Linear Algebra 2: Tutorial 4

Irena Penev

Summer 2025

Remark: Unless explicitly specified otherwise,¹ in the following exercises, \mathbb{R}^n is understood to be equipped with the standard scalar product \cdot and the induced norm $|| \cdot ||$, and in particular, orthogonality and orthonormality in \mathbb{R}^n are understood to be with respect to the standard scalar product and the induced norm.

Exercise 1.

(a) Let V be a real vector space, equipped with the scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $||\cdot||$, and let $\mathcal{B} = \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be an orthonormal basis of V. Let \cdot be the standard scalar product in \mathbb{R}^n . Prove that for all $\mathbf{x}, \mathbf{y} \in V$, we have that

$$\langle \mathbf{x}, \mathbf{y} \rangle = [\mathbf{x}]_{\mathcal{B}} \cdot [\mathbf{y}]_{\mathcal{B}}.$$

Hint: The first thing you should do is find a formula for $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{y}]_{\mathcal{B}}$ using the orthonormal basis \mathcal{B} and the scalar product $\langle \cdot, \cdot \rangle$ in V.

(b) Same question as in part (a), only for a complex vector space V.

Exercise 2. Consider the following linearly independent vectors in \mathbb{R}^4 :

$\mathbf{v}_1 =$	1 1 1 1	,	$\mathbf{v}_2 =$	$\begin{array}{c} 1\\ 0\\ 0\\ 1\end{array}$,	$\mathbf{v}_3 =$	$\begin{bmatrix} 0\\2\\1\\-1 \end{bmatrix}$	

Compute an orthonormal basis of $U := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ in two different ways: using Gram-Schmidt orthogonalization (version 1) and using Gram-Schmidt orthogonalization (version 2).

Exercise 3. Suppose that V is a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and suppose that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent vectors in V. Now suppose that you perform the two versions of Gram-Schmidt orthogonalization on the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in order to obtain orthonormal bases of $U := Span(\mathbf{v}_1, \ldots, \mathbf{v}_k)$. Under what circumstances will your two orthonormal bases be different? (Will they ever be different?) Justify your answer.

¹In some exercises, it is indeed specified otherwise.

Exercise 4. Consider the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ from Exercise 2. How would you obtain an orthonormal basis for $U := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ that is **different** from the one(s) that you obtained in Exercise 2?

Remark: Your basis should differ from the one(s) from Exercise 2 not merely in the order in which the vectors appear in the basis, but also in terms of the actual vectors that the basis contains. Don't perform the whole calculation: just explain how you would compute.

Exercise 5. Suppose that V is a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $||\cdot||$. Suppose that $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is an orthogonal set of non-zero vectors in V. What do you obtain if you perform the Gram-Schmidt orthogonalization process (version 1) on $\mathbf{v}_1, \ldots, \mathbf{v}_k$ without normalizing at the end? And what happens if you do normalize at the end? What happens if you perform the Gram-Schmidt orthogonalization process (version 2) on $\mathbf{v}_1, \ldots, \mathbf{v}_k$?

Exercise 6. Consider the following vectors in \mathbb{R}^5 :

$$\mathbf{v}_{1} = \begin{bmatrix} 2\\0\\0\\0\\0\\0 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -1\\1\\0\\0\\0\\0 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 3\\9\\27\\0\\0\\0 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} -2\\4\\-6\\8\\0 \end{bmatrix}.$$

Compute an orthonormal basis of $U := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$. Can you tell what the answer will be without actually performing Gram-Schmidt orthogonalization (either version)?

Exercise 7. Consider the scalar product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^2 defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 2x_2 y_2$$

for all $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & y_2 \end{bmatrix}^T$ in \mathbb{R}^2 . (You may assume that $\langle \cdot, \cdot \rangle$ really is a scalar product in \mathbb{R}^2 .) Consider the following vectors in \mathbb{R}^2 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Explain why $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of \mathbb{R}^2 , and then perform Gram-Schmidt orthogonalization with input $\mathbf{v}_1, \mathbf{v}_2$ to obtain an orthonormal basis of \mathbb{R}^2 , where orthonormality is understood to be with respect to our scalar product $\langle \cdot, \cdot \rangle$ and norm $|| \cdot ||$ induced by it.

Remark: Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal with respect to the standard scalar product \cdot , but they are **not** orthogonal with respect to the scalar product $\langle \cdot, \cdot \rangle$ defined above.