Linear Algebra 2: Tutorial 10

Irena Penev

Summer 2025

Problem 2 of HW#5. Let A be an invertible matrix in $\mathbb{R}^{n \times n}$, and assume that the entries of A are all integers. Prove that the entries of A^{-1} are all integers if and only if $det(A) = \pm 1$.

Hint: Use the adjugate matrix.

Definition. For a field \mathbb{F} , a scalar $\lambda_0 \in \mathbb{F}$, and a positive integer t, the Jordan block $J_t(\lambda_0)$ is defined to be following $t \times t$ matrix (with entries understood to be in \mathbb{F}):

		$\begin{bmatrix} \lambda_0 \end{bmatrix}$	1	0		0	0]	
		0	λ_0	1		0	0	
$J_t(\lambda_0)$	=	÷	÷	÷	·	÷	:	
		0	0	0		λ_0	1	
		0	0	0		0	λ_0	$t \times t$

Thus, $J_t(\lambda_0)$ is a matrix in $\mathbb{F}^{t \times t}$, it has all λ_0 's on the main diagonal, all 1's on the diagonal right above the main diagonal, and 0's everywhere else.

Exercise 4 of Tutorial 9. Let \mathbb{F} be a field, let $\lambda_0 \in \mathbb{F}$, and let t be a positive integer. What are the eigenvalues of $J_t(\lambda_0)$? What are their algebraic and geometric multiplicities? Find a basis of each eigenspace.

Definition. Let \mathbb{F} be a field. For square matrices $A_1 \in \mathbb{F}^{n_1 \times n_1}, A_2 \in \mathbb{F}^{n_2 \times n_2}, \ldots, A_k \in \mathbb{F}^{n_k \times n_k}$, we define the direct sum of A_1, A_2, \ldots, A_k to be the $(n_1 + n_2 + \cdots + n_k) \times (n_1 + n_2 + \cdots + n_k)$ matrix

$$A_{1} \oplus A_{2} \oplus \dots \oplus A_{k} := \begin{bmatrix} A_{1} & O_{n_{1} \times n_{2}} & O_{n_{1} \times n_{k}} \\ O_{n_{2} \times n_{1}} & A_{2} & O_{n_{2} \times n_{k}} \\ A_{2} & O_{n_{2} \times n_{k}} & O_{n_{2} \times n_{k}} \\ \vdots & \vdots & \vdots & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & O_{n_{k} \times n_{2}} & O_{n_{k} \times n_{k}} \end{bmatrix}.$$

For example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \oplus \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \oplus \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 5 & 6 & 0 \\ 0 & 0 & 4 & 5 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Exercise 5 of Tutorial 9. Let \mathbb{F} be a field, let $\lambda_0 \in \mathbb{F}$, and let t_1, \ldots, t_k be positive integers. What are the eigenvalues of $J_{t_1}(\lambda_0) \oplus \cdots \oplus J_{t_k}(\lambda_0)$? What are the algebraic and geometric multiplicities of those eigenvalues?

Exercise 6 of Tutorial 9. Let \mathbb{F} be a field, let $\lambda_1, \lambda_2 \in \mathbb{F}$ be distinct, and let t_1, t_2 be positive integers. What are the eigenvalues of $J_{t_1}(\lambda_1) \oplus J_{t_2}(\lambda_2)$? What are the algebraic and geometric multiplicities of those eigenvalues?

Exercise 7 of Tutorial 9. Try to generalize Exercises 5 and 6. What are the eigenvalues of matrix that is a direct sum of arbitrarily many Jordan blocks, when those Jordan blocks can be of arbitrary size and type?¹ (Such a matrix is called a "Jordan matrix," or a matrix in "Jordan normal form.") What are the algebraic and geometric multiplicities of those eigenvalues?

Remark: You don't have to give a fully formal proof, but try to give a reasonable proof outline.

Exercise 1. For each of the following matrices A, determine whether the matrix is diagonalizable, and if so, diagonalize it. If A is diagonalizable, then find a formula for A^m for all non-negative integers m.² Finally, determine whether your formula for A^m also works for negative integers m.

 $(a) A = \begin{bmatrix} -2 & -10 & 0 \\ 0 & 3 & 0 \\ -5 & -10 & 3 \end{bmatrix}$ $(b) A = \begin{bmatrix} -2 & 4 & 1 \\ -2 & 4 & 1 \\ -2 & 2 & 1 \end{bmatrix}$ $(c) A = \begin{bmatrix} 6 & 3 & 1 \\ -8 & -4 & -2 \\ 8 & 6 & 4 \end{bmatrix}$ $(d) A = \begin{bmatrix} 4 & -3 & 3 & 0 \\ 0 & 11 & 0 & -6 \\ -2 & 12 & -1 & -6 \\ 0 & 18 & 0 & -10 \end{bmatrix}$

Exercise 2. For the following matrices D and P (with entries understood to be in \mathbb{C}), set $A := PDP^{-1}$ (so, $D = P^{-1}AP$), and then compute the characteristic polynomial and the spectrum of A, specify all the eigenvalues of A along with their algebraic and geometric multiplicities, and find a basis for each eigenspace of A. (In both parts, you may assume that the matrix P is indeed invertible. This can be checked, for example, by computing the determinant of P and seeing that it is non-zero.)

¹So, the matrix is of the form $J_{t_1}(\lambda_1) \oplus \cdots \oplus J_{t_k}(\lambda_k)$, where $\lambda_1, \ldots, \lambda_k$ are (not necessarily distinct) scalars in the field \mathbb{F} in question, and t_1, \ldots, t_k are some positive integers.

²If A is not diagonalizable, then you do not need to find a formula for A^m .

$$(a) D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, P = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \\ 2 & 2 & 3 & 3 \end{bmatrix};$$
$$(b) D := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, P = \begin{bmatrix} -1 & 0 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 2 & 3 & -2 & -3 \\ 4 & 5 & 6 & 7 \end{bmatrix}.$$

Exercise 3. Determine if the following complex matrices are diagonalizable. Make sure you justify your answer (however, you do not need to actually diagonalize any matrices).

 $(a) A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix};$ $(b) B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 0 \\ 4 & 5 & 6 \end{bmatrix};$ $(c) C = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 7 & 3 & 4 & 1 \\ 0 & 0 & 4 & 3 & 1 & 2 & 2 \\ 0 & 0 & 3 & 5 & 6 & 7 & 1 \\ 0 & 0 & 2 & 2 & 2 & 1 & 3 \\ 0 & 0 & 1 & 2 & 1 & 1 & 2 \end{bmatrix}.$