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A symmetric matrix A € R"*" is said to be

positive definite if x” Ax > 0 for all x € R"\ {0};
positive semi-definite if x” Ax > 0 for all x € R";

negative definite if x Ax < 0 for all x € R"\ {0};
negative semi-definite if x” Ax < 0 for all x € R";

indefinite if it is neither positive semi-definite nor negative
semi-definite.

Remark: Obviously, any positive definite matrix is positive
semi-definite, and any negative definite matrix if negative
semi-definite.




@ Remark: The definitions from the previous slide would also
make sense without the requirement that A be symmetric.
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@ Remark: The definitions from the previous slide would also
make sense without the requirement that A be symmetric.
e However, for any matrix A € R"*", the matrix %(A +AT)is

symmetric:
-

(3A+AT)) = J(AT+A) = F(A+AT),
and for all vectors x € R", we have that
xT(3(A+AT))x = L(x"TAx)+ 3(xTATx)

© T(xTAX) + 3(xTATx)T
= I(xTAx)+ 3(x" Ax)
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where (*) follows from the fact that x” Ax is a 1 x 1 matrix,
and is consequently symmetric.



@ Remark: The definitions from the previous slide would also
make sense without the requirement that A be symmetric
o However, for any matrix A € R™", the matrix 1(A+ AT) is

symmetric:

(L(A+AT)T

AT +A) = LA+ AT),

and for all vectors x € R", we have that
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where (*) follows from the fact that x” Ax is a 1 x 1 matrix,
and is consequently symmetric.

e So, instead of considering an arbitrary square matrix A, we can
consider the symmetric matrix (A + AT) instead.



@ Remark: The definitions from the previous slide would also
make sense without the requirement that A be symmetric
o However, for any matrix A € R™", the matrix 1(A+ AT) is

symmetric:
(LA+AT) = LAT+A) = LA+AT)
and for all vectors x € R", we have that
xT(3(A+AT))x = L(x"TAx)+ 3(xTATx)
© T(xTAX) + 3(xTATx)T
= I(xTAx)+ 3(x" Ax)
= x"Ax

where (*) follows from the fact that x” Ax is a 1 x 1 matrix,
and is consequently symmetric.

e So, instead of considering an arbitrary square matrix A, we can
consider the symmetric matrix (A + AT) instead.

e This is important because some tests of definiteness only work
if we assume that the matrix in question is symmetric.



@ Remark: Matrix definiteness plays an important role in
optimization, though we will not cover this.



@ Remark: Matrix definiteness plays an important role in
optimization, though we will not cover this.

@ Another reason for caring about positive definite matrices in
particular is the following theorem.

Theorem 10.4.1

Let V be a non-trivial, finite-dimensional real vector space, and let

(-,-) be a bilinear form on V. Then the following are equivalent:

@ (-,-) is a scalar product in V;

@ for all bases B of V/, the matrix B of the bilinear form (-, )
w.r.t. the basis B is positive definite;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.
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Theorem 10.4.1

Let V be a non-trivial, finite-dimensional real vector space, and let

(-,-) be a bilinear form on V. Then the following are equivalent:

@ (-,-) is a scalar product in V;

@ for all bases B of V/, the matrix B of the bilinear form (-, )
w.r.t. the basis B is positive definite;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

e We start by proving Theorem 10.4.1 (plus an easy corollary).

o After that, we prove a few results about matrix definiteness,
and finally, we present three methods of testing whether a
symmetric matrix is positive definite.

@ Before proving Theorem 10.4.1, we recall a couple of
definitions, plus Theorem 9.2.2 (from the previous lecture).






Definition

A bilinear form on a vector space V over a field F is a function
f:V x V — F that satisfies the following four axioms:

b.1. Vx1,X2,y € Vi f(x1 + x2,y) = f(x1,y) + f(x2,y);

b.2. Vx,y € V and a € F: f(ax,y) = af(x,y);

b.3. Vx,y1,y2 € Vi f(x,y1 +y2) = f(x,y1) + f(X,y2);

b.4. Vx,y € V,a € F: f(x,ay) = af(x,y).

The bilinear form f is said to be symmetric if it further satisfies the
property that f(x,y) = f(y,x) for all x,y € V.




