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Abstract

We study the existence of oriented paths with two blocks in oriented graphs under semidegree
conditions. A block of an oriented path is a maximal directed subpath. Given positive integers k
and ℓ with k/2 ≤ ℓ < k, we establish a semidegree function that guarantees the containment of every
oriented path with two blocks of sizes ℓ and k− ℓ. As a corollary, we show that every oriented graph
with all in- and out-degrees at least 3k/4 contains every two-block path with k arcs. Our results
extend previous work on Stein’s conjecture and related problems concerning oriented paths.

1 Introduction

The problem of determining the existence of long paths in a graph with minimum degree constraints is
well-studied [3, 15]. In particular, Dirac [3] proved that a minimum degree of at least n/2 guarantees the
existence of a Hamilton cycle in a graph with n vertices, while a minimum degree of at least (n− 1)/2
ensures the containment of a Hamilton path. This problem naturally extends to oriented graphs and
digraphs. An oriented graph is a digraph that contains no directed cycles of length one or two. As a
natural analogue to the minimum degree in graphs, the concept of minimum semidegree has been used
in the study of oriented Hamilton cycles [6, 7, 8, 11, 12, 13]. The minimum semidegree of a digraph D,
denoted by δ0(D), is defined as the minimum value among the in-degrees and out-degrees of all vertices
in D.

A related problem involves finding paths of a given size in a graph. Erdős and Gallai [5] proved
that a connected graph with at least k + 1 vertices and minimum degree at least k/2 contains a k-edge
path. In oriented graphs Jackson [10] proved that δ0(G) ≥ k/2 implies G contains a directed path, that
is a path where all arcs have the same direction, with k arcs. More recently, Stein [18] conjectured a
generalization of Jackson’s theorem to all oriented paths.

Conjecture 1.1 (Stein, [18]). Every oriented graph G with δ0(G) > k/2 contains every orientation of
the k-edge path.

Note that Conjecture 1.1 becomes straightforward when the minimum semidegree bound is strength-
ened to δ0(G) ≥ k, as a simple greedy embedding succeeds in all cases. However, the problem becomes
significantly more challenging when working with weaker bounds. Thus, in the pursuit of proving Stein’s
conjecture, the study of certain orientations of the path offers a direction for further exploration. As
noted above, Jackson’s result [10] confirms Conjecture 1.1 for the case of directed paths. Moreover, Stein
and Trujillo-Negrete [19] confirmed Conjecture 1.1, as a consequence of a more general result, for the
class of oriented graphs containing no oriented 4-cycle.
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Figure 1: The semidegree function given in Theorem 1.2.

Further progress has been achieved for antidirected paths. An antidirected path is an oriented path
that alternates the direction of its arcs. Klimošová and Stein [14] showed that every oriented graph G
with a minimum semidegree of 3k/4 contains each antidirected path with k arcs. Their work was later
improved by Chen, Hou, and Zhou [2], by reducing the required semidegree to 2k/3. Most recently,
Skokan and Tyomkyn [17] reduced it further to 5k/8.

The next most natural class of oriented paths to consider are perhaps the paths with two blocks. A
block of an oriented path P is a maximal directed subpath of P , and its size is the number of its arcs. The
containment of paths with two blocks in oriented graphs and digraphs has been previously studied under
chromatic number constraints [1, 4, 16]. El-Sahili [4] conjectured that a digraph with chromatic number
k contains as a subgraph every k-arc oriented path with two blocks. This conjecture was confirmed by
Addario-Berry, Havet and Thomassé [1].

In this paper, we study the existence of paths with two blocks in oriented graphs under minimum
semidegree conditions. Our main result is the following.

Theorem 1.2. Let k and ℓ be positive integers with k/2 ≤ ℓ < k. Let G be an oriented graph such that

δ0(G) ≥

{
k − ℓ

2 if ℓ ≤ 2k
3 ,

2k
3 if ℓ > 2k

3 .

Then G contains as a subgraph both possible k-arc oriented paths with two blocks of size ℓ and k − ℓ.

The semidegree function in Theorem 1.2 is depicted in Figure 1. As a direct consequence, we obtain
a general bound on δ0(G) for the containment of paths with two blocks, irrespective of the size of the
blocks.

