Linear Algebra 2: Tutorial 8

Irena Penev

Summer 2025

Exercise 1. Prove or disprove the following statement:

For all matrices $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$ in $\mathbb{R}^{n \times n}$, we have that $|\det(A)| \leq \prod_{i=1}^n ||\mathbf{a}_i||$.

Hint: Volume.

Exercise 2. What is the maximum possible value of det(A) if A is a matrix in $\mathbb{R}^{4\times 4}$, all of whose entries are 1, 0, or -1? Exhibit a matrix A for which this maximum is reached.

Exercise 3. Prove of disprove the following statement:

For all invertible matrices $A \in \mathbb{R}^{2 \times 2}$ and $\mathbf{v} \in \mathbb{R}^2$, we have that $||A\mathbf{v}|| \leq |det(A)| ||\mathbf{v}||$.

Exercise 4. Show that the area of the triangle with vertices (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) in \mathbb{R}^2 is equal to

$$\frac{1}{2} \left| \left| \begin{array}{rrrr} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right| \right|.$$

Definition. Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$ be a square matrix. An eigenvector of A is a vector $\mathbf{v} \in \mathbb{F}^n \setminus \{\mathbf{0}\}$ for which there exists a scalar $\lambda \in \mathbb{F}$, called the eigenvalue of A associated with the eigenvector \mathbf{v} , such that

$$A\mathbf{v} = \lambda \mathbf{v}.$$

Under these circumstances, we also say that \mathbf{v} is an eigenvector of A associated with the eigenvalue λ .

Definition. For a square matrix $A \in \mathbb{F}^{n \times n}$ (where \mathbb{F} is some field), and for a scalar $\lambda \in \mathbb{F}$, we define

$$E_{\lambda}(A) := \{ \mathbf{v} \in \mathbb{F}^n \mid A\mathbf{v} = \lambda \mathbf{v} \}.$$

If λ is an eigenvalue of A, then $E_{\lambda}(A)$ is called the eigenspace of A associated with the eigenvalue λ .

Theorem 8.2.2. Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times n}$, and let $\lambda_0 \in \mathbb{F}$. Then

$$E_{\lambda_0}(A) = Nul(\lambda_0 I_n - A) = Nul(A - \lambda_0 I_n).$$

Moreover, the following are equivalent:

- (1) λ_0 is an eigenvalue of A;
- (2) λ_0 is a root of the characteristic polynomial of A, i.e. $p_A(\lambda_0) = 0$;
- (3) λ_0 is a solution of the characteristic equation of A, i.e. $det(\lambda_0 I_n A) = 0$.

Exercise 5. For each of the following matrices A in $\mathbb{C}^{3\times3}$, compute the characteristic polynomial $p_A(\lambda)$ and the spectrum of A. For each eigenvalue λ of A, determine both the algebraic and the geometric multiplicity of λ , and compute a basis of the eigenspace E_{λ} .

 $(a) \ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix};$ $(b) \ A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix};$ $(c) \ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix};$ $(d) \ A = \begin{bmatrix} 3 & 0 & -2 \\ -7 & 0 & 4 \\ 4 & 0 & -3 \end{bmatrix};$ $(e) \ A = \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 1 \\ -4 & 0 & 3 \end{bmatrix};$