Definition

A scalar product (also called inner product) in a real vector space
V is a function (-,-) : V x V — R that satisfies the following four
axioms:

r.l. Vx € V: (x,x) > 0, and equality holds iff x = 0;
r2. Vx,y,ze V: (x+y,z) = (x,z) + (y,2);

r3. Vx,y € V,a € R: (ax,y) = a(x,y);

r4. Vx,y € Vi (x,y) = (y,%).

r2. vx,y,z€ V, (x,y+2z) = (x,y) + (x,2);
r3. Vx,y € Vand a € R, (x,ay) = a(x,y).



Definition
A scalar product (also called inner product) in a real vector space

V is a function (-,-) : V x V — R that satisfies the following four
axioms:

r.l. Vx € V: (x,x) > 0, and equality holds iff x = 0;
r2. Vx,y,ze V: (x+y,z) = (x,z) + (y,2);

r3. Vx,y € V,a € R: (ax,y) = a(x,y);

r4. Vx,y € Vi (x,y) = (y,%).

r2. vx,y,z€ V, (x,y+2z) = (x,y) + (x,2);
r3. Vx,y € Vand a € R, (x,ay) = a(x,y).

e Remark: every scalar product (-, -) in a real vector space V is
a symmetric bilinear form.
e Indeed, r.2, r.3, r.2’, and r.3" are precisely the axioms b.1, b.2,
b.3, and b.4, respectively.
e Moreover, by r.4, scalar products in real vector spaces are
symmetric.



Theorem 9.2.2

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {by,...,b,} be a basis of V.

@ For every matrix A= | a;; in "7 the function
y J laxm

n

f:V xV —F given by
flx,y) = [X};A[y]s for all x,y € V
is a bilinear form on V/, and moreover, all the following hold:
(a.1) f(bj,bj) =a;jforalli,je{l,...,n}
(a-2) f(Z,-"zl cibi, 30 dj"j) =2 i1 2 aicid; for all
Cly--+sCnydi,...,d, €T,
(a.3) f is symmetric iff A is symmetric.

@ For every bilinear form f on V, there exists a unique matrix
A= ay |, , in F™" called the matrix of the bilinear form
f w.r.t. the basis B, that satisfies the property that

f(x,y) = [x];A [y]B for all x,y € V.
Moreover, the entries of the matrix A are given by
ajj = f(bj, bj) for all indices i,j € {1,...,n}.
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form (-,-) w.r.t. the basis B is positive definite.
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Theorem 10.4.1

Let V be a non-trivial, finite-dimensional real vector space, and let

(-,-) be a bilinear form on V. Then the following are equivalent:

@ (-,-) is a scalar product in V;

@ for all bases B of V/, the matrix B of the bilinear form (-, )
w.r.t. the basis B is positive definite;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

Proof. It is enough to prove the following sequence of implications:
“(iy = (ii) = (iii) = (i).” The implication "(ii) = (iii)" is
obvious, and so in fact, we just need to prove the implications “(i)
= (ii)"” and "(iii)) = (i)
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@ (,-) is a scalar product in V;

@ for all bases B of V, the matrix B of the bilinear form (-, -)
w.r.t. the basis B is positive definite;

Proof (continued). We first assume (i) and prove (ii).
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the bilinear form (-, -) w.r.t. the basis B.
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Since (i) holds, the bilinear form (-, -) is symmetric, and so by
Theorem 9.2.2(a), the matrix B is also symmetric.
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Theorem 9.2.2(a), the matrix B is also symmetric.

Now, fix any non-zero vector x = [ x1 ... X, ]T in R": WTS
x"Bx > 0.
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Theorem 10.4.1

@ (,-) is a scalar product in V;

@ for all bases B of V, the matrix B of the bilinear form (-, -)
w.r.t. the basis B is positive definite;

Proof (continued). We first assume (i) and prove (ii).

Fix any basis B = {bs,...,b,} of V, and let B be the matrix of
the bilinear form (-, -) w.r.t. the basis B.

Since (i) holds, the bilinear form (-, -) is symmetric, and so by
Theorem 9.2.2(a), the matrix B is also symmetric.

Now, fix any non-zero vector x = [ x1 ... X, ]T in R": WTS

x"Bx > 0. Set v:= x;b; + - - - + x,b,,, so that [ v }B = x. Since
x # 0, and since [ - ] is an isomorphism, we have that v # 0.



