𝑞.)

For each gate 𝑔 of 𝐶 and each 𝑎 ∈ F𝑝𝑛 , 𝐶 ′ will have a gate computing the Boolean

value [𝑔 = 𝑎]. If 𝑔 is an input gate, our logspace procedure will compute the value of

each [𝑔 = 𝑎] and provide these as the inputs to the circuit 𝐶 ′.

Let us now consider the case when 𝑔 is a + gate, 𝑔 =
∑︀

𝑖 ℎ𝑖. Let 𝛾 be a generator

of the cyclic subgroup of the multiplicative group of F𝑞 of order 𝑝𝑛. Our circuit 𝐶 ′

will have gates ℎ𝑖,𝑎 computing the value

ℎ𝑖,𝑎 = ([ℎ𝑖 = 𝑎]× (𝛾𝑎 − 1) + 1).

51

Observe that
∏︀

𝑎 ℎ𝑖,𝑎 is equal to 𝛾ℎ𝑖 . 𝐶 ′ will have a gate 𝑔′ computing the value

𝑔′ =
∏︀

𝑖,𝑎 ℎ𝑖,𝑎. Note that 𝑔′ is equal to 𝛾
∑︀

𝑖 ℎ𝑖 = 𝛾𝑔 (since 𝛾 has order 𝑝𝑛). The value of

the gate [𝑔 = 𝑏] (for a given 𝑏 ∈ F𝑝𝑛) is thus 𝑐
−1
𝑏 ×

∏︀
ℓ̸=𝑏(𝛾

ℓ − 𝑔′), where the constant

𝑐𝑏 =
∏︀

ℓ̸=𝑏(𝛾
ℓ − 𝑏) can be computed in logspace and is thus available as a constant in

𝐶 ′.

It remains only to deal with the case when 𝑔 is a × gate, 𝑔 =
∏︀

𝑖 ℎ𝑖. In 𝐶 ′, the

gate [𝑔 = 0] is 1−
∏︀

𝑖(1− [ℎ𝑖 = 0]).

Let 𝜇 be a generator of the multiplicative group of F𝑝𝑛 , and let 𝛼 be a generator of

the subgroup of the multiplicative group of F𝑞 of order 𝑝𝑛− 1. If 𝑔 does not evaluate

to 0, then 𝑔 is equal to 𝜇𝑏 for some 𝑏. Our circuit 𝐶 ′ will have gates ℎ𝑖,ℓ computing

the values

ℎ𝑖,ℓ = ([ℎ𝑖 = 𝜇ℓ]× (𝛼ℓ − 1) + 1).

Our circuit 𝐶 ′ will have gates ℎ′
𝑖 computing the value ℎ′

𝑖 =
∏︀

ℓ ℎ𝑖,ℓ. Observe that ℎ′
𝑖

is equal to 𝛼𝑎 if ℎ𝑖 = 𝜇𝑎, and ℎ′
𝑖 is equal to 1 if ℎ𝑖 = 0.

In 𝐶 ′, there will be a gate 𝑔′ that computes the following value: 𝑔′ = (1 − [𝑔 =

0])
∏︀

𝑖 ℎ
′
𝑖 = ([𝑔 ̸= 0])

∏︀
𝑖 𝛼

log𝜇 ℎ𝑖 = ([𝑔 ̸= 0])𝛼
∑︀

𝑖 log𝜇 ℎ𝑖 = ([𝑔 ̸= 0])𝛼log𝜇 𝑔. Observe that,

if 𝑔 ̸= 0, then 𝑔 = 𝜇𝑏 for some 𝑏, and in this case 𝑔′ evaluates to 𝛼𝑏. The value of the

gate [𝑔 = 𝜇𝑏] (for a given 𝑏 ∈ F𝑝𝑛) is thus 𝑐−1
𝑏 ×

∏︀
ℓ̸=𝑏(𝛼

ℓ − 𝑔′), where the constant

𝑐𝑏 =
∏︀

ℓ̸=𝑏(𝛼
ℓ − 𝜇𝑏) can be computed in logspace and is thus available as a constant

in 𝐶 ′. 2

For completeness, we add two more relevant characterizations of TC1. (Recall the

definition of 𝑔-AC1[𝑚] from Definition 16.)

Theorem 11 TC1 = #AC1(F𝑝𝑛) = LΛP(F𝑝𝑛) = AC1[𝑝𝑛] = CC1[𝑝𝑛].

Proof: We need only consider the last two equalities.

(⊇): Majority gates can simulate AND, OR, and MOD𝑝𝑛 gates in constant

depth; thus this direction is easy.

52

(⊆): Let 𝜖 be chosen so that 2𝑛𝜖 < 𝑝𝑛 for every 𝑛. Any MAJORITY gate (of

fan-in 𝑛𝑘) can be simulated by an AC0-reduction toMAJORITY gates having fan-in

𝑛𝜖 [4]. Thus if 𝐴 ∈ TC1, then 𝐴 is accepted by a family of circuits of AND, OR,

and MAJORITY gates, where the MAJORITY gates have fan-in at most 𝑛𝜖. It

suffices to show how to simulate aMAJORITY gate with inputs ℎ1, . . . , ℎℓ. Note that

MOD𝑝𝑛(ℎ1, . . . , ℎℓ, 1
𝑝𝑛−𝑏) computes the value [𝑏 =

∑︀
𝑖 ℎ𝑖]. Thus the MAJORITY of

the ℎ𝑖 is simply the OR, over all 𝑏 > ℓ/2 of the subcircuits computing [𝑏 =
∑︀

𝑖 ℎ𝑖].

For the final equality, first note any AND or OR gate with fan-in at least 𝑝𝑛 can

be replaced by a constant-depth tree of AND and OR gates of fan-in strictly less than

𝑝𝑛. Next, use DeMorgan’s laws to remove all of the AND gates. Thus the circuit has

only MOD gates and small fan-in OR gates. But note that if we feed the wires from

an OR gate into aMOD𝑝𝑛 gate, then the result is the NOR of the inputs (since if all

of the wires are zero, the MOD gate outputs 1, and otherwise the number of wires

that are one is less than 𝑝𝑛, and thus the MOD gate outputs zero. Negating each

such NOR (again using a MOD gate) completes the proof. 2

We also mention that Theorem 11 generalizes to other depths, in a way analogous

to Corollary 6:

Corollary 7 TC𝑖 = #AC𝑖(F𝑝𝑛) = AC𝑖[𝑝𝑛] = CC𝑖[𝑝𝑛].

For 𝑖 ≥ 1 the equality TC𝑖 = L#SAC
𝑖,*

(F𝑝𝑛) also holds, but for 𝑖 = 0 a more care-

ful argument is needed, using AC0-Turing reducibility in place of logspace-Turing

reducibility.

In order to set the context for the results of the next section, it is necessary to

consider an extension of Theorem 10, involving arithmetic circuits over certain rings.

Thus we require the following definition.

Definition 17 Let (𝑚𝑛) be any sequence of natural numbers (where each 𝑚𝑛 > 1)

such that the mapping 1𝑛 ↦→ 𝑚𝑛 is computable in logspace. We use the notation

53

#AC1(Z𝑚𝑛) to denote the class of functions 𝑓 with domain {0, 1}* such that there

is a logspace-uniform family of arithmetic circuits {𝐶𝑛} of logarithmic depth with

unbounded fan-in + and × gates, where the arithmetic operations of the circuit 𝐶𝑛

are interpreted over Z𝑚𝑛, and for any input 𝑥 of length 𝑛, 𝑓(𝑥) = 𝐶𝑛(𝑥). We use

the notation #AC1(ZL) to denote the union, over all logspace-computable sequences

of moduli (𝑚𝑛), of #AC
1(Z𝑚𝑛).

Since the sequence of primes (𝑝𝑛) is logspace-computable, TC1(= #AC1(F𝑝𝑛)) is

clearly contained in #AC1(ZL). Conversely, all of the functions in #AC1(ZL) are

computable in TC1. To see this, consider a function 𝑓 ∈ #AC1(ZL). To evaluate 𝑓(𝑥)

for an input of length 𝑛, first we compute the modulus 𝑚𝑛 and the circuit 𝐶𝑛. To

evaluate each gate 𝑔 of 𝐶𝑛 (in binary), first we compute the sum or product of the

values that feed into 𝑔 (which can be done in constant depth using threshold circuits)

and then we reduce the result modulo 𝑚𝑛 (which involves division, which can also

be computed in constant depth). Thus, arithmetic circuits over the integers mod 𝑚𝑛

for reasonable sequences of moduli 𝑚𝑛 give yet another arithmetic characterization

of TC1.

3.4.1 Degree Reduction

The results of Sections 3.3 and 3.4 gave examples of fan-in reduction for arithmetic cir-

cuits (showing that ACC1 and TC1 can be characterized either in terms of unbounded

fan-in or semiunbounded fan-in arithmetic circuits). However, those theorems showed

only how to reduce the fan-in of addition gates; thus they did not involve decreasing

the algebraic degree of the circuits under consideration. Degree reduction is the topic

to which we turn now.

In this section, we introduce a class of circuits that is intermediate between the

unbounded fan-in circuit model and the semiunbounded fan-in model, for the purposes

of investigating when arithmetic circuits of superpolynomial algebraic degree can be

54

simulated by arithmetic circuits (possibly over a different algebra) with much smaller

algebraic degree.

The starting point for this section is Theorem 4.3 in [2], which states that every

problem in AC1 is reducible to a function computable by polynomial-size arithmetic

circuits of degree 𝑛𝑂(log log𝑛). In this section, we refine the result of [2], and put it

in context with the theorems about TC1 that were presented in the previous section.

Those results show that TC1 reduces to semiunbounded fan-in arithmetic circuits

in the ΛP(F𝑝𝑛) model, but leave open the question of whether TC1 also reduces to

semiunbounded fan-in arithmetic circuits in the VP(F𝑝𝑛) model (which coincides with

VP(Q)). We are unable to answer this question, but we do show that some interesting

inclusions can be demonstrated if we relax the VP model, by imposing a less-stringent

restriction on the fan-in of the × gates.

Definition 18 Let (𝑚𝑛) be any sequence of natural numbers (where each 𝑚𝑛 > 1)

such that the mapping 1𝑛 ↦→ 𝑚𝑛 is computable in logspace. #WSAC1(Z𝑚𝑛) is the

class of functions represented by logspace-uniform arithmetic circuit families {𝐶𝑛},

where 𝐶𝑛 is interpreted over Z𝑚𝑛, where each 𝐶𝑛 has size polynomial in 𝑛, and depth

𝑂(log 𝑛), and where the + gates have unbounded fan-in, and the × gates have fan-in

𝑂(log 𝑛). Thus these circuits are not semiunbounded, but have a “weak“ form of the

semiunbounded fan-in restriction. We use the notation #WSAC1(ZL) to denote the

union, over all logspace-computable sequences of moduli (𝑚𝑛), of #WSAC1(Z𝑚𝑛). In

the special case when 𝑚𝑛 = 𝑝 for all 𝑛, we obtain the class #WSAC1(F𝑝).

We refrain from defining a weakly semiunbounded analog of the ΛP classes, be-

cause it is easy to show that they are equivalent to the ΛP classes, since AC0 circuits

can add logarithmically-many numbers, given in binary.

We improve on [2, Theorem 4.3] by showing AC1 is contained in #WSAC1(F2);

note that all polynomials in #WSAC1(F𝑝) have degree 𝑛𝑂(log log𝑛), and note also that

the class of functions considered in [2] is not obviously even in TC1. In addition, we

55

improve on [2] by reducing not merely AC1, but also AC1[𝑝] for any prime 𝑝. This

includes ΛP(F𝑝) for any 𝑝 such that Supp(𝑝 − 1) ⊆ {2}. Also, we obtain an exact

characterization of AC1[𝑝], whereas [2] presented merely an inclusion.