Corollary 1.3. Let k ≥ 2 be an integer and let G be an oriented graph with δ0(G) ≥ 3k/4. Then G
contains as a subgraph every k-arc oriented path with two blocks.

2 Notation

For an oriented graph G, V (G) denotes the set of vertices and A(G) the set of arcs in G. Given a vertex
v of an oriented graph G, let N+(v) = {u ∈ V (G) : (v, u) ∈ A(G)} and N−(v) = {u ∈ V (G) : (u, v) ∈
A(G)} denote its out-neighbourhood and in-neighbourhood, respectively. The out-degree and in-degree of
v are deg+(v) = |N+(v)| and deg−(v) = |N−(v)|, respectively. The minimum out-degree and minimum
in-degree of G are

δ+(G) := min
v∈V (G)

{deg+(v)} and δ−(G) := min
v∈V (G)

{deg−(v)},
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Figure 2: Concatenation
←−
P1P2, where P1 = xyz and P2 = xuvw.

Figure 3: Examples of paths with two blocks. On the left, P (
←−
5 ,
−→
4 ) consists of a first block of 5 backward

arcs followed by a second block of 4 forward arcs. On the right, P (
−→
5 ,
←−
5 ) consists of a first block of 5

forward arcs followed by a second block of 5 backward arcs.

respectively. Additionally, we define the minimum semidegree of G as δ0(G) := min{δ+(G), δ−(G)}.
For S ⊆ V (G), G[S] denotes the subgraph of G induced by S. A directed cycle C in G is said to be a
Hamilton cycle if V (C) = V (G).

The length of a path P , denoted by length(P ), is defined as the number of its arcs. Given a directed

path P = u1u2 . . . up, its reverse is the path
←−
P = upup−1 . . . u1. (Here we emphasize that as oriented

graphs P and
←−
P are exactly the same. The only difference is in the order of vertices that we use to

represent the path.) For two vertices ui and uj in P , with i < j, let ui −→
P

uj be the subpath of P given

by uiui+1 . . . uj . Given two directed paths P1 and P2 such that their initial vertices coincide, we write
←−
P1P2 to denote the concatenation of

←−
P1 and P2. See an example in Figure 2. We denote by P (←−r ,−→s )

the (r + s)-arc path with two blocks, where the first block consists of r backward arcs followed by a
second block of s forward arcs. Similarly, the notation P (−→r ,←−s ) represents the reverse configuration.
See Figure 3 for two examples.

Given a path P and an oriented graph G, an embedding from P to G is an injective function f :
V (P ) → V (G) preserving adjacencies, that is, for each arc (u, v) of P , we have that (f(u), f(v)) is an
arc of G. If such an embedding exists, we say that P embeds in G. In this paper, we interchangeably
say that a path P embeds in G or that G contains the path P .

3 Preliminary results

We first state a theorem of Jackson [10] on directed paths which will be a useful tool in the proof of
Theorem 1.2.

Theorem 3.1 (Jackson [10]). Every oriented graph G contains a directed path on 2δ0(G) arcs.

In the following proposition we gather some properties of G that ensure an embedding of P (
←−
ℓ ,
−−−→
k − ℓ).

Proposition 3.2. Let k and ℓ be integers with k/2 ≤ ℓ < k. Let G be an oriented graph with δ0(G) ≥
k − ℓ. Let P = v0v1 . . . vt be a directed path of maximum length in G, and further suppose that t ≥ 2ℓ.
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Define the sets

X = {v0, . . . , vk−ℓ−1}, Y = {vk−ℓ, . . . , vt−k+ℓ} and Z = {vt−k+ℓ+1, . . . , vt}.

Suppose one of the following conditions holds:

(i) N−(v0) ∩ Y ̸= ∅ or N+(vt) ∩ Y ̸= ∅.

(ii) N+(vi−1) ̸⊆ V (P ) for some vi ∈ N+(vt) ∩ (X \ {v0}).

(iii) G[V (P )] contains a Hamilton cycle.

Then P (
←−
ℓ ,
−−−→
k − ℓ) embeds in G.

Proof. Observe that X, Y and Z are non-empty and pairwise disjoint. Moreover, |X| = |Z| = k− ℓ. We
proceed by cases according to the proposition.