Theorem 10.4.1

@ (-,-) is a scalar product in V;

@ for all bases B of V/, the matrix B of the bilinear form (-, )
w.r.t. the basis B is positive definite;

Proof (continued). Reminder: x € R"\ {0}, [ v |, =x,
ve V\{0}; WTS x"Bx > 0.
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Proof (continued). Reminder: x € R"\ {0}, [ v |, =x,
ve V\{0}; WTS x"Bx > 0.

Then

x"Bx = [v};B[v}B ) (v,v) (t) 0,

—~

where (*) follows from the fact that B is the matrix of the bilinear
form (-,-), and (**) follows from (i), and more precisely, from the
axiom r.1.



Theorem 10.4.1

@ (-,-) is a scalar product in V;

@ for all bases B of V/, the matrix B of the bilinear form (-, )
w.r.t. the basis B is positive definite;

Proof (continued). Reminder: x € R"\ {0}, [ v |, =x,
ve V\{0}; WTS x"Bx > 0.

Then

x"Bx = [v};B[v}B ) (v,v) (t) 0,

—~

where (*) follows from the fact that B is the matrix of the bilinear
form (-,-), and (**) follows from (i), and more precisely, from the
axiom r.1. This proves that B is positive definite, and (ii) follows.



Theorem 10.4.1

@ (-,-) is a scalar product in V;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

Proof (continued). We now assume (iii) and prove (i).
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Proof (continued). We now assume (iii) and prove (i).

First of all, since (-,-) is a bilinear form, it satisfies axioms r.2
and r.3 from the definition of a scalar product;
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First of all, since (-,-) is a bilinear form, it satisfies axioms r.2
and r.3 from the definition of a scalar product; it remains to show
that it satisfies axioms r.1 and r.4.
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@ (-,-) is a scalar product in V;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

Proof (continued). We now assume (iii) and prove (i).

First of all, since (-,-) is a bilinear form, it satisfies axioms r.2
and r.3 from the definition of a scalar product; it remains to show
that it satisfies axioms r.1 and r.4.

Using (iii), we fix a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.



Theorem 10.4.1

@ (-,-) is a scalar product in V;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

Proof (continued). We now assume (iii) and prove (i).

First of all, since (-,-) is a bilinear form, it satisfies axioms r.2
and r.3 from the definition of a scalar product; it remains to show
that it satisfies axioms r.1 and r.4.

Using (iii), we fix a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite. Since B is positive
definite, it is in particular symmetric, and so by Theorem 9.2.2(a),
the bilinear form (-, -) is also symmetric, i.e. r.4 holds.

It remains to show that r.1 holds (next slide).
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@ (-,-) is a scalar product in V;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

Proof (continued). First, we have that

00 2 [0].B[0], = 0780 = o

where (*) follows from the fact that B is the matrix of the bilinear
form (-,-) w.r.t. the basis B.
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00 2 [0].B[0], = 0780 = o

where (*) follows from the fact that B is the matrix of the bilinear
form (-,-) w.r.t. the basis B.

Now, fix any vector x € V' \ {0}. WTS (x,x) > 0.
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an isomorphism, we see that [ x ]B £0.
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@ (-,-) is a scalar product in V;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

Proof (continued). First, we have that

00 2 [0].B[0], = 0780 = o
where (*) follows from the fact that B is the matrix of the bilinear
form (-,-) w.r.t. the basis B.

Now, fix any vector x € V'\ {0}. WTS (x,x) > 0. Since [ - | is
an isomorphism, we see that [ x |, # 0. We then have that
(%) (%)
xx) = [x]zB[x]; > 0,
where (*) follows from the fact that B is the matrix of the bilinear
form (-, -), and (**) follows from the fact that B is positive definite

and [ x |, #0.



Theorem 10.4.1
@ (-,-) is a scalar product in V;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

Proof (continued). First, we have that

00 2 [0].B[0], = 0780 = o
where (*) follows from the fact that B is the matrix of the bilinear
form (-,-) w.r.t. the basis B.

Now, fix any vector x € V'\ {0}. WTS (x,x) > 0. Since [ - | is
an isomorphism, we see that [ x |, # 0. We then have that
(%) (%)
xx) = [x]zB[x]; > 0,
where (*) follows from the fact that B is the matrix of the bilinear
form (-, -), and (**) follows from the fact that B is positive definite
and [ x |, #0. Thus, r.1 holds. This proves (i). O



Theorem 10.4.1

Let V be a non-trivial, finite-dimensional real vector space, and let

(-,-) be a bilinear form on V. Then the following are equivalent:

@ () is a scalar product in V;

@ for all bases B of V, the matrix B of the bilinear form (-, )
w.r.t. the basis B is positive definite;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.