Theorem 12 Let 𝑝 be any prime. Then AC1[𝑝] = #WSAC1(F𝑝).

Proof: The inclusion #WSAC1(F𝑝) ⊆ AC1[𝑝] is straightforward. The proof of Corol-

lary 5 shows how to simulate semiunbounded fan-in circuits over F𝑝 by AC1[𝑝] circuits.

We merely need to add to that construction, to show how to handle multiplication

gates of logarithmic fan-in. Let 𝑔 be a multiplication gate computing the product of

the gates ℎ1, . . . , ℎ𝑐 log𝑛. As in the proof of Corollary 5, the simulating AC1[𝑝] circuit

will have gates of the form [ℎ𝑖 = 𝑏] for all 𝑏 ∈ F𝑝. Thus the value of 𝑔 depends

on only 𝑂(log 𝑛) binary bits of the simulating circuit, and the value of [𝑔 = 𝑎] can

be computed by a logspace-uniform DNF expression. This yields the desired AC1[𝑝]

circuit.

For the proof of the converse inclusion, the main technical ingredient involved is

the following lemma from [2]. (In [2] the lemma is stated only for MOD2, but the

proof carries over to any MOD𝑚 gate with only trivial changes. (See also the very

similar result of [37, Proposition 3.4].)

Lemma 1 [2] Let 𝑚 be any natural number, 𝑚 > 1. For each ℓ ∈ N, there is a fam-

ily of constant-depth, polynomial-size, probabilistic circuits consisting of unbounded-

fan-in MOD𝑚 gates, AND gates of fan-in 𝑂(log 𝑛), and 𝑂(log 𝑛) probabilistic bits,

computing the OR of 𝑛 bits, with error probability < 1/𝑛ℓ.

Now we follow closely the proof of [2, Theorem 4.3].

Take an AC1[𝑝] circuit, replace all AND gates by OR and MOD𝑝 gates (using

DeMorgan’s laws), and then replace each OR gate in the resulting circuit with the

sub-circuit guaranteed by Lemma 1 (for ℓ chosen so that 𝑛ℓ is much larger than the

56

size of the original circuit), with the same 𝑂(log 𝑛) probabilistic bits re-used in each

replacement circuit. The result is a probabilistic, polynomial-size circuit that, with

high probability, provides the same output as the original circuit.

Note that replacing AND gates by × and replacing each MOD𝑝 gate 𝑔 having

wires from ℎ𝑖 with a subcircuit of the form 1− (
∑︀

𝑖 ℎ𝑖)
𝑝−1, one obtains an arithmetic

circuit over the integers, whose value mod 𝑝 is equal to the output of the original

AC1[𝑝] circuit with high probability. (This is one place where we use the fact that 𝑝

is prime.) The circuit has depth 𝑂(log 𝑛), and has unbounded fan-in + gates, and all

× gates have fan-in 𝑂(log 𝑛), and thus it is a weakly semiunbounded fan-in circuit.

Create 𝑛𝑂(1) copies of this probabilistic circuit, one copy for each sequence of

probabilistic bits; call these circuits 𝐷1, 𝐷2, . . . , 𝐷𝑛𝑐 . Note that each 𝐷𝑖 computes a

value in {0, 1}. Note also that 1 −𝐷𝑖 is also computable in #WSAC1(F𝑝). Thus we

can feed these values into an arithmetic NC1 circuit computing MAJORITY (using

the fact that all functions in NC1 are in #NC1 [26]). The resulting circuit is equivalent

to our original AC1[𝑝] circuit. 2

We especially call attention to the following corollary, which shows that, over F2,

polynomial size logarithmic depth arithmetic circuits of degree 𝑛𝑂(log𝑛) and of degree

𝑛𝑂(log log𝑛) represent precisely the same functions!

Corollary 8 #WSAC1(F2) = #AC1(F2) = AC1[2] = ΛP(F3).

Proof: The containment #WSAC1(F2) ⊆ #AC1(F2) is immediate from the definition

(since #WSAC1(F2) circuits are a restricted form of #AC1(F2) circuits). The second

equality is from Theorem 8. The equality AC1[2] = ΛP(F3) is from Theorem 7. The

inclusion AC1[2] ⊆ #WSAC1(F2) is from Theorem 12. 2

If we focus on the Boolean classes, rather than on the arithmetic classes, then we

obtain a remarkable collapse.

57

Theorem 13 Let 𝑚 ∈ N. Then AC1[𝑚] = log-AC1[𝑚].

Proof: The proof of Theorem 12 begins with the statement of Lemma 1, which holds

for any modulus 𝑚. The proof then uses Lemma 1 to replace a general AC1[𝑚] circuit

by an equivalent probabilistic circuit with unbounded fan-in MOD𝑚 gates and AND

gates with logarithmic fan-in, using only 𝑂(log 𝑛) probabilistic bits.

The proof of Theorem 12 proceeds to modify this to obtain an arithmetic circuit.

Instead, we simply make polynomially-many copies of this Boolean circuit (one copy

for each probabilistic sequence), and take the majority vote of these copies. 2

Using Theorem 8 it follows that arithmetic AC1 circuits over any finite field F𝑝

can be simulated by Boolean circuits with MOD gates and small fan-in AND gates.

It remains open whether this in turn leads to small-degree arithmetic circuits over F𝑝

when 𝑝 > 2, and also whether the fan-in of the AND gates can be sublogarithmic,

without loss of power.

When 𝑚 is composite, Theorem 13 can be improved to obtain an even more

striking collapse, by invoking the work of Hansen and Koucký [37].

Theorem 14 Let 𝑚 not be a prime power. Then AC1[𝑚] = CC1[𝑚].

Proof:

Let 𝑝 ̸= 𝑞 where {𝑝, 𝑞} ⊆ Supp(𝑚). It suffices to show how to construct a family

of CC1[𝑚] circuits to simulate a given AC1[𝑚] circuit family.

Hansen and Koucký showed [37, Lemma 3.5] that, for every 𝑐 > 1 there is a

constant-depth probabilistic circuit composed ofMOD𝑝𝑞 gates that computes the OR

of 𝑛 variables, using only 𝑂(log 𝑛) probabilistic bits, and having error probability

less than 1/𝑛𝑐. Thus we can replace each unbounded fan-in AND and OR gate

in the AC1[𝑚] circuit with the corresponding circuit (possibly with negation gates)

guaranteed by [37]. TheMOD𝑝𝑞 gates can be replaced withMOD𝑚 gates via standard

58

techniques, as in the proof of Theorem 7. By choosing a suitably large value for

𝑐, the resulting probabilistic circuit simulates the original circuit with small error

probability.

Now, as in the proof of Theorem 13 we can make polynomially-many copies of the

probabilistic circuit, hardwiring in different values for the probabilistic bits, and take

the majority vote. 2

Corollary 9 ACC1 =
⋃︀

𝑝 ΛP(F𝑝) =
⋃︀

𝑝#AC
1(F𝑝) =

⋃︀
𝑚#AC1(Z𝑚) = CC1.

Corollary 10 ACC𝑖 = CC𝑖 for all 𝑖 ≥ 1.

This equality is still open for the case 𝑖 = 0, although Hansen and Koucký show that

the probabilistic versions of ACC0 and CC0 coincide [37].

Note that

⋃︁
𝑝 prime

CC1[𝑝] =
⋃︁
𝑝≥2

VP(F𝑝) ⊆
⋃︁
𝑚

LVP(Z𝑚) ⊆ ACC1 = CC1.

The right-most class corresponds to uniform families of MOD𝑚 gates (for composite

𝑚), and to arithmetic circuits of degree 𝑛𝑂(log𝑛). The left-most class consists of

uniform families ofMOD𝑝 gates for prime 𝑝, and to arithmetic circuits of degree 𝑛𝑂(1).

The intermediate class corresponds to arithmetic circuits of polynomial degree, but

having access to composite moduli. It is natural to wonder how much the composite

moduli can help, in simulating higher-degree arithmetic circuits using small degree.

It might be useful to have additional examples of algebras, where some degree

reduction can be accomplished. Thus we also offer the following theorem:

Theorem 15 Let 𝑝 be any prime. Then AC1[𝑝] ⊆ L#WSAC1(ZL).

Proof: We start with the sequence of circuits 𝐷1, 𝐷2, . . . , 𝐷𝑛𝑐 created in the proof

of Theorem 12. We now make use of the “Toda polynomials“ introduced in [53]. For

59

example, there is an explicit construction in [18] of a polynomial 𝑃𝑘 of degree 2𝑘 − 1

such that (𝑦 mod 𝑝) ∈ {0, 1} implies 𝑃𝑘(𝑦) mod 𝑝𝑘 = 𝑦 mod 𝑝. It is observed in [3]

that, for 𝑘 = 𝑂(log 𝑛), the polynomial 𝑃𝑘 can be implemented via logspace-uniform

constant-depth circuits over the integers. Thus, by replacing each multiplication gate

with a tree of fan-in two, the polynomial can be implemented by a semiunbounded

fan-in circuit of logarithmic depth. Applying this polynomial to the output of each

circuit 𝐷𝑖, we obtain a #WSAC1(Z) circuit whose value mod 𝑝 is the same as the

output of the original AC1[𝑝] circuit with high probability, and with the additional

property that the output of the circuit, when represented in 𝑝-ary notation, has

all of the 𝑐 log 𝑛 low-order symbols of the result equal to zero (except possibly the

lowest-order symbol). We will choose 𝑐 to be the constant such that there are 𝑐 log 𝑛

probabilistic bits). Call the resulting circuit 𝐸𝑖.

Now create a circuit whose output gate computes
∑︀

𝑖 𝐸𝑖. The output gate of the

resulting #WSAC1(Z) circuit records a number whose low-order 𝑐 log 𝑛 positions (in

𝑝-ary notation) records the number of the 𝑛𝑐 copies that output 1. If this number is

greater than 𝑛𝑐/2, then the original circuit accepted its input; otherwise it rejected

its input.

In order to compute this number using #WSAC1(ZL) instead of #WSAC1(Z),

we use this logspace-computable sequence of moduli: 𝑚𝑛 = 𝑝𝑛. Evaluating the

arithmetic over Z𝑝𝑛 gives the number represented by the low-order 𝑛 positions of the

result, in 𝑝-ary notation. A logspace oracle machine, upon being given this number

(say, in binary notation) can compute the value of this number modulo 𝑝1+𝑐 log𝑛 and

determine if that number is greater than 𝑛𝑐/2, and can thereby determine if the

original circuit accepted its input. 2

It is natural to wonder whether this theorem can be extended, to allow composite

moduli. A direct application of the techniques of [3, 18, 61] requires multiple applica-

tions of the Toda polynomials, and this in turn results in circuits of superlogarithmic

60

depth.

Using Theorems 7 and 8 we obtain the following.

Corollary 11 If 𝑝 is a Fermat prime, then ΛP(F𝑝) ⊆ L#WSAC1(ZL).

3.5 Conclusions, Discussion, and Open Problems

We have introduced the complexity classes ΛP(𝑅) for various algebraic structures 𝑅,

and have shown that they provide alternative characterizations of well-known com-

plexity classes. Furthermore, we have shown that arithmetic circuit complexity classes

corresponding to polynomials of degree 𝑛𝑂(log log𝑛) also yield new characterizations of

complexity classes, such as the equality

AC1[𝑝] = log -AC1[𝑝] = #WSAC1(F𝑝).

Furthermore, in the case when 𝑝 = 2, we obtain the additional collapse

#AC1(F2) = AC1[2] = log -AC1[2] = #WSAC1(F2),

showing that algebraic degree 𝑛𝑂(log𝑛) and 𝑛𝑂(log log𝑛) have equivalent expressive power,

in this setting.

