Linear Algebra 2: Tutorial 6

Irena Penev

Summer 2025

Definition. The determinant of a matrix $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$ with entries in some field \mathbb{F} , denoted by det(A) or |A|, is defined by

$$det(A) := \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$
$$= \sum_{\sigma \in S_n} sgn(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)}.$$

Theorem 7.1.3. Let \mathbb{F} be a field. For all $A \in \mathbb{F}^{n \times n}$, we have that

$$det(A^T) = det(A).$$

Proposition 7.3.1. Let \mathbb{F} be a field, and let $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$ be a triangular matrix in $\mathbb{F}^{n \times n}$. Then

$$det(A) = \prod_{i=1}^{n} a_{i,i} = a_{1,1}a_{2,2}\dots a_{n,n},$$

that is, det(A) is equal to the product of entries on the main diagonal of A.

Theorem 7.3.2. Let \mathbb{F} be a field, and let $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$ be a matrix in $\mathbb{F}^{n \times n}$. Then all the following hold:

(a) if a matrix B is obtained by swapping two rows or swapping two columns of A, then

$$det(B) = -det(A);$$

(b) if a matrix B is obtained by multiplying some row or some column of A by a scalar $\alpha \in \mathbb{F} \setminus \{0\}$, then

 $det(B) = \alpha det(A)$ and $det(A) = \alpha^{-1} det(B);$

(c) if a matrix B is obtained from A by adding a scalar multiple of one row (resp. column) of A to another row (resp. column) of A, then

$$det(B) = det(A)$$

Definition. For a matrix $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$ (where $n \ge 2$) with entries in some field \mathbb{F} , and for indices $p, q \in \{1, \ldots, n\}$, $A_{p,q}$ is the $(n-1) \times (n-1)$ matrix obtained from A by deleting the p-th row and q-th column.

Laplace expansion. Let \mathbb{F} be a field, and let $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$ (where $n \ge 2$) be a matrix in $\mathbb{F}^{n \times n}$. Then both the following hold:

(a) [expansion along the *i*-th row] for all $i \in \{1, ..., n\}$, we have that

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j});$$

(b) [expansion along the *j*-th column] for all $j \in \{1, ..., n\}$, we have that

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j}).$$

Theorem 7.5.2. Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$det(AB) = det(A)det(B).$$

Exercise 1. Using the **definition** of a determinant (with permutations), compute the determinant of the real matrix below.

$$A = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 4 & 0 \end{bmatrix}$$

Exercise 2. Compute the determinant of the following permutation matrix (with entries understood to be in \mathbb{R}):

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Exercise 3. Consider the matrix A below, with entries understood to be in \mathbb{R} . Determine whether det(A) is positive, negative, or zero. Can you tell which it is without actually computing the determinant?

$$A = \begin{bmatrix} 1 & 1000 & 2 & 3\\ 1000 & -3 & 5 & 0\\ 2 & 3 & 5 & 1000\\ 1 & 2 & 1000 & 4 \end{bmatrix}$$

Exercise 4. Compute the determinants of the following 3×3 real matrices.

$$1. \ A_{1} = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 8 & 16 \\ 0 & 0 & 32 \end{bmatrix}; \qquad 4. \ A_{4} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 5 \end{bmatrix};$$
$$2. \ A_{2} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & -1 & 0 \\ 1 & -1 & 1 \end{bmatrix}; \qquad 5. \ A_{5} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 2 & 5 \end{bmatrix};$$
$$3. \ A_{3} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 3 & 6 & 3 \end{bmatrix}; \qquad 6. \ A_{6} = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 2 & -2 \\ 3 & 4 & 1 \end{bmatrix};$$

Exercise 5. Let a, b, c, d, e, f, g, h, i be real numbers such that

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7.$$

Compute the following determinants.

1.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{vmatrix}$$
 4.
 $\begin{vmatrix} g & h & i \\ a & b & c \\ d & e & f \end{vmatrix}$

 2.
 $\begin{vmatrix} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{vmatrix}$
 5.
 $\begin{vmatrix} a & b & c \\ 2d + a & 2e + b & 2f + c \\ g & h & i \end{vmatrix}$

 3.
 $\begin{vmatrix} a & b & c \\ g & h & i \\ d & e & f \end{vmatrix}$
 6.
 $\begin{vmatrix} a + d & b + e & c + f \\ d & e & f \\ g & h & i \end{vmatrix}$

Exercise 6. Compute the determinant of the matrix below, with entries understood to be in \mathbb{Z}_3 .

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

Exercise 7. Compute the determinant of the following real matrix:

$$A = \begin{bmatrix} 0 & 1 & 2 & 0 & 3 \\ -2 & 2 & 1 & 0 & -1 \\ 2 & -2 & 1 & 3 & 1 \\ 0 & 1 & 1 & 0 & 2 \\ 3 & 1 & -3 & 0 & 2 \end{bmatrix}.$$

Start via Laplace expansion along the most convenient row or column, and then continue using any method you like.

Exercise 8. Using determinants, determine for which (if any) values of k the matrix A (below) is invertible. (Entries of A are understood to be in \mathbb{R}).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & k & 1 \\ 3 & 1 & 0 \end{bmatrix}$$

Exercise 9. Compute the determinants of the real matrices below.

•
$$A_1 = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$

• $A_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$
• $A_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$
• $A_5 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{bmatrix}$
• $A_5 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{bmatrix}$
• $A_6 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 \\ 0 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 \end{bmatrix}$

Exercise 10. Let A be an $n \times n$ matrix of the following form:

		[0	0		0	$a_{1,n}$
		0	0		$a_{2,n-1}$	$a_{2,n}$
A	=		÷	. · ·	:	:
		0	$a_{n-1,2}$		$a_{n-1,n-1} \\ a_{n,n-1}$	$a_{n-1,n}$
		$a_{n,1}$	$a_{n,2}$	• • •	$a_{n,n-1}$	$a_{n,n}$

Find a formula for det(A).

Exercise 11. Let $A \in \mathbb{R}^{n \times n}$. If det(A) = 3, then what is $det(A^T A)$?

Exercise 12. Let $A \in \mathbb{R}^{n \times n}$. What can you say about the sign of $det(A^T A)$?

Definition. Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$.

- A is symmetric if $A^T = A$.
- A is skew-symmetric if $A^T = -A$.

Exercise 13. Let \mathbb{F} be a field of characteristic other than 2, i.e. assume that in the field \mathbb{F} , $1+1 \neq 0$.

- (a) Show that if n is odd positive integer, then any skew-symmetric matrix $A \in \mathbb{F}^{n \times n}$ is non-invertible. (Use determinants.)
- (b) For each even positive integer n, construct an invertible skew-symmetric matrix in $\mathbb{F}^{n \times n}$.