Theorem 10.4.1
Let V be a non-trivial, finite-dimensional real vector space, and let
(-,-) be a bilinear form on V. Then the following are equivalent:

@ () is a scalar product in V;
@ for all bases B of V, the matrix B of the bilinear form (-, )
w.r.t. the basis B is positive definite;

@ there exists a basis B of V s.t. the matrix B of the bilinear
form (-,-) w.r.t. the basis B is positive definite.

Corollary 10.4.2
For any function (-,-) : R” x R" — R, the following are equivalent:
@ (-,-) is a scalar product on R";

@ there exists a positive definite matrix A € R™" s.t. for all
x,y € R", we have (x,y) = x' Ay.

@ Proof: Lecture Notes (easily follows from Theorem 10.4.1).



@ Let us now state some basic results about matrix definiteness.
o We give some proofs, while omitting others.
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@ A is positive semi-definite iff —A is negative semi-definite.

@ Proof: Lecture Notes (easy).
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@ Let us now state some basic results about matrix definiteness.
o We give some proofs, while omitting others.

Proposition 10.1.1

For every symmetric matrix A € R"™", both the following hold:
@ A is positive definite iff —A is negative definite;

@ A is positive semi-definite iff —A is negative semi-definite.

@ Proof: Lecture Notes (easy).

@ Remark: In view of Proposition 10.1.1, results for positive
(semi-)definite matrices can easily be translated into
corresponding results for negative (semi-)definite matrices.

e So, it makes sense to focus on positive (semi-)definite matrices.

o In what follows, we will mostly (but not exclusively) focus on
positive definite matrices, which are somewhat easier to deal
with than the more general positive semi-definite ones.



@ Reminder:

Corollary 8.7.4

Every symmetric matrix in R"*" has n real eigenvalues (with
algebraic multiplicities taken into account). In other words, for
every symmetric matrix A € R™", the sum of algebraic
multiplicities of its distinct (real) eigenvalues is n.




@ Reminder:

Corollary 8.7.4

Every symmetric matrix in R"*" has n real eigenvalues (with
algebraic multiplicities taken into account). In other words, for
every symmetric matrix A € R™", the sum of algebraic
multiplicities of its distinct (real) eigenvalues is n.

Definition

The signature of a symmetric matrix A € R" " to be the ordered
triple (n4, n_, ng), where
@ n, is the number of positive eigenvalues of A (counting
algebraic multiplicities),
@ n_ is the number of negative eigenvalues of A (counting
algebraic multiplicities),

@ np:=n—ny—n_.




Theorem 10.1.2

Let A € R"™" be a symmetric matrix, and let (n4, n_, ng) be the
signature of A. Then all the following hold:

Q

Q@

A is positive definite iff n;. = n (i.e. all eigenvalues of A are
positive);

A is positive semi-definite iff ny + ng = n (i.e. all eigenvalues
of A are non-negative);

A is negative definite iff n_ = n (i.e. all eigenvalues of A are
negative);

A is negative semi-definite iff n_ + ng = n (i.e. all eigenvalues
of A are non-positive);

A is indefinite iff n; and n_ are both non-zero (i.e. A has at
least one positive and at least one negative eigenvalue).

Proof.
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least one positive and at least one negative eigenvalue).

Proof. Obviously, (b) and (d) together imply (e).




Theorem 10.1.2

Let A € R"™" be a symmetric matrix, and let (n4, n_, ng) be the
signature of A. Then all the following hold:

Q

Q@

Q@

A is positive definite iff n;. = n (i.e. all eigenvalues of A are
positive);

A is positive semi-definite iff ny + ng = n (i.e. all eigenvalues
of A are non-negative);

A is negative definite iff n_ = n (i.e. all eigenvalues of A are
negative);

A is negative semi-definite iff n_ + ng = n (i.e. all eigenvalues
of A are non-positive);

A is indefinite iff n; and n_ are both non-zero (i.e. A has at
least one positive and at least one negative eigenvalue).