We have obtained new characterizations of ACC1 in terms of restricted fan-in:

ACC1 =
⋃︁
𝑝

#AC1(F𝑝) =
⋃︁
𝑝

ΛP(F𝑝) = CC1.

That is, although ACC1 corresponds to unbounded fan-in arithmetic circuits of log-

arithmic depth, and to unbounded fan-in Boolean circuits with modular counting

gates, no power is lost if the addition gates have bounded fan-in (in the arithmetic

case) or if only the modular counting gates have unbounded fan-in (in the Boolean

61

case). It remains unknown if every problem in ACC1 is reducible to a problem in⋃︀
𝑚 VP(Z𝑚), although we believe that our theorems suggest that this is likely. It

would be highly interesting to see such a connection between ACC1 and VP.

We believe that it is fairly likely that several of our theorems can be improved.

For instance:

∙ Perhaps Theorems 13 and 14 can be improved, to show that for all 𝑚, AC1[𝑚] =

CC1[𝑚]. Note that this is already known to hold if 𝑚 is not a prime power. By

Corollary 5 this would show that VP(F𝑝) = AC1[𝑝] for all primes 𝑝. It would also

show that #AC1(F2) = VP(F2) = ΛP(F𝑝) for every Fermat prime 𝑝. (We should

point out that this would imply that AC1 ⊆ VP(F𝑝) for every prime 𝑝, whereas

even the weaker inclusion SAC1 ⊆ VP(F𝑝) is only known to hold non-uniformly

[34].)

∙ Can Corollary 11 be improved to hold for all primes 𝑝, or even for ΛP(F𝑝𝑛)?

The latter improvement would show that TC1 ⊆ L#WSAC1(ZL).

∙ Perhaps one can improve Theorem 15, to achieve a simulation of degree 𝑛𝑂(1).

Why should 𝑛𝑂(log log𝑛) be optimal? Perhaps this could also be improved to hold

for composite moduli?

∙ If some combinations of the preceding improvements are possible, TC1 would

reduce to VP(Q), which would be a significant step toward the Immerman-

Landau conjecture.

We began this investigation, wondering if the equality VP(𝐵2) = ΛP(𝐵2) could

carry over to any other algebraic structure. We think that it appears as if VP(F𝑝) and

ΛP(F𝑝) are incomparable for every non-Fermat prime 𝑝 > 2, since VP(F𝑝) = CC1[𝑝]

and ΛP(F𝑝) = CC1[Supp(𝑝−1)]. That is, these classes correspond to circuits consisting

of modular counting gates for completely different sets of primes. For Fermat primes

we have ΛP(F𝑝) = log-AC1[2] and again the VP and ΛP classes seem incomparable.

62

For the special case of 𝑝 = 2, we have VP(F2) = CC1[2] and ΛP(F2) = AC1. We

hold out some hope that VP(F2) = AC1[2], in which case it would appear that the VP

class could be more powerful than the ΛP class – but based on current knowledge it

also appears possible that the VP and ΛP classes are incomparable even for 𝑝 = 2.

Some of our theorems overcome various hurdles that would appear to stand in

the way of a proof of our conjecture that ACC1 =
⋃︀

𝑚 LVP(Z𝑚).4 First, recall that

VP(Z𝑚) ⊆ CC1[𝑚] (Corollary 5). Thus, if the conjecture is correct, then unbounded

fan-in AND and OR gates would have to be simulated efficiently with bounded fan-in

AND and OR gates (which in turn can be replaced by MOD gates). But this is true

in this context: AC1[𝑚] = CC1[𝑚], if 𝑚 is not a prime power (Theorem 14). If 𝑚 is a

prime power, then the fan-in can be reduced to log 𝑛 (Theorem 13). If the fan-in can

be reduced to 𝑂(1) also in the case of prime power moduli, then AC1[𝑝] = CC1[𝑝] =

VP(F𝑝). If CC1 circuits can be simulated using an oracle for functions in VP(Z𝑚′) for

some 𝑚′, then the conjecture holds. (The latter simulation is possible if the MOD

gates in the CC1 circuits are for a prime modulus; see Corollary 5.)

A second objection that might be raised against the conjecture deals with algebraic

degree. ACC1 corresponds precisely to polynomial-size logarithmic depth unbounded

fan-in arithmetic circuits over finite fields (Corollary 3). Such circuits represent poly-

nomials of degree 𝑛𝑂(log𝑛), whereas VP circuits represent polynomials of degree only

𝑛𝑂(1). One might assume that there are languages represented by polynomial-size

log-depth arithmetic circuits of degree 𝑛𝑂(log𝑛) that actually require such large degree

in order to be represented by arithmetic circuits of small size and depth.

Our degree-reduction theorem (Corollary 8) shows that this assumption is incor-

rect. Every Boolean function that can be represented by an arithmetic AC1 circuit

over F2 (with algebraic degree 𝑛𝑂(log𝑛)) can be represented by an arithmetic AC1

circuit over F2 where the multiplication gates have fan-in 𝑂(log 𝑛) (and thus the

4Here, “VP(Z𝑚)“ refers to the class of functions defined on Z𝑚 that are represented by VP circuits,
rather than to a class of languages. The distinction is significant, as is discussed in [7].

63

arithmetic circuit has algebraic degree 𝑛𝑂(log log𝑛)).

64

Chapter 4

Cost-register automata

4.1 Introduction

We study various classes of regular functions, as defined in a recent series of pa-

pers by Alur et al. [13, 15, 14]. In those papers, the reader can find pointers to

work describing the utility of regular functions in various applications in the field

of computer-aided verification. Additional motivation for studying these functions

comes from their connection to classical topics in theoretical computer science; we

describe these connections now.

The class of functions computed by two-way deterministic finite transducers is

well-known and widely-studied. Engelfriet and Hoogeboom studied this class [31] and

gave it the name of regular string transformations. They also provided an alternative

characterization of the class in terms of monadic second-order logic. It is easy to see

that this is a strictly larger class than the class computed by one-way deterministic

finite transducers, and thus it was of interest when Alur and Černý [10] provided

a characterization in terms of a new class of one-way deterministic finite automata,

known as streaming string transducers; see also [11]. Streaming string transducers are

traditional deterministic finite automata, augmented with a finite number of registers

65

that can be updated at each time step, as well as an output function for each state.

Each register has an initial value in Γ* for some alphabet Γ, and at each step receives a

new value consisting of the concatenation of certain other registers and strings. (There

are certain other syntactic restrictions, which will be discussed later, in Section 4.2.)

The model that has been studied in [13, 15, 14], known as cost register automata

(CRAs), is a generalization of streaming string transducers, where the register update

functions are not constrained to be the concatenation of strings, but instead may

operate over several other algebraic structures such as monoids, groups and semirings.

Stated another way, streaming string transducers are cost register automata that

operate over the monoid (Γ*, ∘) where ∘ denotes concatenation. Another important

example is given by the so-called “tropical semiring”, where the additive operation is

min and the multiplicative operation is +; CRAs over (Z∪{∞},min,+) can be used

to give an alternative characterization of the class of functions computed by weighted

automata [13].

The cost register automaton model is the main machine model that was advocated

by Alur et al. [13] as a tool for defining and investigating various classes of “regular

functions” over different domains. Their definition of “regular functions” does not

always coincide exactly with the CRA model, but does coincide in several important

cases. In this paper, we will focus on the functions computed by (various types of)

CRAs.

Although there have been papers examining the complexity of several decision

problems dealing with some of these classes of regular functions, there has not previ-

ously been a study of the complexity of computing the functions themselves. There

was even a suggestion [9] that these functions might be difficult or impossible to com-

pute efficiently in parallel. Our main contribution is to show that most of the classes

of regular functions that have received attention lie in certain low levels of the NC

hierarchy.

66

4.2 Preliminaries

The reader should be familiar with some common complexity classes, such as L (de-

terministic logspace), and P (deterministic polynomial time). Many of the complexity

classes we deal with are defined in terms of families of circuits. A language 𝐴 ⊆ {0, 1}*

is accepted by circuit family {𝐶𝑛 : 𝑛 ∈ N} if 𝑥 ∈ 𝐴 iff 𝐶|𝑥|(𝑥) = 1. Our focus in this

paper will be on uniform circuit families; by imposing an appropriate uniformity re-

striction (meaning that there is an algorithm that describes 𝐶𝑛, given 𝑛) circuit fam-

ilies satisfying certain size and depth restrictions correspond to complexity classes

defined by certain classes of Turing machines.

For more detailed definitions about the following standard circuit complexity

classes (as well as for motivation concerning the standard choice of the U𝐸-uniformity),

we refer the reader to [58, Section 4.5].

∙ NC𝑖 = {𝐴 : 𝐴 is accepted by a U𝐸-uniform family of circuits of bounded fan-in

AND, OR and NOT gates, having size 𝑛𝑂(1) and depth 𝑂(log𝑖 𝑛)}.

∙ AC𝑖 = {𝐴 : 𝐴 is accepted by a U𝐸-uniform family of circuits of unbounded

fan-in AND, OR and NOT gates, having size 𝑛𝑂(1) and depth 𝑂(log𝑖 𝑛)}.

∙ TC𝑖 = {𝐴 : 𝐴 is accepted by a U𝐸-uniform family of circuits of unbounded

fan-in MAJORITY gates, having size 𝑛𝑂(1) and depth 𝑂(log𝑖 𝑛)}.

We remark that, for constant-depth classes such as AC0 and TC0, U𝐸-uniformity

coincides with U𝐷-uniformity, which is also frequently called DLOGTIME-uniformi-

ty.) We use these same names to refer to the associated classes of functions computed

by the corresponding classes of circuits.

We also need to refer to certain classes defined by families of arithmetic circuits.

Let (𝑆,+,×) be a semiring. An arithmetic circuit consists of input gates, + gates,

and × gates connected by directed edges (or “wires”). One gate is designated as an

67

“output” gate. If a circuit has 𝑛 input gates, then it computes a function from 𝑆𝑛 → 𝑆

in the obvious way. In this paper, we consider only arithmetic circuits where all gates

have bounded fan-in.

∙ #NC1
𝑆 is the class of functions 𝑓 :

⋃︀
𝑛 𝑆

𝑛 → 𝑆 for which there is a U𝐸-uniform

family of arithmetic circuits {𝐶𝑛} of logarithmic depth, such that 𝐶𝑛 computes

𝑓 on 𝑆𝑛.

∙ By convention, when there is no subscript, #NC1 denotes #NC1
N, with the

additional restriction that the functions in #NC1 are considered to have domain⋃︀
𝑛{0, 1}𝑛. That is, we restrict the inputs to the Boolean domain. (Boolean

negation is also allowed at the input gates.)

∙ GapNC1 is defined as #NC1 −#NC1; that is: the class of all functions that can

be expressed as the difference of two #NC1 functions. It is the same as #NC1
Z

restricted to the Boolean domain. See [58, 6] for more on #NC1 and GapNC1.

The following inclusions are known:

NC0 ⊆ AC0 ⊆ TC0 ⊆ NC1 ⊆ #NC1 ⊆ GapNC1 ⊆ L ⊆ AC1 ⊆ P.

All inclusions are straightforward, except for GapNC1 ⊆ L [38].

4.2.1 Cost-register automata

A cost-register automaton (CRA) is a deterministic finite automaton (with a read-

once input tape) augmented with a fixed finite set of registers that store elements of

some algebraic domain 𝒜. At each step in its computation, the machine

∙ consumes the next input symbol (call it 𝑎),

∙ moves to a new state (based on 𝑎 and the current state (call it 𝑞)),

68

∙ based on 𝑞 and 𝑎, updates each register 𝑟𝑖 using updates of the form 𝑟𝑖 ←

𝑓(𝑟1, 𝑟2, . . . , 𝑟𝑘), where 𝑓 is an expression built using the registers 𝑟1, . . . , 𝑟𝑘

using the operations of the algebra 𝒜.