(i) First, suppose that N−(v0) ∩ Y ̸= ∅, and let vi ∈ N−(v0) ∩ Y . We define the paths

P1 := viv0 −→
P

vi−1 and P2 := vi −→
P

vt.

See Figure 4 (left). We have length(P1) = i and length(P2) = t − i. Moreover, since X ⊊ V (P1)
and Z ⊊ V (P2), it follows that length(P1), length(P2) ≥ k − ℓ.

Next, we show that at least one of P1 and P2 has length at least ℓ. Note that this readily implies

that P (
←−
ℓ ,
−−−→
k − ℓ) is a subpath of

←−
P1P2, and thus embeds in G. Observe that if i ≥ ℓ, then

length(P1) = i ≥ ℓ, whereas if i < ℓ, then length(P2) = t− i > t− ℓ ≥ ℓ (because t ≥ 2ℓ).

Now, suppose that N+(vt) ∩ Y ̸= ∅, and let vj ∈ N+(vt) ∩ Y . By the maximality of P , we have
that N−(v0) ⊆ V (P ) \ {v0}, and by the previous case, we may assume that N−(v0) ∩ Y = ∅. It
follows that N−(v0) ⊆ (X \ {v0}) ∪ Z. Since δ0(G) ≥ k − ℓ = |X| > |X \ {v0}|, we must have
N−(v0) ∩ Z ̸= ∅. Let vi ∈ N−(v0) ∩ Z. We define the paths

P1 := viv0 −→
P

vj−1 and P2 := vi −→
P

vtvj −→
P

vi−1.

See Figure 4 (right). We have length(P1) = j and length(P2) = t−j. Again, as we have X ⊊ V (P1)
and Z ⊊ V (P2), it follows that length(P1), length(P2) ≥ k − ℓ. Furthermore, if j ≥ ℓ, then

length(P1) ≥ ℓ, and if j < ℓ, then length(P2) > t− ℓ ≥ ℓ. Thus, P (
←−
ℓ ,
−−−→
k − ℓ) is a subpath of

←−
P1P2.

Figure 4: Construction of paths P1 and P2 in the proof of Proposition 3.2 (i).

(ii) Fix a vertex vi ∈ N+(vt) ∩ (X \ {v0}) such that N+(vi−1) ̸⊆ V (P ). Let w0 ∈ N+(vi−1) \ V (P ),
and among all the directed paths in G[V (G) \ V (P )] starting at w0, choose a directed path P ′ =
w0 . . . wm of maximum length. Define the cycle C := vi −→

P
vtvi. Since vi ∈ X and t ≥ 2ℓ ≥ k, it

follows that
|C| > |Y ∪ Z| = |V (P )| − |X| = (t+ 1)− (k − ℓ) ≥ ℓ+ 1.

Suppose first that m ≥ k − ℓ− 1, and consider the following paths:

P1 := vi−1w0 −→
P ′

wm and P2 := vi−1 −→
P

vt.

We have length(P1) ≥ m+ 1 ≥ k − ℓ and length(P2) = |C| > ℓ. Thus, P (
←−
ℓ ,
−−−→
k − ℓ) is a subpath of

←−
P1P2.

Suppose now that m ≤ k − ℓ− 2. By the maximality of P ′, we have that

N+(wm) ⊆ V (P ) ∪ (V (P ′) \ {wm}).

We distinguish two cases:
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• Suppose that N+(wm) ∩ V (C) ̸= ∅, and let vr ∈ N+(wm) ∩ V (C). Define

P ′′ :=

v0 −→
P

vi−1w0 −→
P ′

wmvr −→
P

vtvi −→
P

vr−1 if r ̸= i,

v0 −→
P

vi−1w0 −→
P ′

wmvi −→
P

vt if r = i.

Since length(P ′′) = length(P ) +m+ 1 > length(P ), this contradicts the maximality of P .