Proof. Obviously, (b) and (d) together imply (e). So, we just need
to prove (a)-(d).
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Let A € R"™" be a symmetric matrix, and let (n4, n_, ng) be the
signature of A. Then all the following hold:

Q

Q@

Q@

A is positive definite iff n;. = n (i.e. all eigenvalues of A are
positive);

A is positive semi-definite iff ny + ng = n (i.e. all eigenvalues
of A are non-negative);

A is negative definite iff n_ = n (i.e. all eigenvalues of A are
negative);

A is negative semi-definite iff n_ + ng = n (i.e. all eigenvalues
of A are non-positive);

A is indefinite iff n; and n_ are both non-zero (i.e. A has at
least one positive and at least one negative eigenvalue).

Proof. Obviously, (b) and (d) together imply (e). So, we just need
to prove (a)-(d). Here, we prove (a). The proofs of (b)-(d) are
similar.
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Let A € R"™" be a symmetric matrix, and let (n4, n_, ng) be the
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@ A is positive definite iff ny = n (i.e. all eigenvalues of A are
positive);

Proof (continued). Suppose first that A is positive definite. Fix an
eigenvalue X of A, and let x be an associated eigenvector of A;
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HXH) we may assume that ||x|| = 1. Then
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where (*) follows from the fact that A is positive definite and
x # 0, (**) follows from the fact that x is an eigenvector of A
associated with the eigenvalue A, and (***) follows from the fact
that ||x|| = 1.



Theorem 10.1.2

Let A € R"™" be a symmetric matrix, and let (n4, n_, ng) be the
signature of A. Then all the following hold:

@ A is positive definite iff ny = n (i.e. all eigenvalues of A are
positive);

Proof (continued). Suppose first that A is positive definite. Fix an
eigenvalue X of A, and let x be an associated eigenvector of A;
after possibly normalizing the eigenvector x (i.e. replacing x by
HXH) we may assume that ||x|| = 1. Then

0 2 xTax @ 3T0x) = AxTX) = Ax-x) = AP

ey

where (*) follows from the fact that A is positive definite and

x # 0, (**) follows from the fact that x is an eigenvector of A
associated with the eigenvalue A, and (***) follows from the fact
that ||x|| = 1. We have now shown that A > 0; since A was an
arbitrarily chosen eigenvalue of A, we deduce that all eigenvalues
of A are positive, i.e. n = n.
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be the eigenvalue of A associated with the eigenvector x;.
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@ A is positive definite iff n,. = n (i.e. all eigenvalues of A are
positive);

Proof (continued). Suppose conversely that ny = n, i.e. that all
eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices
guarantees that R” has an orthonormal eigenbasis

B = {xi,...,x,} associated with A. For each i € {1,...,n}, let \;
be the eigenvalue of A associated with the eigenvector x;. Set

)\0 = min{)\l, .. ,)\,,};
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Since B is a basis of R”, we know that there exist scalars
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Theorem 10.1.2

Let A € R"™" be a symmetric matrix, and let (n4, n_, ng) be the
signature of A. Then all the following hold:

@ A is positive definite iff n,. = n (i.e. all eigenvalues of A are
positive);

Proof (continued). Suppose conversely that ny = n, i.e. that all
eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices
guarantees that R” has an orthonormal eigenbasis

B = {xi,...,x,} associated with A. For each i € {1,...,n}, let \;
be the eigenvalue of A associated with the eigenvector x;. Set

Ao :=min{A1, ..., \p}; since all eigenvalues of A are positive, we
see that A\g > 0. Now, fix any x € R"\ {0}; WTS x" Ax > 0.
Since B is a basis of R”, we know that there exist scalars

i, ...,0n € Rst. x =a1x; + -+ apX,. Since x # 0, at least
one of aq,...,ap is non-zero. We now compute (next two slides):



Proof (continued). Reminder: WTS x7 Ax > 0.
( Z Oé,'X,') TA( Z Othj)

i=1 j=1
= Z ZO[,’O&]X;TAXJ'

i=1j=1

x| Ax

because each x; is an

= Z Z aiogx; (\jx;) eigenvector of A associated
i=1j=1 with the eigenvalue );
n n
= 32 Naigy(x( %)
i=1j=1
n n
= 22 Noiy(xi - x))
i=1j=1
n because xi,...,x, are
= Y Nai(xi - xi) pairwise orthogonal (by
i=1 the orthonormality of B)
n
= > ned|[xi|?
i=1
n because xi,...,x, are
= > \af unit vectors (by the
i—1

orthonormality of B)
(continued on next slide)



Theorem 10.1.2

Let A € R"™" be a symmetric matrix, and let (n4, n_, ng) be the
signature of A. Then all the following hold:

@ A is positive definite iff n,. = n (i.e. all eigenvalues of A are

positive);
n
xTAx = Z:/\,-oz,2 from the previous slide
i=1
! because Ao = min{\y,..., A
> > Xoa? > 0, (A, An)
= and af,...,a, >0
because Ao > 0 and at least
> 0

one of a1, ..., a, is non-zero.

