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This mini-lecture has two parts:
1 A brief review of bilinear and quadratic forms

2 The definition and tests of positive definiteness



This mini-lecture has two parts:
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2 The definition and tests of positive definiteness



1 A brief review of bilinear and quadratic forms

Definition
A bilinear form on a vector space V over a field F is a function
f : V × V → F that satisfies the following four axioms:
b.1. ∀x1, x2, y ∈ V : f (x1 + x2, y) = f (x1, y) + f (x2, y);
b.2. ∀x, y ∈ V and α ∈ F: f (αx, y) = αf (x, y);
b.3. ∀x, y1, y2 ∈ V : f (x, y1 + y2) = f (x, y1) + f (x, y2);
b.4. ∀x, y ∈ V , α ∈ F: f (x, αy) = αf (x, y).
The bilinear form f is said to be symmetric if it further satisfies the
property that f (x, y) = f (y, x) for all x, y ∈ V .

Remark:
Scalar products in real vector spaces are bilinear forms.
However, scalar products in non-trivial complex vector spaces
are not bilinear forms.
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Theorem 9.2.2
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {b1, . . . , bn} be a basis of V .

(a) For every matrix A =
[

ai,j
]

n×n in Fn×n, the function
f : V × V → F given by

f (x, y) =
[

x
]T

B A
[

y
]

B for all x, y ∈ V
is a bilinear form on V , and moreover, all the following hold:

(a.1) f (bi , bj) = ai,j for all i , j ∈ {1, . . . , n},
(a.2) f

( ∑n
i=1 cibi ,

∑n
j=1 djbj

)
=

∑n
i=1

∑n
j=1 ai,jcidj for all

c1, . . . , cn, d1, . . . , dn ∈ F,
(a.3) f is symmetric iff A is symmetric.

(b) For every bilinear form f on V , there exists a unique matrix
A =

[
ai,j

]
n×n in Fn×n, called the matrix of the bilinear form

f with respect to the basis B, that satisfies the property that
f (x, y) =

[
x

]T
B A

[
y

]
B for all x, y ∈ V .

Moreover, the entries of the matrix A are given by
ai ,j = f (bi , bj) for all indices i , j ∈ {1, . . . , n}.



As a special case of Theorem 9.2.2 for the special case of
V = Fn (where F is a field), and B = En (the standard basis
of Fn), we get the following corollary (next slide).



Corollary 9.2.3
Let F be a field, and let En = {e1, . . . , en} be the standard basis of
Fn.

(a) For every matrix A =
[

ai,j
]

n×n in Fn×n, the function
f : Fn × Fn → F given by

f (x, y) = xT Ay for all x, y ∈ Fn

is a bilinear form on Fn, and moreover, all the following hold:
(a.1) f (ei , ej) = ai,j for all i , j ∈ {1, . . . , n},

(a.2) f (x, y) =
n∑

i=1

n∑
j=1

ai,jxiyj for all vectors x =
[

x1 . . . xn
]T

and y =
[

y1 . . . yn
]T in Fn,

(a.3) f is symmetric iff A is symmetric.
(b) For every bilinear form f on Fn, there exists a unique matrix

A =
[

ai,j
]

n×n in Fn×n that satisfies the property that
f (x, y) = xT Ay for all x, y ∈ Fn.

Moreover, the entries of the matrix A are given by
ai ,j = f (ei , ej) for all indices i , j ∈ {1, . . . , n}.



Remark: Corollary 9.2.3 implies that, for a field F, the
bilinear forms on Fn are precisely the functions
f : Fn × Fn → F given by

f (x, y) =
n∑

i=1

n∑
j=1

ai,jxiyj for all x =

 x1
...

xn

 and y =

 y1
...

yn

 in Fn,

where the ai ,j ’s are some scalars in F.

Moreover, such a bilinear form is symmetric iff ai,j = aj,i for all
indices i , j ∈ {1, . . . , n}.
The matrix of this bilinear form with respect to the standard
basis En of Fn is

[
ai,j

]
n×n (so, the i , j-th entry of the matrix

is the coefficient in front of xiyj from the formula for f above).
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For example, functions f1, f2 : R2 × R2 → R given by the
formulas

f1(x, y) = x1y1 − 3x1y2 − 3x2y1 + 7x2y2,
f2(x, y) = x1y1 − 2x1y2 + 3x2y1 − 3x2y2,

for all x =
[

x1 x2
]T and y =

[
y1 y2

]T in R2, are bilinear
forms on R2.

The bilinear form f1 is symmetric, whereas the bilinear form f2
is not.
The matrices of the bilinear forms f1 and f2 with respect to the
standard basis E2 of R2 are

A1 =
[

1 −3
−3 7

]
and A2 =

[
1 −2
3 −3

]
,

respectively.
Note that A1 is symmetric, whereas A2 is not; this is
consistent with the fact that f1 is symmetric, whereas f2 is not.
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2 The definition and tests of positive definiteness

Definition
A symmetric matrix A ∈ Rn×n is said to be positive definite if
xT Ax > 0 for all x ∈ Rn \ {0}.