There is also an “output” function 𝜇 defined on the set of states; 𝜇 is a partial function

– it is possible for 𝜇(𝑞) to be undefined. Otherwise, if 𝜇(𝑞) is defined, then 𝜇(𝑞) is

some expression of the form 𝑓(𝑟1, 𝑟2, . . . , 𝑟𝑘), and the output of the CRA on input 𝑥

is 𝜇(𝑞) if the computation ends with the machine in state 𝑞.

More formally, here is the definition as presented by Alur et al. [13].

A cost-register automaton 𝑀 is a tuple (Σ, 𝑄, 𝑞0, 𝑋, 𝛿, 𝜌, 𝜇), where

∙ Σ is a finite input alphabet.

∙ 𝑄 is a finite set of states.

∙ 𝑞0 ∈ 𝑄 is the initial state.

∙ 𝑋 is a finite set of registers.

∙ 𝛿 : 𝑄× Σ→ 𝑄 is the state-transition function.

∙ 𝜌 : 𝑄×Σ×𝑋 → 𝐸 is the register update function (where 𝐸 is a set of algebraic

expressions over the domain 𝒜 and variable names for the registers in 𝑋).

∙ 𝜇 : 𝑄→ 𝐸 is a (partial) final cost function.

A configuration of a CRA is a pair (𝑞, 𝜈), where 𝜈 maps each element of 𝑋 to an

algebraic expression over 𝒜. The initial configuration is (𝑞0, 𝜈0), where 𝜈0 assigns the

value 0 to each register (or some other “default” element of the underlying algebra).

Given a string 𝑤 = 𝑎1 . . . 𝑎𝑛, the run of 𝑀 on 𝑤 is the sequence of configurations

(𝑞0, 𝜈0), . . . (𝑞𝑛, 𝜈𝑛) such that, for each 𝑖 ∈ {1, . . . , 𝑛} 𝛿(𝑞𝑖−1, 𝑎𝑖) = 𝑞𝑖 and, for each

𝑥 ∈ 𝑋, 𝜈𝑖(𝑥) is the result of composing the expression 𝜌(𝑞𝑖−1, 𝑎𝑖, 𝑥) to the expressions

in 𝜈𝑖−1 (by substituting in the expression 𝜈𝑖−1(𝑦) for each occurrence of the variable

69

𝑦 ∈ 𝑋 in 𝜌(𝑞𝑖−1, 𝑎𝑖, 𝑥)). The output of 𝑀 on 𝑤 is undefined if 𝜇(𝑞𝑛) is undefined.

Otherwise, it is the result of evaluating the expression 𝜇(𝑞𝑛) (by substituting in the

expression 𝜈𝑛(𝑦) for each occurrence of the variable 𝑦 ∈ 𝑋 in 𝜇(𝑞𝑛)).

It is frequently useful to restrict the algebraic expressions that are allowed to

appear in the transition function 𝜌 : 𝑄 × Σ × 𝑋 → 𝐸. One restriction that is

important in previous work [13] is the “copyless” restriction.

A CRA is copyless if, for every register 𝑟 ∈ 𝑋, for each 𝑞 ∈ 𝑄 and each 𝑎 ∈ Σ, the

variable “𝑟” appears at most once in the multiset {𝜌(𝑞, 𝑎, 𝑠) : 𝑠 ∈ 𝑋}. In other words,

for a given transition, no register can be used more than once in computing the new

values for the registers. Following [14], we refer to copyless CRAs as CCRAs. Over

many algebras, unless the copyless restriction is imposed, CRAs compute functions

that can not be computed in polynomial time. For instance, CRAs that can concate-

nate string-valued registers and CRAs that can multiply integer-valued registers can

perform “repeated squaring” and thereby obtain results that require exponentially-

many symbols to write down.

4.3 CRAs over Monoids

In this section, we study CRAs operating over algebras with a single operation. We

focus on two canonical examples:

∙ CRAs operating over the commutative monoid (Z,+).

∙ CRAs operating over the noncommutative monoid (Γ*, ∘).

4.3.1 CRAs over the integers

Additive CRAs (ACRAs) are CRAs that operate over commutative monoids. They

have been studied in [13, 15, 14]; in [15] the ACRAs that were studied operated over

70

(Z,+), and thus far no other commutative monoid has received much attention, in

connection with CRAs.

Theorem 16 All functions computable by CCRAs over (Z,+) are computable in

NC1. (This bound is tight, since there are regular sets that are complete for NC1

under projections [16].)

Proof: It was shown in [13] that CCRAs (over any commutative semiring) have

equivalent power to CRAs that are not restricted to be copyless, but that have another

restriction: the register update functions are all of the form 𝑟 ← 𝑟′+𝑐 for some register

𝑟′ and some semiring element 𝑐. Thus assume that the function 𝑓 is computed by a

CRA 𝑀 of this form. Let 𝑀 have 𝑘 registers 𝑟1, . . . , 𝑟𝑘.

It is straightforward to see that the following functions are computable in NC1:

∙ (𝑥, 𝑖) ↦→ 𝑞, such that 𝑀 is in state 𝑞 after reading the prefix of 𝑥 of length 𝑖.

∙ (𝑥, 𝑖) ↦→ 𝐺𝑖, where 𝐺𝑖 is a labeled bipartite graph on [𝑘]× [𝑘], with the property

that there is an edge labeled 𝑐 from 𝑗 on the left-hand side to ℓ on the right

hand side, if the register update operation that takes place when 𝑀 consumes

the 𝑖-th input symbol includes the update 𝑟ℓ ← 𝑟𝑗 + 𝑐. If the register update

operation includes the update 𝑟ℓ ← 𝑐, then vertex ℓ on the right hand side is

labeled 𝑐. (To see that this is computable in NC1, note that by the previous

item, in NC1 we can determine the state 𝑞 that 𝑀 is in as it consumes the

𝑖-th input symbol. Thus 𝐺𝑖 is merely a graphical representation of the register

update function corresponding to state 𝑞.) Note that the indegree of each vertex

in 𝐺𝑖 is at most one. (The outdegree of a vertex may be as high as 𝑘.)

Now consider the graph 𝐺 that is obtained by concatenating the graphs 𝐺𝑖 (by

identifying the right-hand side of 𝐺𝑖 with the left-hand side of 𝐺𝑖+1 for each 𝑖). This

graph shows how the registers at time 𝑖+ 1 depend on the registers at time 𝑖. 𝐺 is a

71

constant-width graph, and it is known that reachability in constant-width graphs is

computable in NC1. Note that we can determine in NC1 the register that provides the

output when the last symbol of 𝑥 is read. By tracing the edges back from that vertex

in 𝐺 (following the unique path leading back toward the left, using the fact that each

vertex has indegree at most one) we eventually encounter a vertex of indegree zero.

In NC1 we can determine which edges take part in this path, and add the labels that

occur along that path. This yields the value of 𝑓(𝑥). 2 We remark that

the NC1 upper bound holds for any commutative monoid where iterated addition of

monoid elements can be computed in NC1.

A related bound holds, when the copyless restriction is dropped:

Theorem 17 All functions computable by CRAs over (Z,+) are computable in GapNC1.

(This bound is tight, since there is one such function that is hard for GapNC1 under

AC0 reductions.)

Proof: We use a similar approach as in the proof of the preceding theorem. We build

a bipartite graph𝐺𝑖 that represents the register update function that is executed while

consuming the 𝑖-th input symbol, as follows. Each register update operation is of the

form 𝑟ℓ ← 𝑎0 + 𝑟𝑖1 + 𝑟𝑖2 + . . . 𝑟𝑖𝑚 . Each register 𝑟𝑗 appears, say, 𝑎𝑗 times in this sum,

for some nonnegative integer 𝑎𝑗. If 𝑟ℓ ← 𝑎0 +
∑︀𝑘

𝑗=1 𝑎𝑗 · 𝑟𝑗 is the update for 𝑟ℓ at time

𝑖, then if 𝑎𝑗 > 0, then 𝐺𝑖 will have an edge labeled 𝑎𝑗 from 𝑗 on the left-hand side

to ℓ on the right-hand side, along with an edge from 0 to ℓ labeled 𝑎0, and an edge

from 0 to 0. Let the graph 𝐺𝑖 correspond to matrix 𝑀𝑖. An easy inductive argument

shows that (
∑︀𝑘

𝑗=0(
∏︀𝑡

𝑖=1𝑀𝑖))𝑗,ℓ gives the value of register ℓ after time 𝑡. The upper

bound now follows since iterated multiplication of 𝑂(1) × 𝑂(1) integer matrices can

be computed in GapNC1 [26].

For the lower bound, observe that it is shown in [26], building on [19], that com-

puting the iterated product of 3× 3 matrices with entries from {0, 1,−1} is complete

72

for GapNC1. More precisely, taking a sequence of such matrices as input and out-

putting the (1,1) entry of the product is complete for GapNC1. Consider the alphabet

Γ consisting of such matrices. There is a CRA taking input from Γ* and producing as

output the contents of the (1, 1) entry of the product of the matrices given as input.

(The CRA simulates matrix multiplication in the obvious way.) 2

4.3.2 CRAs over (Γ*, ∘)

Unless we impose the copyless restriction, CRAs over this monoid can generate

exponentially-long strings. Thus in this section we consider only CCRAs.

CCRAs operating over the algebraic structure (Γ*, ∘) are precisely the so-called

streaming string transducers that were studied in [11], and shown there to com-

pute precisely the functions computed by two-way deterministic finite transducers

(2DFAs). This class of functions is very familiar, and it is perhaps folklore that such

functions can be computed in NC1, but we have found no mention of this in the

literature. Thus we present the proof here.

Theorem 18 All functions computable by CCRAs over (Γ*, ∘) are computable in

NC1. (This bound is tight, since there are regular sets that are complete for NC1

under projections [16].)

Proof: Let 𝑀 be a 2DFA computing a (partial) function 𝑓 , and let 𝑥 be a string of

length 𝑛. If 𝑓(𝑥) is defined, then 𝑀 halts on input 𝑥, which means that 𝑀 visits no

position 𝑖 of 𝑥 more than 𝑘 times, where 𝑘 is the size of the state set of 𝑀 .

Define the visit sequence at 𝑖 to be the sequence 𝑞(𝑖,1), 𝑞(𝑖,2), . . . 𝑞(𝑖,ℓ𝑖) of length ℓ𝑖 ≤ 𝑘

such that 𝑞(𝑖,𝑗) is the state that 𝑀 is in the 𝑗-th time that it visits position 𝑖. Denote

this sequence by 𝑉𝑖.

We will show that the function (𝑥, 𝑖) ↦→ 𝑉𝑖 is computable in NC1. Assume for the

moment that this is computable in NC1; we will show how to compute 𝑓 in NC1.

73

Note that there is a planar directed graph 𝐺 of width at most 𝑘 having vertex set⋃︀
𝑖 𝑉𝑖, where all edges adjacent to vertices 𝑉𝑖 go to vertices in either 𝑉𝑖−1 or 𝑉𝑖+1, as

follows: Given 𝑉𝑖−1, 𝑉𝑖 and 𝑉𝑖+1, for any 𝑞(𝑖,𝑗) ∈ 𝑉𝑖, it is trivial to compute the pair

(𝑖′, 𝑗′) such that, when 𝑀 is in state 𝑞(𝑖,𝑗) scanning the 𝑖-th symbol of the input, then

at the next step it will be in state 𝑞(𝑖′,𝑗′) scanning the 𝑖′-th symbol of the input. (Since

this depends on only 𝑂(1) bits, it is computable in U𝐸-uniform NC0.) The edge set

of 𝐺 consists of these “next move” edges from 𝑞(𝑖,𝑗) to 𝑞(𝑖′,𝑗′). It is immediate that

no edges cross when embedded in the plane in the obvious way (with the vertex sets

𝑉1, 𝑉2, . . . arranged in vertical columns with 𝑉1 at the left end, and 𝑉𝑖+1 immediately

to the right of 𝑉𝑖, and with the vertices 𝑞(𝑖,1), 𝑞(𝑖,2), . . . 𝑞(𝑖,ℓ𝑖) arranged in order within

the column for 𝑉𝑖).