Thus, A is positive definite. This proves (a). O



Theorem 10.1.2

Let A € R"™" be a symmetric matrix, and let (n4, n_, ng) be the
signature of A. Then all the following hold:

Q

@

A is positive definite iff n = n (i.e. all eigenvalues of A are
positive);

A is positive semi-definite iff ny + ng = n (i.e. all eigenvalues
of A are non-negative);

A is negative definite iff n_ = n (i.e. all eigenvalues of A are
negative);

A is negative semi-definite iff n_ + ng = n (i.e. all eigenvalues
of A are non—positive);

A is indefinite iff n, and n_ are both non-zero (i.e. A has at
least one positive and at least one negative eigenvalue).
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Let ' be a field, let A= [ a; | bea matrix in F"*" and
assume that {A1,...,\,} is the spectrum of A. Then

@ det(A)=A1... Ay
@ trace(A) =AM+ -+ A




@ Reminder:

Theorem 8.2.10

Let ' be a field, let A= [ a; | bea matrix in F"*" and
assume that {A1,...,\,} is the spectrum of A. Then

@ det(A)=A1... Ay
@ trace(A) =AM+ -+ A

@ Theorem 10.1.2 (from the previous slide) and Theorem 8.2.10
together imply the following corollary.

Corollary 10.1.3

Let A € R™" be a symmetric matrix.

@ |If Alis positive definite, then det(A) and trace(A) are both
positive.

@ If Ais positive semi-definite, then det(A) and trace(A) are
both non-negative.
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Let A € R™" be a symmetric matrix.
@ If Alis positive definite, then det(A) and trace(A) are both
positive.

@ If Ais positive semi-definite, then det(A) and trace(A) are
both non-negative.

Proof. Since A is symmetric, Corollary 8.7.4 guarantees that it has
n real eigenvalues (with algebraic multiplicities taken into
account). So, let {\1,...,An} be the spectrum of A.

By Theorem 8.2.10, we have that det(A) = A1... A\, and
trace(A) = A1+ - + A

By Theorem 10.1.2(a), all eigenvalues of a positive definite matrix
are positive, and it follows that (a) holds.



Corollary 10.1.3

Let A € R™" be a symmetric matrix.
@ If Alis positive definite, then det(A) and trace(A) are both
positive.

@ If Ais positive semi-definite, then det(A) and trace(A) are
both non-negative.

Proof. Since A is symmetric, Corollary 8.7.4 guarantees that it has
n real eigenvalues (with algebraic multiplicities taken into
account). So, let {\1,...,An} be the spectrum of A.

By Theorem 8.2.10, we have that det(A) = A1... A\, and
trace(A) = A1+ - + A

By Theorem 10.1.2(a), all eigenvalues of a positive definite matrix
are positive, and it follows that (a) holds. Similarly, by

Theorem 10.1.2(b), all eigenvalues of a positive semi-definite
matrix are non-negative, and it follows that (b) holds. O



@ The main diagonal of a square matrix A € R"™*" is positive
(resp. non-negative, negative, non-positive) if all entries on
the main diagonal of A are positive (resp. non-negative,
negative, non-positive).



@ The main diagonal of a square matrix A € R"™*" is positive
(resp. non-negative, negative, non-positive) if all entries on
the main diagonal of A are positive (resp. non-negative,
negative, non-positive).

Proposition 10.1.4

The main diagonal of any positive definite (resp. positive
semi-definite, negative definite, negative semi-definite) matrix is
positive (resp. non-negative, negative, non-positive).

Proof.



@ The main diagonal of a square matrix A € R"*" is positive
(resp. non-negative, negative, non-positive) if all entries on
the main diagonal of A are positive (resp. non-negative,
negative, non-positive).

Proposition 10.1.4

The main diagonal of any positive definite (resp. positive
semi-definite, negative definite, negative semi-definite) matrix is
positive (resp. non-negative, negative, non-positive).