• Suppose that N+(wm)∩V (C) = ∅, so that N+(wm) ⊆ (V (P )\V (C))∪(V (P ′)\{wm}). Since

|V (P ′) \ {wm}| = m ≤ k − ℓ− 2 ≤ δ0(G)− 2,

it follows that wm has at least two out-neighbors in V (P ) \ V (C) = {v0, . . . , vi−1}. Conse-
quently, we have that i ≥ 2, and that wm has at least one out-neighbor in {v0, . . . , vi−2}. Let
j ∈ {0, . . . , i− 2} be the smallest index such that vj ∈ N+(wm). We then define the paths

P1 := vi−1w0 −→
P ′

wmvj −→
P

vi−2 and P2 := vi−1 −→
P

vt.

Then {wm} ∪N+(wm) ⊆ V (P1), and consequently, length(P1) = |V (P1)| − 1 ≥ |N+(wm)| ≥
δ0(G) ≥ k− ℓ. On the other hand, length(P2) = |V (C)| > ℓ. Thus, P (

←−
ℓ ,
−−−→
k − ℓ) embeds in G.

(iii) Without loss of generality, suppose the Hamilton cycle is v0v1 . . . vtv0; if not, we may relabel the
vertices in P . Then, all the in- and out-neighbours of v0 must belong to V (P ), for otherwise we
could find a path in G longer than P , contradicting its maximality. Thus, N+(v0) ∪ N−(v0) ⊆
V (P )\{v0} = (X\{v0})∪Y ∪Z. So, since |N+(v0)∪N−(v0)| ≥ 2δ0(G) ≥ 2(k−ℓ) > |X\{v0}|+|Z|,
it follows that (N+(v0) ∪N−(v0)) ∩ Y ̸= ∅. Let vi ∈ (N+(v0) ∪N−(v0)) ∩ Y . By case (i), we may
assume that vi ∈ N+(v0). Define the paths

P1 := v0 −→
P

vi−1 and P2 := v0vi −→
P

vt.

See Figure 5.

Note that X ⊊ V (P1) and Z ⊊ V (P2), which implies that length(P1), length(P2) ≥ k−ℓ. Moreover,

at least one of P1 and P2 has length at least t/2 ≥ ℓ. Thus, P (
←−
ℓ ,
−−−→
k − ℓ) is a subpath of

←−
P1P2, and

therefore embeds in G.

Figure 5: Construction of paths P1 and P2 in the proof of Proposition 3.2 (iii).

4 Proof of Theorem 1.2

We are now ready to prove Theorem 1.2, restated below for the reader’s convenience.
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Theorem 1.2. Let k and ℓ be positive integers with k/2 ≤ ℓ < k. Let G be an oriented graph such that

δ0(G) ≥

{
k − ℓ

2 if ℓ ≤ 2k
3 ,

2k
3 if ℓ > 2k

3 .

Then G contains as a subgraph both possible k-arc oriented paths with two blocks of size ℓ and k − ℓ.

Proof. Note that it is enough to show that P (
←−
ℓ ,
−−−→
k − ℓ) embeds in G, as the embedding of P (

−→
ℓ ,
←−−−
k − ℓ)

within G follows by embedding P (
←−
ℓ ,
−−−→
k − ℓ) into the oriented graph obtained by reversing each arc in G.

Consider a directed path P = v0v1 . . . vt of maximum length in G. By Theorem 3.1 we have t ≥
2δ0(G). We proceed by cases.

• Suppose that k/2 ≤ ℓ ≤ 2k/3. Here we have δ0(G) ≥ k − ℓ/2, and consequently, t ≥ 2δ0(G) ≥
2k − ℓ. It follows that

δ0(G) > k − ℓ and t− ℓ ≥ 2k − 2ℓ ≥ 2k

3
≥ ℓ, (1)

which in particular implies that t ≥ 2ℓ. Define the sets

X = {v0, . . . , vk−ℓ−1}, Y = {vk−ℓ, . . . , vt−k+ℓ} and Z = {vt−k+ℓ+1, . . . , vt}.

Note that with this set-up, if any one of the conditions (i), (ii) and (iii) from Proposition 3.2 holds,

then P (
←−
ℓ ,
−−−→
k − ℓ) embeds in G, and we are done.

We have that

|X| = |Z| = k − ℓ and |Y | = t+ 1− 2(k − ℓ) ≥ (2k − ℓ) + 1− 2(k − ℓ) = ℓ+ 1.

