Linear Algebra 2: Tutorial 9

Irena Penev

Summer 2025

Exercise 1. Prove or disprove the following each of the following statements.

- (a) For all matrices $A, B \in \mathbb{C}^{2 \times 2}$ and vectors $\mathbf{v} \in \mathbb{C}^2$, if \mathbf{v} is an eigenvector of both A and B, then \mathbf{v} is an eigenvector of A + B.
- (b) For all matrices $A, B \in \mathbb{C}^{2 \times 2}$ and scalars $\lambda \in \mathbb{C}$, if λ is an eigenvalue of both A and B, then λ is an eigenvalue of A + B.

For each part, you should first state clearly whether the statement is true or false. If it is true, then prove it. If it is false, then construct a counterexample (and prove that your counterexample really is a counterexample).

Exercise 2. Construct a matrix $A \in \mathbb{R}^{2 \times 2}$ such that A has no (real) eigenvalues, but A^2 does have (real) eigenvalues.

Hint: Think geometrically.

Exercise 3. Let \mathbb{F} be a field, and let $\lambda_0 \in \mathbb{F}$ be an eigenvalue of a square matrix $A \in \mathbb{F}^{n \times n}$.

- (a) Prove that for all non-negative integers m, λ_0^m is an eigenvalue of A^m .
- (b) Prove that if A is invertible, then λ_0^m is an eigenvalue of A^m for all integers m.
 - This, in particular, means that $\frac{1}{\lambda_0}$ is an eigenvalue of A^{-1} (again, assuming that A is invertible). How do you know that $\frac{1}{\lambda_0}$ is even defined, i.e. that you are not dividing by zero?
- (c) Assume that $B := P^{-1}AP$ for some invertible matrix $P \in \mathbb{F}^{n \times n}$. In particular, A and B are similar, and so by Theorem 8.2.9 of the Lecture Notes, A and B have the same eigenvalues. If **v** is an eigenvector of A associated with the eigenvalue λ_0 , can you construct an eigenvector of B associated with the eigenvalue λ_0 ?

Definition. For a field \mathbb{F} , a scalar $\lambda_0 \in \mathbb{F}$, and a positive integer t, the Jordan block $J_t(\lambda_0)$ is defined to be following $t \times t$ matrix (with entries understood to be in \mathbb{F}):

$$J_t(\lambda_0) = \begin{bmatrix} \lambda_0 & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_0 & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda_0 \end{bmatrix}_{t \times t}$$

Thus, $J_t(\lambda_0)$ is a matrix in $\mathbb{F}^{t \times t}$, it has all λ_0 's on the main diagonal, all 1's on the diagonal right above the main diagonal, and 0's everywhere else.

Exercise 4. Let \mathbb{F} be a field, let $\lambda_0 \in \mathbb{F}$, and let t be a positive integer. What are the eigenvalues of $J_t(\lambda_0)$? What are their algebraic and geometric multiplicities? Find a basis of each eigenspace.

Definition. Let \mathbb{F} be a field. For square matrices $A_1 \in \mathbb{F}^{n_1 \times n_1}, A_2 \in \mathbb{F}^{n_2 \times n_2}, \ldots, A_k \in \mathbb{F}^{n_k \times n_k}$, we define the direct sum of A_1, A_2, \ldots, A_k to be the $(n_1 + n_2 + \cdots + n_k) \times (n_1 + n_2 + \cdots + n_k)$ matrix

$$A_{1} \oplus A_{2} \oplus \dots \oplus A_{k} := \begin{bmatrix} A_{1} & O_{n_{1} \times n_{2}} & O_{n_{1} \times n_{k}} \\ O_{n_{2} \times n_{1}} & A_{2} & O_{n_{2} \times n_{k}} \\ \vdots & \vdots & \vdots & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \vdots & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \vdots & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \vdots & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \vdots & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \vdots & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \vdots & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \vdots \\ O_{n_{k} \times n_{1}} & O_{n_{k} \times n_$$

For example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \oplus \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \oplus \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 5 & 6 & 0 \\ 0 & 0 & 4 & 5 & 6 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Exercise 5. Let \mathbb{F} be a field, let $\lambda_0 \in \mathbb{F}$, and let t_1, \ldots, t_k be positive integers. What are the eigenvalues of $J_{t_1}(\lambda_0) \oplus \cdots \oplus J_{t_k}(\lambda_0)$? What are the algebraic and geometric multiplicities of those eigenvalues?

Exercise 6. Let \mathbb{F} be a field, let $\lambda_1, \lambda_2 \in \mathbb{F}$ be distinct, and let t_1, t_2 be positive integers. What are the eigenvalues of $J_{t_1}(\lambda_1) \oplus J_{t_2}(\lambda_2)$? What are the algebraic and geometric multiplicities of those eigenvalues?

Exercise 7. Try to generalize Exercises 5 and 6. What are the eigenvalues of matrix that is a direct sum of arbitrarily many Jordan blocks, when those Jordan blocks can be of arbitrary size and type?¹ (Such a matrix is called a "Jordan matrix," or a matrix in "Jordan normal form.") What are the algebraic and geometric multiplicities of those eigenvalues?

Remark: You don't have to give a fully formal proof, but try to give a reasonable proof outline.

Exercise 8. Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times m}$ be matrices. Define the $(m+n) \times (m+n)$ matrices

$$C := \begin{bmatrix} \lambda I_m & A \\ -\overline{B} & -\overline{I_n} \end{bmatrix} \quad and \quad D := \begin{bmatrix} I_m & O_{m \times n} \\ -\overline{B} & -\overline{\lambda}\overline{I_n} \end{bmatrix}.$$

(a) By computing det(CD) and det(DC), find a relationship between $p_{AB}(\lambda)$ and $p_{BA}(\lambda)$.

(b) Using part (a), show that if m = n, then $p_{AB}(\lambda) = p_{BA}(\lambda)$.

¹So, the matrix is of the form $J_{t_1}(\lambda_1) \oplus \cdots \oplus J_{t_k}(\lambda_k)$, where $\lambda_1, \ldots, \lambda_k$ are (not necessarily distinct) scalars in the field \mathbb{F} in question, and t_1, \ldots, t_k are some positive integers.