Let us say that (𝑖, 𝑗) comes before (𝑖′, 𝑗′) if there is a path from 𝑞(𝑖,𝑗) to 𝑞(𝑖′,𝑗′) in

𝐺. Since reachability in constant-width planar graphs is computable in AC0 [17], it

follows that the “comes before” predicate is computable in AC0.

Thus, in TC0, one can compute the size of the set {(𝑖′, 𝑗′) : (𝑖′, 𝑗′) comes before (𝑖, 𝑗)

and𝑀 produces an output symbol when moving from 𝑞(𝑖′,𝑗′)}. Call this number𝑚(𝑖,𝑗).

Hence, in TC0 one can compute the function (𝑥,𝑚) ↦→ (𝑖, 𝑗) such that 𝑚(𝑖,𝑗) = 𝑚.

But this allows us to determine what symbol is the 𝑚-th symbol of 𝑓(𝑥). Hence,

given the sequences 𝑉𝑖, 𝑓(𝑥) can be computed in TC0 ⊆ NC1.

It remains to show how to compute the sequences 𝑉𝑖.

It suffices to show that the set 𝐵 = {(𝑥, 𝑖, 𝑉) : 𝑉 = 𝑉𝑖} ∈ NC1. To do this,

we will present a nondeterministic constant-width branching program recognizing 𝐵;

such branching programs recognize only sets in NC1 [16]. Our branching program will

guess each 𝑉𝑗 in turn; note that each 𝑉𝑗 can be described using only 𝑂(𝑘 log 𝑘) = 𝑂(1)

bits, and thus there are only 𝑂(1) choices possible at any step. When guessing 𝑉𝑗+1,

the branching program rejects if 𝑉𝑗+1 is inconsistent with 𝑉𝑗 and the symbols being

scanned at positions 𝑗 and 𝑗 + 1. When 𝑖 = 𝑗 the branching program rejects if 𝑉 is

74

not equal to the guessed value of 𝑉𝑖. When 𝑗 = |𝑥| the branching program halts and

accepts if all of the guesses 𝑉1, . . . , 𝑉𝑛 have been consistent. It is straightforward to

see that the algorithm is correct. 2

4.4 CRAs over Semirings

In this section, we begin the study of CRAs operating over algebras with two opera-

tions satisfying the semiring axioms. We focus on three such structures:

∙ CRAs operating over the commutative ring (Z,+,×) (Section 4.4.1).

∙ CRAs operating over the commutative semiring (Z∪{∞},min,+): the so-called

“tropical” semiring (Section 4.5).

∙ CRAs operating over the noncommutative semiring (Γ* ∪ {⊥},max, ∘) (Sec-

tion 4.6).

There is a large literature dealing with weighted automata operating over semirings. It

is shown in [13] that the class of functions computed by weighted automata operating

over a semiring (𝑆,+,×) is exactly equal to the class of functions computed by CRAs

operating over (𝑆,+,×), where the only register operations involving × are of the

form 𝑟 ← 𝑟′ × 𝑐 for some register 𝑟′ and some semiring element 𝑐. Thus for each

structure, we will also consider CRAs satisfying this restriction.

We should mention the close connection between iterated matrix product and

weighted automata operating over commutative semirings. As in the proof of Theo-

rem 17, when a CRA is processing the 𝑖-th input symbol, each register update function

is of the form 𝑟ℓ ← 𝑎0 +
∑︀𝑘

𝑗=1 𝑎𝑗 · 𝑟𝑗, and thus the register updates for position 𝑖 can

be encoded as a matrix. Thus the computation of the machine on an input 𝑥 can be

encoded as an instance of iterated matrix multiplication. In fact, some treatments of

weighted automata essentially define weighted automata in terms of iterated matrix

75

product. (For instance, see [43, Section 3].) Thus, since iterated product of 𝑘 × 𝑘

matrices lies in #NC1
𝑆 for any commutative semiring 𝑆, the functions computed by

weighted automata operating over 𝑆 all lie in #NC1
𝑆. (For the case when 𝑆 = Z,

iterated matrix product of 𝑘×𝑘 matrices is complete for GapNC1 for all 𝑘 ≥ 3 [26, 19].)

4.4.1 CRAs over the integers.

First, we consider the copyless case:

Theorem 19 All functions computable by CCRAs over (Z,+,×) are computable in

GapNC1. (Some such functions are hard for NC1, but we do not know if any are hard

for GapNC1.)

Proof: Consider a CCRA 𝑀 computing a function 𝑓 , operating on input 𝑥. There is

a function computable in NC1 that maps 𝑥 to an encoding of an arithmetic circuit that

computes 𝑓(𝑥), constructed as follows: The circuit will have gates 𝑟𝑗,𝑖 computing the

value of register 𝑗 at time 𝑖. The register update functions dictate which operations

will be employed, in order to compute the value of 𝑟𝑗,𝑖 from the gates 𝑟𝑗′,𝑖−1. Due to

the copyless restriction, the outdegree of each gate is at most 1 (which guarantees

that the circuit is a formula).

It follows from Lemma 2 below that 𝑓 ∈ GapNC1. 2

Lemma 2 If there is a function computable in NC1 that takes an input 𝑥 and produces

an encoding of an arithmetic formula that computes 𝑓(𝑥) when evaluated over the

integers, then 𝑓 ∈ GapNC1.

Proof: By [25], there is a logarithmic-depth arithmetic-Boolean formula over the

integers, that takes as input an encoding of a formula 𝐹 and outputs the integer

represented by 𝐹 . An arithmetic-Boolean formula is a formula with Boolean gates

AND, OR and NOT, and arithmetic gates +,×, as well as test and select gates that

76

provide an interface between the two types of gates. Actually, the construction given

in [25] does not utilize any test gates [24], and thus we need not concern ourselves with

them. (Note that this implies that there is no path in the circuit from an arithmetic

gate to a Boolean gate.)

A select gate takes three inputs (𝑦, 𝑥0, 𝑥1) and outputs 𝑥0 if 𝑦 = 0 and outputs

𝑥1 otherwise. In the construction given in [25], select gates are only used when 𝑦 is a

Boolean value. When operating over the integers, then, select(𝑦, 𝑥0, 𝑥1) is equivalent

to 𝑦×𝑥1+(1− 𝑦)×𝑥0. But since Boolean NC1 is contained in #NC1 ⊆ GapNC1 (see,

e.g., [6]), the Boolean circuitry can all be replaced by arithmetic circuitry. (When op-

erating over algebras other than Z, it is not clear that such a replacement is possible.)

2

We cannot entirely remove the copyless restriction while remaining in the realm of

polynomial-time computation, since repeated squaring allows one to obtain numbers

that require exponentially-many bits to represent in binary. However, as noted above,

if the multiplicative register updates are all of the form 𝑟 ← 𝑟′ × 𝑐, then again

the GapNC1 upper bound holds (and in this case, some of these CRA functions are

complete for GapNC1, just as was argued in the proof of Theorem 17).

4.5 CRAs over the tropical semiring.

In this section, we consider CRAs operating over the tropical semiring. We show that

the functions computable by such CRAs have complexity bounded by the complexity

of functions in #NC1, and thus lie in L. In order to state a more precise bound on

the complexity of these functions, we introduce the class #NC1
trop, and we prove some

basic propositions about arithmetic circuits over the tropical semiring.

77

4.5.1 Arithmetic Circuit Preliminaries

Functions in #NC1
trop have complexity in some sense intermediate between NC1 and

#NC1. Proposition 4 shows that there are some functions in #NC1
trop that are hard

for NC1, and Lemma 3 shows that, if the values at the input level of #NC1
trop circuits

have binary representation of only 𝑂(log 𝑛) bits, then #NC1
trop circuits are no harder

to evaluate than #NC1 functions. (Without this restriction, the best known upper

bound is AC1; see, e.g. [2, Lemma 5.5].) It is worth remarking that it has been

conjectured that #NC1 consists of precisely the functions computable in NC1; see [6].

Thus the lower and upper bounds of NC1 and #NC1 are not very far apart.

Recall that the accepted convention for #NC1 is that inputs are restricted to be in

{0, 1}, and that for every Boolean input 𝑥𝑖 the negated input ¬𝑥𝑖 is also available. In

order to simplify the statement of the following results, we allow #NC1
trop circuits to

take arbitrary elements from Z ∪ {∞} as input (as in the standard setting for arith-

metic circuit complexity). But sometimes it is also convenient to consider #NC1
trop as

a class of languages, in which case we will follow the same convention as for #NC1,

and restrict the inputs to be in {0, 1}, where for every Boolean input 𝑥𝑖 the negated

input ¬𝑥𝑖 is also available.

Proposition 4 NC1 ⊆ #NC1
trop.

Proof: Recall first that the inclusion NC1 ⊆ #NC1 is proved by observing that NC1

circuits can be assumed without loss of generality to be “unambiguous”, in the sense

that each OR gate that evaluates to one always has exactly one child that evaluates

to one. (That is, 𝑎∨ 𝑏 is replaced by (¬𝑎∧ 𝑏)∨ (𝑎∧¬𝑏)∨ (𝑎∧ 𝑏); see, e.g., [6].) Thus

consider any language 𝐿 ∈ NC1, and consider the “unambiguous” NC1 circuit family

{𝐶𝑛} accepting 𝐿. If we simply replace each AND gate by min, and we replace each

OR gate by +, then the resulting #NC1
trop circuit is equivalent to 𝐶𝑛. 2

Now, we consider the problem of evaluating #NC1
trop circuits. We note first that

78

determining if the output is ∞ can be accomplished in NC1.

Proposition 5 The problem of taking as input an arithmetic formula 𝜑 (with as-

signments to all of the input variables), and determining if 𝜑 evaluates to ∞ is in

NC1.

Proof: Given 𝜑, replace each finite input with 0, and replace each ∞ input with 1.

Change each min gate to AND, and change each + gate to OR. Call the resulting

formula 𝜑′; it is easy to see that 𝜑′ evaluates to 1 iff 𝜑 evaluates to ∞. Now, by [25],

𝜑′ can be evaluated in NC1. 2

Thus, if we want to evaluate a #NC1
trop formula, it suffices to focus on the case

where the formula evaluates to a value other than ∞. A very powerful result by

Elberfeld, Jakoby, and Tantau [30, Theorem 5] can be used to show that some closely-

related problems reduce to the computation of #NC1 functions, but we find that there

are enough complications caused by the presence of ∞-inputs and negative inputs,

so that it is simpler to present a direct argument rather than to invoke [30]. Thus

our next lemma says that evaluating a #NC1
trop formula that takes on a finite value is

no harder than evaluating a #NC1 expression. The following definition makes precise

what is meant by “no harder than” in this context.

Definition 19 Let 𝑥 be a non-zero dyadic rational. That is, 𝑥 can be expressed as

𝑥 =
∑︀𝑚

𝑖=−𝑚 𝑏𝑖2
𝑖 for some 𝑚, where 𝑏𝑖 ∈ {0, 1} for all 𝑖. Define low.order(𝑥) to be

the least 𝑖 ∈ {−𝑚, . . . ,𝑚} such that 𝑏𝑖 = 1. If 𝜑 is an arithmetic formula, then

low.order(𝜑) is defined to be low.order(𝑧) for the number 𝑧 that is represented by 𝜑.