By the maximality of P , we have N−(v0), N
+(vt) ⊆ V (P ). Note that if N−(v0) ∩ Y ̸= ∅ or

N+(vt) ∩ Y ̸= ∅, then Proposition 3.2 (i) guarantees that P (
←−
ℓ ,
−−−→
k − ℓ) embeds in G. Moreover, if

v0 ∈ N+(vt) (equivalently: vt ∈ N−(v0)), then v0v1 . . . vtv0 is a Hamilton cycle of G[V (P )], and

so by Proposition 3.2 (iii), we again obtain that P (
←−
ℓ ,
−−−→
k − ℓ) embeds in G. Thus, we may assume

that
N−(v0) ⊆ X ∪ (Z \ {vt}) and N+(vt) ⊆ (X \ {v0}) ∪ Z. (2)

Choose i∗ ∈ {1, . . . , k − ⌈3ℓ/2⌉} such that vi∗ ∈ N+(vt). If no such vertex exists, then by (2), we
must have

N+(vt) ⊆ {vk−⌈3ℓ/2⌉+1, . . . , vk−ℓ−1} ∪ (Z \ {vt}),

which implies that

deg+(vt) ≤ k −
⌊ ℓ
2

⌋
− 2 < k − ℓ

2
≤ δ0(G),

a contradiction. Note that vi∗ ∈ X \ {v0}.
Since {v1, . . . , vk−⌈3ℓ/2⌉} ⊆ X, by Proposition 3.2 (ii), we may assume that N+(vi∗−1) ⊆ V (P ).
We now distinguish two cases.

– Suppose that N+(vi∗−1) ∩ Y = ∅. Clearly, we have

|N−(v0) ∩X| ≤ k − ℓ− 1 and |N+(vi∗−1) ∩X| ≤ k − ℓ− 1.

Then, since δ0(G) ≥ k − ℓ/2, and N−(v0) ∪N+(vi∗−1) ⊆ X ∪ Z by (2), it follows that

|N+(vi∗−1) ∩ Z| ≥ ℓ

2
+ 1 >

|Z|
2

and |N−(v0) ∩ Z| ≥ ℓ

2
+ 1 >

|Z|
2

.

Define the set
S := {vj : vj−1 ∈ N−(v0) ∩ Z}.

Clearly, S ⊆ Z. Moreover, since vt /∈ N−(v0) (by (2)), we see that |S| = |N−(v0) ∩ Z|. We
now have |S|, |N+(vi∗−1) ∩ Z| > |Z|/2, and so by the pigeonhole principle, we must have
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S ∩ (N+(vi∗−1)∩Z) ̸= ∅. This ensures the existence of a vertex vp ∈ N+(vi∗−1)∩Z such that
vp−1 ∈ N−(v0) ∩ Z. Define

C := v0 −→
P

vi∗−1vp −→
P

vtvi∗ −→
P

vp−1v0.

Then, C is a directed cycle with V (C) = V (P ), i.e. C is a Hamilton cycle of G[V (P )]. By

Proposition 3.2 (iii), we conclude that P (
←−
ℓ ,
−−−→
k − ℓ) embeds in G.

– Suppose that N+(vi∗−1) ∩ Y ̸= ∅, and let vp ∈ N+(vi∗−1) ∩ Y .

∗ Suppose that p ≥ ℓ+ i∗. Define the paths

P1 := vi∗−1vp −→
P

vt and P2 := vi∗−1 −→
P

vp−1.

Since ℓ+ i∗ ≤ p ≤ t− k + ℓ, we have

length(P1) = t− p+ 1 > k − ℓ and length(P2) = p− i∗ ≥ ℓ.

Thus, the path P (
←−
ℓ ,
−−−→
k − ℓ) is a subpath of

←−
P1P2.

∗ Suppose that p ≤ ℓ + i∗ − 1. Choose j∗ ∈ {t − k + ℓ + 1, . . . , t − ⌊ℓ/2⌋} such that
vj∗ ∈ N−(v0). The existence of such a vertex vj∗ follows by a similar argument to that
of vi∗ . Indeed, if such a vertex vj∗ does not exist, then by (2), we have

N−(v0) ⊆ (X \ {v0}) ∪ {vt−⌊ℓ/2⌋+1, . . . , vt}.