Remark: we study positive definiteness only in the context of
real symmetric matrices.

Advertisement:

Corollary 10.4.2
For any function ⟨·, ·⟩ : Rn × Rn → R, the following are equivalent:

(i) ⟨·, ·⟩ is a scalar product on Rn;
(ii) there exists a positive definite matrix A ∈ Rn×n such that for

all x, y ∈ Rn, we have ⟨x, y⟩ = xT Ay.

Proof: Lecture!
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Proposition 10.1.4 (abridged)
The main diagonal of any positive definite matrix is positive.

We present two tests of positive definiteness (without proof,
but with examples):

the Gaussian elimination test of positive definiteness;
Sylvester’s criterion of positive definiteness.
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Theorem 10.2.6 [The Gaussian elimination test of pos. def.]
Let A ∈ Rn×n be a symmetric matrix. Then the following
algorithm correctly determines whether A is positive definite.

Step 0: Set A1 := A, and go to Step 1.
For j ∈ {1, . . . , n}, and assuming the matrix Aj has already
been generated, we proceed as follows.
Step j:

If the main diagonal of Aj is not positive, then the algorithm
returns the answer that A is not positive definite and
terminates.
If the main diagonal of Aj is positive and j = n, then the
algorithm returns the answer that A is positive definite and
terminates.
If the main diagonal of Aj is positive and j ≤ n − 1, then for
each index i ∈ {j + 1, . . . , n}, we add a suitable scalar multiple
of the j-th row of Aj to the i-th row of Aj so that the i , j-th
entry of the matrix becomes zero; we call the resulting matrix
Aj+1, and we go to Step j + 1.



Remark: The algorithm just presented performs a modified
version of the “forward” part of the row reduction algorithm.

It only performs elementary row operations of the form
“Ri → Ri + αRj ,” where i > j (i.e. row i is below row j), and
where α is chosen so that the i , j-th entry of the matrix
becomes zero; moreover, these operations (which add scalar
multiples of row j to the rows below it) are performed only in
Step j .

Essentially, we use the j, j-th entry of the matrix Aj to “clean
up” the j-th column below the main diagonal, i.e. to turn all
entries of the j-th column below the main diagonal into zeros.
Note that at the start of Step j, the leftmost j − 1 many
columns have already been processed, so that they have all
zeros below the main diagonal.

We keep modifying our matrix until we either obtain a zero or
a negative number on the main diagonal (in this case, our
input matrix is not positive definite), or until we transform our
matrix into an upper triangular matrix with a positive main
diagonal (in this case, our input matrix is positive definite).
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Example 10.2.7
Using Theorem 10.2.6, determine whether the matrix

A :=

 4 −2 4
−2 10 1

4 1 6


is positive definite.

Solution.

The matrix A is symmetric, and so Theorem 10.2.6
applies. We perform the modified version of the “forward” part of
the row reduction algorithm described in Theorem 10.2.6, as
follows (the dotted lines isolate the submatrix in the lower right
corner that is still being processed):
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Solution (continued).

A =

 4 −2 4
−2 10 1

4 1 6


︸ ︷︷ ︸

=:A1

Step 0

R2→R2+ 1
2 R1

R3→R3−R1∼

 4 −2 4
0 9 3
0 3 2


︸ ︷︷ ︸

=:A2

Step 1

R3→R3− 1
3 R2∼

 4 −2 4
0 9 3
0 0 1


︸ ︷︷ ︸

=:A3

Step 2.

We have now obtained an upper triangular matrix with a positive
main diagonal. So, by Theorem 10.2.6, A is positive definite. □



Solution (continued).
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Example 10.2.8
Using Theorem 10.2.6, determine whether the matrix

A :=


2 −2 2 0

−2 3 0 1
2 0 6 0
0 1 0 2


is positive definite.

Solution.

The matrix A is symmetric, and so Theorem 10.2.6
applies. We perform the modified version of the “forward” part of
the row reduction algorithm described in Theorem 10.2.6, as
follows:
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Solution (continued).

A =
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2 −2 2 0
0 1 2 1
0 0 0 −2
0 0 −2 1

 .

We have now obtained a zero on the main diagonal of our matrix,
and so by Theorem 10.2.6, the matrix A is not positive definite. □



Solution (continued).
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We have now obtained a zero on the main diagonal of our matrix,
and so by Theorem 10.2.6, the matrix A is not positive definite. □



We now turn to Sylvester’s criterion of positive definiteness.

Given any n × n matrix A, and any index k ∈ {1, . . . , n}, we
let A(k) be the k × k matrix in the upper left corner of A.
For example, if

A =

 1 2 3
4 5 6
7 8 9

 ,

then we have that

A(1) =
[

1
]

, A(2) =
[

1 2
4 5

]
, A(3) =

 1 2 3
4 5 6
7 8 9

 .