Observe that low.order(𝑥𝑦) = low.order(𝑥)+low.order(𝑦). Observe also that low.order(𝑥+

𝑦) = min{low.order(𝑥), low.order(𝑦)} if low.order(𝑥) ̸= low.order(𝑦), but if low.order(𝑥) =

low.order(𝑦), then it is not obvious how to obtain a useful bound on low.order(𝑥+ 𝑦).

For this reason, in the following lemma, we will introduce the notion of “spread”.

79

Lemma 3 Let 𝑐 and ℓ be natural numbers. There is a function 𝑓 computable in NC1

that takes as input a #NC1
trop formula 𝜑 of depth 𝑐 log 𝑛, where each finite input to 𝜑

is in the range [−𝑛ℓ, 𝑛ℓ], and produces as output a #NC1 formula 𝜑′ and numbers 𝑚, 𝑟

such that, if 𝜑 evaluates to a finite value 𝑧, then 𝑧𝑟 ≤ low.order(𝜑′) −𝑚 < (𝑧 + 1)𝑟.

(In other words, 𝑧 = ⌊(low.order(𝜑′)−𝑚)/𝑟⌋.)

Proof: The argument we present is very similar to a proof that is presented in [40]

(where they are working over the (max,+) algebra, instead of (min,+)).

Let the #NC1
trop formula 𝜑 be given, of depth 𝑐 log 𝑛, where each input that is not

∞ lies in the range [−𝑛ℓ, 𝑛ℓ]. We first build an arithmetic formula 𝜑0 over the dyadic

rationals, and then modify 𝜑0 to obtain the desired #NC1 formula 𝜑′.

We assume without loss of generality that 𝜑 is a complete binary tree, where all

paths from input gates to the output have length 𝑐 log 𝑛, and we also assume that

𝜑 is composed of alternating layers of + and min gates. (This normal form can be

obtained by at most doubling the depth, by inserting dummy gates, using the rules

min(𝑥, 𝑥) = 𝑥 and 𝑥 + 0 = 𝑥; the modified formula can be obtained from 𝜑 in NC1.)

Thus 𝜑 has 𝑛𝑐 input gates, each of which takes on a value in [−𝑛ℓ, 𝑛ℓ] ∪ {∞}.

Let 𝑟 = (𝑛ℓ + 1)𝑛2𝑐 + 1. The formula 𝜑0 is obtained from 𝜑 by changing each +

gate of 𝜑 to a × gate, and changing each min gate of 𝜑 to a + gate. At the input

level, each input of 𝜑 that has some finite value 𝑎 is replaced by the value 2𝑟𝑎. (Note,

it is possible that 𝑎 < 0.) Each input of 𝜑 that is labeled with ∞ is replaced by the

value 2(𝑛
ℓ+1)𝑛𝑐𝑟.

First, we observe that each gate 𝑔 of 𝜑0 evaluates to a dyadic rational in the range

[2−𝑟𝑛ℓ𝑛𝑐
, 2𝑟(𝑛

ℓ+1)𝑛2𝑐
]. This is because all inputs to 𝜑0 are positive. The output cannot

be larger than the result of multiplying together 𝑛𝑐 values of size 2(𝑛
ℓ+1)𝑛𝑐𝑟 (which is

the value that replaces ∞), and it cannot be smaller than multiplying together 𝑛𝑐

values of size 2−𝑟𝑛ℓ
.

Before we proceed to our inductive argument showing that the output of 𝜑0 en-

80

codes the value of 𝜑, it is necessary to prove some results showing how the values

stored in the gates of 𝜑0 evolve as the computation progresses. Given a gate 𝑔0 of 𝜑0

whose value is encoded in binary as
∑︀𝑚

𝑖=−𝑚 𝑏𝑖2
𝑖, define spread(𝑔0) to be the largest

𝑗 < 𝑟 such that 𝑏⌊low.order(𝑔0)/𝑟⌋𝑟+𝑗
= 1. Here is some intuition about spread(𝑔0).

Think of the binary representation of the value of 𝑔0 as a bit string divided into sub-

fields of length 𝑟. All of the fields to the right of low.order(𝑔0) are all zero. The field

corresponding to positions

⌊low.order(𝑔0)/𝑟⌋𝑟 + (𝑟 − 1), . . . ⌊low.order(𝑔0)/𝑟⌋𝑟 + 1, ⌊low.order(𝑔0)/𝑟⌋𝑟

is where the useful information is stored. If 𝑔0 is an input gate, then this field is very

“clean”; it is of the form 0𝑟−11. If 𝑔0 appears at a higher depth in the circuit, this field

can be a bit messy. However, the high-order bits of this field are all going to be 0,

and the 1’s can only appear in positions ⌊low.order(𝑔0)/𝑟⌋𝑟+ 𝑗 for 0 ≤ 𝑗 ≤ spread(𝑔0).

Claim 1 If 𝑔0 is a gate at depth 𝑑 of 𝜑0, then spread(𝑔0) ≤ 2𝑑.

Note that, since 𝑑 = 𝑐 log 𝑛, 2𝑑 < 𝑟.

Proof: The proof of the claim is by induction on 𝑑. When 𝑑 = 0, spread(𝑔0) = 0 < 2𝑑.

If 𝑔0 is a + gate at depth 𝑑, say 𝑔0 = ℎ0 + 𝑘0, where the claim holds at ℎ0 and 𝑘0,

then either

spread(𝑔0) = max{spread(ℎ0), spread(𝑘0)},

or

spread(𝑔0) = max{spread(ℎ0), spread(𝑘0)}+ 1.

In either case, by the induction hypothesis we have spread(𝑔0) ≤ 2𝑑−1 +1 ≤ 2𝑑. So in

either case the claim holds at 𝑔0.

If 𝑔0 is a × gate at depth 𝑑, say 𝑔0 = ℎ0 × 𝑘0, where the claim holds at ℎ0

and 𝑘0, then spread(𝑔0) = spread(ℎ0) + spread(𝑘0). (To see this, consider the binary

81

representation of the product ℎ0×𝑘0 as divided up into fields of length 𝑟, and similarly

divide ℎ0 and 𝑘0 into fields of length 𝑟. Let 𝑥ℎ and 𝑥𝑘 be the contents of the fields

containing low.order(ℎ0) and low.order(𝑘0), respectively. Then the field containing

low.order(ℎ0 × 𝑘0) consists of the low-order 𝑟 bits of the product 𝑥ℎ × 𝑥𝑘. The length

of the non-zero part of the product 𝑥ℎ × 𝑥𝑘 is exactly spread(ℎ0) + spread(𝑘0).)

By induction, spread(𝑔0) = spread(ℎ0) + spread(𝑘0) ≤ 2𝑑−1 + 2𝑑−1 = 2𝑑. 2

Next, we claim that the circuit the value of 𝜑 can easily be extracted from the

value of 𝜑0.

Claim 2 If 𝜑 evaluates to a finite value 𝑧, then 𝑧𝑟 ≤ low.order(𝜑0) < 𝑧(𝑟 + 1). Thus

𝑧 = ⌊low.order(𝜑0)/𝑟⌋ (since 𝑧 < 𝑟).

Proof: This claim follows immediately from the following statement, which we prove

by induction on 𝑑:

For all 𝑑, if gate 𝑔 at depth 𝑑 takes on a finite value 𝑧 in 𝜑, then 𝑧𝑟 ≤ low.order(𝑔0) <

𝑧𝑟 + 2𝑑 (where 𝑔0 is the value that the gate corresponding to 𝑔 takes on in 𝜑0), and

if 𝑔 (at depth 𝑑) takes on the value ∞ in 𝜑, then low.order(𝑔0) ≥ (𝑛ℓ + 1)𝑛𝑐𝑟 − 𝑑𝑛ℓ.

This suffices to prove the claim, since the output gate has depth 𝑑 = 𝑐 log 𝑛 and

thus 2𝑑 = 𝑛𝑐 < 𝑟. The claim holds at the input level (where 𝑑 = 0).

Now let 𝑔 be a + gate at depth 𝑑 computing ℎ+𝑘, where the inductive hypothesis

holds at ℎ and 𝑘. If 𝑔 takes on a finite value 𝑧, then both ℎ and 𝑘 take on finite

values, call them 𝑧ℎ and 𝑧𝑘. By induction, we have 𝑧 = 𝑧ℎ + 𝑧𝑘, and 𝑔0 = ℎ0 × 𝑘0,

where 𝑧ℎ𝑟 ≤ low.order(ℎ0) < 𝑧ℎ𝑟+2𝑑−1 and 𝑧𝑘𝑟 ≤ low.order(𝑘0) < 𝑧𝑘𝑟+2𝑑−1. Observe

that low.order(𝑔0) = low.order(ℎ0 × 𝑘0) = low.order(ℎ0) + low.order(𝑘0). Thus 𝑧𝑟 =

𝑧ℎ𝑟 + 𝑧𝑘𝑟 ≤ low.order(ℎ0) + low.order(𝑘0) = low.order(𝑔0) < 𝑧ℎ𝑟 + 2𝑑−1 + 𝑧𝑘𝑟 + 2𝑑−1 =

(𝑧ℎ + 𝑧𝑘)𝑟 + 2𝑑 = 𝑧𝑟 + 2𝑑.

If 𝑔 takes on the value ∞, then either ℎ or 𝑘 also takes on the value ∞. Assume

without loss of generality that ℎ = ∞. Then, by induction low.order(ℎ0) ≥ (𝑛ℓ +

82

1)𝑛𝑐𝑟− (𝑑− 1)𝑛ℓ. Thus low.order(𝑔0) = low.order(ℎ0)+ low.order(𝑘0) ≥ ((𝑛ℓ+1)𝑛𝑐𝑟−

(𝑑− 1)𝑛ℓ) + (−𝑛ℓ) = (𝑛ℓ + 1)𝑛𝑐𝑟 − 𝑑𝑛ℓ.

Next let 𝑔 be a min gate at depth 𝑑, computing min(ℎ, 𝑘), where the inductive

hypothesis holds at ℎ and 𝑘. If 𝑔 takes on a finite value 𝑧, then at least one of ℎ and 𝑘

takes on a finite value. Assume without loss of generality that ℎ is the minimum, and

that ℎ takes the value 𝑧ℎ, and let 𝑧𝑘 be the value of gate 𝑘. By induction, we have

𝑧 = 𝑧ℎ, and 𝑔0 = ℎ0 × 𝑘0, where 𝑧ℎ𝑟 ≤ low.order(ℎ0) < 𝑧ℎ𝑟 + 2𝑑−1. If 𝑧𝑘 is finite, then

𝑧𝑘𝑟 ≤ low.order(𝑘0) < 𝑧𝑘𝑟+2𝑑−1, and otherwise low.order(𝑘0) ≥ (𝑛ℓ+1)𝑛𝑐𝑟−(𝑑−1)𝑛ℓ.

If low.order(ℎ0) ̸= low.order(𝑘0) (which is the case, in particular, if 𝑘 = ∞), then

low.order(𝑔0) = low.order(ℎ0), and the inductive hypothesis holds at 𝑔0. Thus assume

that low.order(ℎ0) = low.order(𝑘0). Thus 𝑧𝑟 = 𝑧ℎ𝑟 ≤ low.order(ℎ0) ≤ low.order(𝑔0),

and thus the first inequality of the claim holds at 𝑔0.