This would imply that

deg−(v0) ≤ (k − ℓ− 1) +
⌊ ℓ
2

⌋
= k −

⌈ ℓ
2

⌉
− 1 < δ0(G),

a contradiction.
Define the paths

P1 := vj∗ −→
P

vtvi∗ −→
P

vp−1 and P2 := vj∗v0 −→
P

vi∗−1vp −→
P

vj∗−1.

Since j∗ ≤ t − ⌊ℓ/2⌋, i∗ ≤ k − ⌈3ℓ/2⌉ and p ≥ k − ℓ (because vp ∈ Y ), it follows that
t− j∗ ≥ ⌊ℓ/2⌋ and p− i∗ ≥ ⌈ℓ/2⌉. Therefore,

length(P1) = t− j∗ + p− i∗ ≥ ℓ.

Moreover, since j∗ ≥ t− k + ℓ+ 1, p ≤ ℓ+ i∗ − 1 and t ≥ 2δ0(G) ≥ 2k − ℓ, we obtain

length(P2) = i∗ + j∗ − p ≥ i∗ + t− k + ℓ+ 1− ℓ− i∗ + 1 = t− k + 2 ≥ k − ℓ+ 2.

Thus, the path P (
←−
ℓ ,
−−−→
k − ℓ) is a subpath of

←−
P1P2.
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• Suppose that ℓ > 2k/3. Here we have δ0(G) ≥ 2k/3, and consequently, t ≥ 2δ0(G) ≥ 4k/3. Define
the sets

Q := {vk−ℓ, . . . , vt−ℓ} and R := {vℓ, . . . , vt−k+ℓ}.

Note that |Q| = |R| = t− k+1. Moreover, note that Q∩R ̸= ∅ if and only if ℓ ≤ t− ℓ, and in this
case, we have that Q ∪R = {vk−ℓ, . . . , vt−k+ℓ}.
First, suppose that N−(v0)∩(Q∪R) = ∅. Since N−(v0) ⊆ V (P ) by the maximality of P , it follows
that N−(v0) ⊆ V (P ) \ (Q ∪R). Then, keeping in mind that t ≥ 2δ0(G) ≥ 4k/3 and ℓ > 2k/3, we
obtain

deg−(v0) ≤

{
t− 2(t− k + 1) = 2k − t− 2 < 2k/3 if Q ∩R = ∅,
2(k − ℓ)− 1 < 2k/3 if Q ∩R ̸= ∅,

a contradiction to δ0(G) ≥ 2k/3. Thus, we may assume that N−(v0) ∩ (Q ∪R) ̸= ∅.
Let vi ∈ N−(v0) ∩ (Q ∪R). Define the paths

P1 := viv0 −→
P

vi−1 and P2 := vi −→
P

vt.

See Figure 6. We have length(P1) = i and length(P2) = t− i. Then,

– if vi ∈ Q, then length(P1) ≥ k − ℓ and length(P2) ≥ ℓ; and,

– if vi ∈ R, then length(P1) ≥ ℓ and length(P2) ≥ k − ℓ.

Thus, in both cases, P (
←−
ℓ ,
−−−→
k − ℓ) is a subpath of

←−
P1P2.

Figure 6: Construction of paths P1 and P2 when ℓ > 2k/3.

5 Concluding remarks

As mentioned in [14], the tightness of Stein’s conjecture (Conjecture 1.1) for the antidirected orientation
is witnessed by the k/2-blowup of the directed triangle. But more generally, Stein’s conjecture is near-
tight for every orientation: for an even k take a regular tournament T on k + 1 vertices. We have
δ0(T ) = k/2 and, by a theorem of Havet and Thomassé [9] (proved first for large k by Thomason [20]),
T contains every oriented path with k arcs (with three small exceptions all involving the antidirected
path), but clearly T does not contain any path with k + 1 arcs. Thus we wonder if Conjecture 1.1 can
be strengthened for all orientations except antidirected.

Question 5.1. Is it true that every oriented graph G with δ0(G) ≥ k/2 contains every orientation of
the k-edge path, save for the antidirected orientations?

Note that Jackson’s theorem (Theorem 3.1) gives an affirmative answer for the directed orientation.
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