Clearly, for any n × n matrix A, we have that A(n) = A.
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let A(k) be the k × k matrix in the upper left corner of A.
For example, if

A =

 1 2 3
4 5 6
7 8 9

 ,

then we have that

A(1) =
[

1
]

, A(2) =
[

1 2
4 5

]
, A(3) =

 1 2 3
4 5 6
7 8 9

 .

Clearly, for any n × n matrix A, we have that A(n) = A.



Theorem 10.2.9 [Sylvester’s criterion of positive definiteness]
For all symmetric matrices A ∈ Rn×n, the following are equivalent:

(i) A is positive definite;
(ii) det

(
A(1)), . . . , det

(
A(n)) > 0.



Example 10.2.10
Using Sylvester’s criterion of positive definiteness, determine
whether the matrix

A :=

 4 −2 4
−2 10 1

4 1 6


is positive definite.

Solution.

The matrix A is symmetric, and so we can use
Sylvester’s criterion of positive definiteness. We compute:

det
(
A(1)) =

∣∣∣ 4
∣∣∣ = 4 > 0;

det
(
A(2)) =

∣∣∣∣∣ 4 −2
−2 10

∣∣∣∣∣ = 36 > 0;

det
(
A(3)) =

∣∣∣∣∣∣∣
4 −2 4

−2 10 1
4 1 6

∣∣∣∣∣∣∣ = 36 > 0.

All three determinants are positive, and so by Sylvester’s criterion
of positive definiteness, the matrix A is positive definite. □



Example 10.2.10
Using Sylvester’s criterion of positive definiteness, determine
whether the matrix

A :=

 4 −2 4
−2 10 1

4 1 6


is positive definite.

Solution. The matrix A is symmetric, and so we can use
Sylvester’s criterion of positive definiteness.

We compute:
det

(
A(1)) =

∣∣∣ 4
∣∣∣ = 4 > 0;

det
(
A(2)) =

∣∣∣∣∣ 4 −2
−2 10

∣∣∣∣∣ = 36 > 0;

det
(
A(3)) =

∣∣∣∣∣∣∣
4 −2 4

−2 10 1
4 1 6

∣∣∣∣∣∣∣ = 36 > 0.

All three determinants are positive, and so by Sylvester’s criterion
of positive definiteness, the matrix A is positive definite. □



Example 10.2.10
Using Sylvester’s criterion of positive definiteness, determine
whether the matrix

A :=

 4 −2 4
−2 10 1

4 1 6


is positive definite.

Solution. The matrix A is symmetric, and so we can use
Sylvester’s criterion of positive definiteness. We compute:

det
(
A(1)) =

∣∣∣ 4
∣∣∣ = 4 > 0;

det
(
A(2)) =

∣∣∣∣∣ 4 −2
−2 10

∣∣∣∣∣ = 36 > 0;

det
(
A(3)) =

∣∣∣∣∣∣∣
4 −2 4

−2 10 1
4 1 6

∣∣∣∣∣∣∣ = 36 > 0.

All three determinants are positive, and so by Sylvester’s criterion
of positive definiteness, the matrix A is positive definite. □



Example 10.2.11
Using Sylvester’s criterion of positive definiteness, determine
whether the matrix

A :=


2 −2 2 0

−2 3 0 1
2 0 6 0
0 1 0 2


is positive definite.

Solution.

The matrix A is symmetric, and so we can use
Sylvester’s criterion of positive definiteness.



Example 10.2.11
Using Sylvester’s criterion of positive definiteness, determine
whether the matrix

A :=


2 −2 2 0

−2 3 0 1
2 0 6 0
0 1 0 2


is positive definite.

Solution. The matrix A is symmetric, and so we can use
Sylvester’s criterion of positive definiteness.



Solution (continued). We compute:
det

(
A(1)) =

∣∣∣ 2
∣∣∣ = 2 > 0;

det
(
A(2)) =

∣∣∣∣∣ 2 −2
−2 3

∣∣∣∣∣ = 2 > 0;

det
(
A(3)) =

∣∣∣∣∣∣∣
2 −2 2

−2 3 0
2 0 6

∣∣∣∣∣∣∣ = 0.

Since det
(
A(3)) is not positive, Sylvester’s criterion of positive

definiteness guarantees that A is not positive definite.

Remark: Note that we did not need to compute det
(
A(4)). In

general, if we obtain det
(
A(k)) ≤ 0 for some k, then we do not

need to compute further, and we simply deduce that A is not
positive definite. □



Solution (continued). We compute:
det

(
A(1)) =

∣∣∣ 2
∣∣∣ = 2 > 0;

det
(
A(2)) =

∣∣∣∣∣ 2 −2
−2 3

∣∣∣∣∣ = 2 > 0;

det
(
A(3)) =

∣∣∣∣∣∣∣
2 −2 2

−2 3 0
2 0 6

∣∣∣∣∣∣∣ = 0.

Since det
(
A(3)) is not positive, Sylvester’s criterion of positive

definiteness guarantees that A is not positive definite.

Remark: Note that we did not need to compute det
(
A(4)). In

general, if we obtain det
(
A(k)) ≤ 0 for some k, then we do not

need to compute further, and we simply deduce that A is not
positive definite. □