Also low.order(𝑔0) ≤ ⌊low.order(ℎ0)/𝑟⌋𝑟 + spread(ℎ0) + 1 ≤ ⌊low.order(ℎ0)/𝑟⌋𝑟 +

2𝑑−1+1 by Claim 1. By induction, we have low.order(𝑔0) ≤ ⌊(𝑧ℎ𝑟+2𝑑−1)/𝑟⌋𝑟+2𝑑−1+

1 = 𝑧ℎ𝑟 + 2𝑑−1 + 1 = 𝑧𝑟 + 2𝑑−1 + 1 < 𝑧𝑟 + 2𝑑, as desired.

If 𝑔 takes on the value∞, then both ℎ and 𝑘 also evaluate to∞. By the inductive

hypothesis, low.order(ℎ0) ≥ (𝑛ℓ + 1)𝑛𝑐𝑟− (𝑑− 1)𝑛ℓ and low.order(𝑘0) ≥ (𝑛ℓ + 1)𝑛𝑐𝑟−

(𝑑 − 1)𝑛ℓ. It follows that low.order(𝑔0) ≥ min{low.order(ℎ0), low.order(𝑘0)} ≥ (𝑛ℓ +

1)𝑛𝑐𝑟− (𝑑− 1)𝑛ℓ > (𝑛ℓ+1)𝑛𝑐𝑟− 𝑑𝑛ℓ. This completes the proof of the inductive step,

and establishes how the value of 𝜑 can be obtained from the value of 𝜑0. 2

However, 𝜑0 operates over the dyadic rationals, and it still remains for us to

produce a formula 𝜑′ over N.

Let 𝑞 be the least natural number, such that no input to 𝜑0 has a label less than

2−𝑞𝑟. Let 𝜑′ be 𝜑0, where each input 𝑥 of 𝜑0 is replaced by 2𝑞𝑟𝑥. Clearly, 𝜑′ operates

over N. Since 𝜑 was assumed to have alternating levels of + and min gates, 𝜑′ has

alternating levels of × and + gates. At the input level, the value of each gate of 𝜑0

can be obtained by dividing the value of the corresponding gate of 𝜑′ by 2𝑞𝑟. More

83

generally, if 𝑔0 is a gate of 𝜑0 such that paths from the input level to 𝑔0 encounter

𝑑 × gates, then the the value of 𝑔0 can be obtained by dividing the value of the

corresponding gate of 𝜑′ by 22
𝑑𝑞𝑟.

The proof is completed, by setting 𝑚 equal to 2𝑑𝑞𝑟, where 𝑑 is 𝑐
2
log 𝑛. 2

4.5.2 Tropical CRAs

Having established the facts that we need about #NC1
trop, we return to the task of

giving a bound on the complexity of CRAs operating over the tropical semiring.

Again, we first consider the copyless case.

Theorem 20 All functions computable by CCRAs over the tropical semiring are

computable in NC1(#NC1
trop), and are computable in L.

Here, NC1(#NC1
trop) refers to the class of functions expressible as 𝑔(𝑓(𝑥)) for some

functions 𝑓 ∈ NC1 and 𝑔 ∈ #NC1
trop.

Proof: The L upper bound follows easily, because the only operation that increases

the value of a register is a + operation, and because of the copyless restriction the

value of a register after 𝑖 computation steps can be expressed as a sum of 𝑖𝑂(1) values

that are present as constants in the program of the CRA. Thus, in particular, the

value of a register at any point during the computation on input 𝑥 can be represented

using 𝑂(log |𝑥|) bits. Thus a logspace machine can simply simulate a CRA directly,

storing the value of each of the 𝑂(1) registers, and computing the updates at each

step.

Another way of obtaining the L upper bound follows from Lemma 3, because,

when we establish the NC1(#NC1
trop) upper bound, we use #NC

1
trop circuits where all

of the finite input values are small. Thus, not only are these functions computable in

L, but they can easily be computed from functions in #NC1.

84

For the NC1(#NC1
trop) upper bound, first note that there is a function ℎ com-

putable in NC1 that takes 𝑥 as input, and outputs a description of an arithmetic

formula 𝐹 over the tropical semiring that computes 𝑓(𝑥). This is exactly as in the

first paragraph of the proof of Theorem 19.

Next, as in the proof of Lemma 2, recall that, by [25], there is a uniform family of

logarithmic-depth arithmetic-Boolean formulae {𝐶𝑛} over the tropical semiring, that

takes as input an encoding of a formula 𝐹 and outputs the integer represented by 𝐹 .

Furthermore, each arithmetic-Boolean formula 𝐶𝑛 has Boolean gates AND, OR and

NOT, and arithmetic gates min,+, as well as select gates, and there is no path in 𝐶𝑛

from an arithmetic gate to a Boolean gate.

Let {𝐷𝑛} be the uniform family of arithmetic circuits, such that 𝐷𝑛 is the con-

nected subcircuit of 𝐶𝑛 consisting only of arithmetic min and + gates. We now have

the following situation: The NC1 function ℎ (which maps 𝑥 to an encoding of a for-

mula 𝐹 having some length 𝑚) composed with the circuit 𝐶𝑚 (which takes 𝐹 as input

and produces 𝑓(𝑥) as output) is identical with some NC1 function ℎ′ (computed by

the NC1 circuitry in the composed hardware for 𝐶𝑚(ℎ(𝑥))) feeding into the arith-

metic circuitry of 𝐷𝑚. Each select gate with inputs (𝑦, 𝑥0, 𝑥1) can be simulated by

the subcircuit min(𝑥0 + 𝑧(𝑦), 𝑥1 + 𝑧(¬𝑦)) where 𝑧(𝑣) is the NC1 function that takes

the Boolean value 𝑣 as input, and outputs 0 if 𝑣 = 0, and outputs ∞ otherwise. This

is precisely what is needed, in order to establish our claim that 𝑓 ∈ NC1(#NC1
trop).

2

Unlike the case of CRAs operating over the integers, CRAs over the tropical

semiring without the copyless restriction compute only functions that are computable

in polynomial time (via a straightforward simulation). We know of no better upper

bound than P in this case, and we also have no lower bounds.

As noted above at the beginning of Section 4.4, if the “multiplicative” register

updates (i.e., + in the tropical semiring) are all of the form 𝑟 ← 𝑟′ + 𝑐, then even

85

without the copyless restriction, the computation of a CRA function 𝑓 reduces to iter-

ated matrix multiplication of 𝑂(1)×𝑂(1) matrices over the tropical semiring. Again,

it follows easily that the contents of any register at any point in the computation can

be represented using 𝑂(log 𝑛) bits. Thus the upper bound of L holds also in this case.

4.6 CRAs over the max-concat semiring.

As in Section 4.3.2, we consider only CCRAs.

Theorem 21 All functions computable by CCRAs over (Γ*,max, ∘) are computable

in AC1.

Proof: Let 𝑓 be computed by a CCRA 𝑀 operating over (Γ*,max, ∘).

We first present a logspace-computable function ℎ with the property that ℎ(1𝑛) is

a description of a circuit 𝐶𝑛 computing 𝑓 on inputs of length 𝑛. The input convention

is slightly different for this circuit family. For each input symbol 𝑎 and each 𝑖 ≤ 𝑛

there is an input gate 𝑔𝑖,𝑎 that evaluates to 𝜆 (the empty string) if 𝑥𝑖 = 𝑎, and

evaluates to ⊥ otherwise. (This provides an “arithmetical” answer to the Boolean

query “is the 𝑖-th input symbol equal to 𝑎?”)

Assume that there are gates 𝑟1,𝑖, 𝑟2,𝑖, . . . , 𝑟𝑘,𝑖 storing the values of each of the regis-

ters at time 𝑖. For 𝑖 = 0 these gates are constants. For each input symbol 𝑎 and each

𝑗 ≤ 𝑘, let 𝐸𝑎,𝑗(𝑟1,𝑖, . . . , 𝑟𝑘,𝑖) be the expression that describes how register 𝑗 is updated

if the 𝑖+1-st symbol is 𝑎. Then the value 𝑟𝑗,𝑖+1 = max𝑎{𝑔𝑖,𝑎∘𝐸𝑎,𝑗(𝑟1,𝑖, . . . , 𝑟𝑘,𝑖)}. This

yields a very uniform circuit family, since the circuit for inputs of length 𝑛 consists

of 𝑛 identical blocks of this form connected in series. That is, there is a function

computable in NC1 that takes 1𝑛 as input, and produces an encoding of circuit 𝐶𝑛 as

output.

Although the depth of circuit 𝐶𝑛 is linear in 𝑛, its algebraic degree is only poly-

nomial in 𝑛. (Recall that the additive operation of the semiring is max and the

86

multiplicative operation is ∘. Thus the degree of a max gate is the maximum of the

degrees of the gates that feed into it, and the degree of a ∘ gate is the sum of the

degrees of the gates that feed into it.) This degree bound follows from the copyless

restriction. (Actually, the copyless restriction is required only for the ∘ gates; inputs

to the max gates could be re-used without adversely affecting the degree.)

By [2, Proposition 5.2], arithmetic circuits of polynomial size and algebraic degree

over (Γ*,max, ∘) characterize exactly the complexity class OptLogCFL. OptLogCFL

was defined by Vinay [57] as follows: 𝑓 is in OptLogCFL if there is a nondeterministic

logspace-bounded auxiliary pushdown automaton 𝑀 running in polynomial time,

such that, on input 𝑥, 𝑓(𝑥) is the lexicographically largest string that appears on the

output tape of 𝑀 along any computation path. The proof of Proposition 5.2 in [2],

which shows how an auxiliary pushdown automaton can simulate the computation of a

max-concat circuit, also makes it clear that an auxiliary pushdown machine, operating

in polynomial time, can take a string 𝑥 as input, use its logarithmic workspace to

compute the bits of ℎ(1|𝑥|) (i.e., to compute the description of the circuit 𝐶|𝑥|), and

then to produce 𝐶|𝑥|(𝑥) = 𝑓(𝑥) as the lexicographically-largest string that appears on

its output tape along any computation path. That is, we have 𝑓 ∈ OptLogCFL.

By [2, Lemma 5.5], OptLogCFL ⊆ AC1, which completes the proof. 2

87

88

Chapter 5

Conclusion: future directions

We have surveyed a number of different settings, from Turing machines to circuits

to automata, and shown how the notion of reductions can create interplay between

these seemingly incomparable models. We have attempted to design an algorithm

that uses undirected reachability to solve the Shuffle problem in L, showing some

of the structure of such graphs along the way. We then gave a number of new

characterizations to the circuit families in between AC1 and TC1 using our new classes

ΛP and #WSAC1(Z𝑚𝑛), showing fan-in reductions for many classes in ACC1 as well as

degree reductions of polynomials of degree 𝑛𝑂(log𝑛). Finally we showed the complexity

of evaluating cost-register automata over a couple of different semirings, as well as

what power is lost with the copyless restriction. The map of complexity classes and

problems surveyed in this work can be found in the appendix.

The work in chapter 2 leaves much to be desired, although there seems to be

evidence that the structure of gridgraphs corresponding to Shuffle instances is regular

enough that a logspace algorithm could solve them. While our theorems do not carry

over to more general gridgraphs, we hold out hope that a bit more work on analyzing

Shuffle could give us the results that were desired.

Our work on circuits in chapter 3 is also nowhere close to being done. Our new

89

characterizations of TC1 and VP(Q) bring us hope that the Immerman-Landau con-

jecture is indeed true, refuting in part many of the degree arguments previously made

to the contrary. Additionally there is no reason to think that our degree reductions

or characterizations are optimal, and while it seems unlikely to us that VP(F𝑝) could

ever fully capture ACC1, there may be a closer connection between these two classes

than is currently known.

A natural extension of our results in chapter 4 could determine the complexity

of solving cost-register automata over more generalized semirings, which would give

us a greater understanding of how this arithmetically-motivated automata model fits

into classes such as L and AC1. Also, is it possible that such automata models are

even complete for their respective classes? We can use the cost-register augmentation

to evaluate arithmetic functions over the course of the automaton’s execution, while

most of the upper bounds we have given are circuit complexity classes, so there is no

immediate reason to suspect completeness.

90

91

Appendix A

Charts of relevant complexity classes

NC1 = Monoid-CCRA

CCRA(Z,+,×)CRA(N ∪ {∞},min,+)

GapNC1 = CRA(Z,+)#NC1
trop

L = UndirectedSTConn

Shuffle

GG

UL

NL = DirectedSTConn

SAC1 CCRA(max, ∘)

#SAC1(F𝑝) = VP(F𝑝) = 2-AC1[𝑝] AC1

LVP(F𝑝𝑛) = L#SAC
1(F𝑝𝑛) = LVP(Q)

AC1[𝑝] = log-AC1[𝑝] = #WSAC1(F𝑝)

L#WSAC1(ZL)
ACC1 = ∪𝑝#AC

1(F𝑝) = ∪𝑝ΛP(F𝑝) =
∪𝑝1...𝑝𝑘AC

1[𝑝1 . . . 𝑝𝑘] = ∪𝑚AC1[𝑚] = ∪𝑚2-AC1[𝑚]

TC1 = #AC1(F𝑝𝑛) = LΛP(F𝑝𝑛) = AC1[𝑝𝑛] = log-AC1[𝑝𝑛]

P

NP

hhhh
hhhh

hhh
�
�

���
���

�

HH
HH

��
���

��

XXX
XXX

X

((((
(((

((((
((

(((
((((

((((
PP

PP
PP

PP
PP

PP
PP

��
��

��
XX

XXX

92

Bibliography

[1] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits.
Journal of Computer and System Sciences, 60:395–421, 2000.

[2] Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arithmetic
circuits: Depth reduction and size lower bounds. Theoret. Comp. Sci., 209:47–
86, 1998.

[3] E. Allender and V. Gore. A uniform circuit lower bound for the permanent.
SIAM J. Comput., 23:1026–49, 1994.

[4] E. Allender and M. Koucký. Amplifying lower bounds by means of self-
reducibility. Journal of the ACM, 57:14:1 – 14:36, 2010.

[5] E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and counting: Uni-
form and nonuniform upper bounds. Journal of Computer and System Sciences,
59(2):164–181, 1999.

[6] Eric Allender. Arithmetic circuits and counting complexity classes. In J. Kra-
jíček, editor, Complexity of Computations and Proofs, volume 13 of Quaderni di
Matematica, pages 33–72. Seconda Università di Napoli, 2004.

[7] Eric Allender and Asa Goodwillie. Arithmetic circuit classes over Z𝑚. Technical
Report 15-145, Electronic Colloquium on Computational Complexity (ECCC),
2015.

[8] Eric Allender and Ian Mertz. Complexity of regular functions. In Proc. 9th
International Conference on Language and Automata Theory and Applications
(LATA), number 8977 in Lecture Notes in Computer Science, pages 449–460.
Springer, 2015.

[9] R. Alur. Regular functions. Lecture presented at Horizons in TCS: A Celebration
of Mihalis Yannakakis’s 60th Birthday, Center for Computational Intractability,
Princeton, NJ, 2013.

[10] Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers.
In Conference on Foundations of Software Technology and Theoretical Computer
Science (FST&TCS), volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2010.

93

[11] Rajeev Alur and Pavol Cerný. Streaming transducers for algorithmic verifica-
tion of single-pass list-processing programs. In 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 599–610,
2011.

[12] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman,
and Yifei Yuan. Regular functions, cost register automata, and generalized min-
cost problems. CoRR, abs/1111.0670, 2011.

[13] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman,
and Yifei Yuan. Regular functions and cost register automata. In 28th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 13–22,
2013. See also the expanded version, [12].

[14] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combina-
tors for string transformations. In Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science, (CSL-LICS), page 9.
ACM, 2014.

[15] Rajeev Alur and Mukund Raghothaman. Decision problems for additive regular
functions. In International Conference on Automata, Languages, and Program-
ming (ICALP), number 7966 in Lecture Notes in Computer Science, pages 37–48.
Springer, 2013.

[16] D. A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences,
38:150–164, 1989.

[17] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. Searching con-
stant width mazes captures the AC0 hierarchy. In 15th International Symposium
on Theoretical Aspects of Computer Science (STACS), number 1373 in Lecture
Notes in Computer Science, pages 73–83. Springer, 1998.

[18] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–366, 1994.

[19] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a con-
stant number of registers. SIAM Journal on Computing, 21(1):54–58, 1992.

[20] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two
applications of inductive counting for complementation problems. SIAM Journal
on Computing, 18:559–578, 1989. See Erratum in SIAM J. Comput. 18, 1283.

[21] H. Buhrman, R. Cleve, M. Koucký, B. Loff, and F. Speelman. Computing with
a full memory: catalytic space. In STOC, pages 857–866, 2014.

[22] P. Bürgisser. Cook’s versus Valiant’s hypothesis. Theoret. Comp. Sci., 235:71–88,
2000.

94

[23] Peter Bürgisser. On the structure of Valiant’s complexity classes. Discrete Math-
ematics & Theoretical Computer Science, 3(3):73–94, 1999.

[24] Samuel Buss. Comment on formula evaluation. Personal communication., 2014.

[25] Samuel R. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel
algorithm for formula evaluation. SIAM Journal on Computing, 21(4):755–780,
1992.

[26] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1

computation. Journal of Computer and System Sciences, 57(2):200–212, 1998.

[27] A. Chiu, G.I. Davida, and B. Litow. Division in logspace-uniform 𝑁𝐶1. RAIRO
Theoretical Informatics and Applications, 35:259–276, 2001.

[28] N. V. Vinodchandran Chris Bourke, Raghunath Tewari. Directed planar reacha-
bility is in unambiguous log-space. ACM Transactions on Computation Theory,
1(1):4:1–4:17, 2003.

[29] C. Corrales-Rodrigáñez and R. Schoof. The support problem and its elliptic
analogue. Journal of Number Theory, 64(2):276–290, 1997.

[30] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Algorithmic meta theorems
for circuit classes of constant and logarithmic depth. In STACS’12 (29th Sym-
posium on Theoretical Aspects of Computer Science), volume 14, pages 66–77.
LIPIcs, 2012.

[31] Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transduc-
tions and two-way finite-state transducers. ACM Trans. Comput. Log., 2(2):216–
254, 2001.

[32] Anna Gál Eric Allender and Ian Mertz. Dual vp classes. In Proc. 40th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS),
number 9235 in Lecture Notes in Computer Science, pages 14–25. Springer Berlin
Heidelberg, 2015.

[33] Tanmoy Chakraborty Samir Datta Sambuddha Roy Eric Allender, David A.
Mix Barrington. Planar and grid graph reachability problems. Theory of Com-
puting Systems, 45(4).

[34] A. Gál and A. Wigderson. Boolean complexity classes vs. their arithmetic
analogs. Random Struct. Algorithms, 9(1-2):99–111, 1996.

[35] J. von zur Gathen. Parallel linear algebra. In J. Reif, editor, Synthesis of Parallel
Algorithms, pages 574–615. Morgan Kaufmann, 1993.

[36] Michael Hahn, Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly
counter languages and the structure of NC1. In Symposium on Mathematical
Foundations of Computer Science (MFCS), number 9235 in Lecture Notes in
Computer Science, pages 384–394. Springer, 2015.

95

[37] K. Arnsfelt Hansen and M. Koucký. A new characterization of ACC0 and prob-
abilistic CC0. Computational Complexity, 19(2):211–234, 2010.

[38] W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth thresh-
old circuits for division and iterated multiplication. J. Comp. and System Sci.,
65:695–716, 2002.

[39] Andreas Jakoby and Till Tantau. Computing shortest paths in series-parallel
graphs in logarithmic space. In Complexity of Boolean Functions, 12.03. -
17.03.2006, volume 06111 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

[40] Andreas Jakoby and Till Tantau. Logspace algorithms for computing shortest
and longest paths in series-parallel graphs. In Conference on Foundations of
Software Technology and Theoretical Computer Science (FST&TCS), number
4855 in Lecture Notes in Computer Science, pages 216–227. Springer, 2007. The
proof of Lemma 4 can be found as the proof of Lemma 3.5 in [39].

[41] JD Ullman JE Hopcroft. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[42] Neil D. Jones. Space-bounded reducibility among combinatorial problems. In J
Comput. Syst. Sci., volume 11, pages 68–85, 1975.

[43] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James
Worrell. On the complexity of equivalence and minimisation for Q-weighted
automata. Logical Methods in Computer Science, 9(1), 2013.

[44] P. Koiran and S. Perifel. Interpolation in Valiant’s theory. Comput. Complexity,
20:1–20, 2011.

[45] J. Reif and S. Tate. On threshold circuits and polynomial computation. SIAM
Journal on Computing, 21:896–908, 1992.

[46] Omer Reingold. Undirected st-connectivity in log-space. In ACM Symposium on
Theory of Computing (STOC), volume 37, pages 376–385, 2005.

[47] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM
Journal on Computing, 29:1118–1131, 2000.

[48] Michael Sipser. Introduction to the Theory of Computation, Second Edition.
Thomson Course Technology, 2006.

[49] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In STOC, pages 77–82, 1987.

[50] Michael Soltys. Circuit complexity of shuffle. Combinatorial Algorithms, pages
402–411, 2013.

96

[51] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, 1994.

[52] Denis Thérien. Circuits constructed with MOD𝑞 gates cannot compute “AND”
in sublinear size. Computational Complexity, 4(4):383–388, 1994.

[53] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comp.,
20:865–877, 1991.

[54] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. In London Math. Soc., volume 42, pages 230–265, 1937.

[55] L.G. Valiant. Completeness classes in algebra. In Proc. 11th ACM STOC, pages
249–261, 1979.

[56] L.G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation
of polynomials using few processors. SIAM J. Comput., 12(4):641–644, 1983.

[57] V Vinay. Counting auxiliary pushdown automata and semi-unbounded arith-
metic circuits. In Proceedings of 6th Structure in Complexity Theory Conference,
pages 270–284, 1991.

[58] H. Vollmer. Intro. to Circuit Complexity: A Uniform Approach. Springer, 1999.

[59] William P Wardlaw. Matrix representation of finite fields. Mathematics Maga-
zine, pages 289–293, 1994.

[60] T. Xylouris. On the least prime in an arithmetic progression and estimates for
the zeros of Dirichlet L-functions. Acta Arithmetica, 150:65–91, 2011.

[61] A. C.-C. Yao. On ACC and threshold circuits. In FOCS, pages 619–627, 1990.

97

	Introduction: what is complexity theory?
	Complexity theory
	Measuring efficiency: the Turing machine model
	Formalizing time complexity
	Complexity classes
	Reducibility

	Other models of computation
	Connections between time and space
	Beyond Turing machines

	Our results

	Gridgraph reachability
	Introduction
	Preliminaries
	Our proposed algorithm
	Where our algorithm breaks down
	Conclusion

	Circuit complexity
	Introduction
	Preliminaries
	New Definitions: -classes

	Subclasses of ACC1
	Comparing P and VP.

	Threshold circuits and small degree
	Degree Reduction

	Conclusions, Discussion, and Open Problems

	Cost-register automata
	Introduction
	Preliminaries
	Cost-register automata

	CRAs over Monoids
	CRAs over the integers
	CRAs over (*,)

	CRAs over Semirings
	CRAs over the integers.

	CRAs over the tropical semiring.
	Arithmetic Circuit Preliminaries
	Tropical CRAs

	CRAs over the max-concat semiring.

	Conclusion: future directions
	Charts of relevant complexity classes