Proof. Fix a matrix A= [ a;; | in R™" Then for all indices
i €{1,...,n}, we have that e/ Ae; = aj j. The result now follows
from the appropriate definitions.! O

!Let us explain this in a bit more detail. Suppose that A is positive definite.
Then for each i € {1,...,n}, we have that a;; = e/ Ae; > 0, i.e. the main
diagonal of A is positive. Similar remarks apply for the cases of positive
semi-definiteness, negative definiteness, and negative semi-definiteness.



Proposition 10.1.5

Let A,B € R"™" and o € R. Then all the following hold:

@ if A and B are both positive definite (resp. positive semi-definite,
negative definite, negative semi-definite), then A 4 B is positive
definite (resp. positive semi-definite, negative definite, negative
semi-definite);

@ if Ais positive definite (resp. positive semi-definite, negative
definite, negative semi-definite) and « > 0, then aA is positive
definite (resp. positive semi-definite, negative definite, negative
semi-definite);

@ if Ais positive definite (resp. positive semi-definite, negative
definite, negative semi-definite) and o < 0, then «A is negative
definite (resp. negative semi-definite, positive definite, positive
semi-definite);

@ if A€ R"™" is positive definite (respectively: negative definite),
then A is invertible and its inverse A~1 is positive definite
(respectively: negative definite).

e Parts (a)-(c) are trivial.
@ The proof of (d) is in the Lecture Notes.
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@ We present three tests of positive definiteness:
o the recursive test of positive definiteness (see Theorem 10.2.3);
o the Gaussian elimination test of positive definiteness (see
Theorem 10.2.6);
o Sylvester's criterion of positive definiteness (see
Theorem 10.2.9.
@ Of these three tests, the first is arguably the least convenient
for computing (at least if we are computing by hand), but it is
a key ingredient in the proof of correctness of the other two
tests.

@ The proofs of these tests can be found in the Lecture Notes.



Theorem 10.2.3 [The recursive test of positive definiteness]

T
Let n be a positive integer, and let A= [ a A } (with a € R,

acR” and A’ € R™") be a symmetric matrix in R(™1)x(n+1),
Then A is positive definite iff « > 0 and A’ — Laa is positive
definite.

@ Note that Aiis an (n+1) x (n+ 1) matrix, whereas A’ — éaaT
is an n x n matrix. (This is why the test is called “recursive.”)
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o However, let's try to gain some intuition for where the matrix
A" — LaaT came from.



Theorem 10.2.3 [The recursive test of positive definiteness]

T
Let n be a positive integer, and let A= [ a A } (with a € R,

acR” and A’ € R™") be a symmetric matrix in R(™1)x(n+1),
Then A is positive definite iff « > 0 and A’ — Laa is positive
definite.

o Note that Ais an (n+1) x (n+ 1) matrix, whereas A' — Laa’
is an n x n matrix. (This is why the test is called “recursive.”)

@ The proof of Theorem 10.2.3 is in the Lecture Notes.

o However, let's try to gain some intuition for where the matrix
A" — LaaT came from.

@ In what follows, for a matrix A € R"™" (n > 2) and indices
i,j€{1,...,n}, we will denote by A;; the submatrix of A
obtained by deleting the i-th row and j-th column of A.



Proposition 10.2.1

Let A= aij ], , (n>2) beasymmetric matrix in R"*", assume

that a;; # 0, and set a:= [ a1 ...an1 }T, so that
A~ [aacal]
a ! A1 1
Let A be the matrix obtained from A by (sequentially or

simultaneously) performing the following elementary row
operations on A:

21p .
(4] R2 — R2 — ERL

s, ]
@ R3 — R3 — ﬁRl,




@ Schematically, Proposition 10.2.1 states the following:

a1
RQ%RQ*ﬁRl

3,1
Rz —>R3— =R
3 375

: D : T
{ aiq al } Ro=Ro—5 1 R ail a
2 LT L ~ ot o L T -7
| | - =
a ‘ A1,1 0 ‘ A1,1 auaa
[ ———

=A



@ Schematically, Proposition 10.2.1 states the following:

a1
RQ*}RQ*HRl

3,1
Rz —>R3— =R
3 375

a 1 Al,l
[ ———
=A

Proposition 10.2.2

‘ T

0 T,il; N Py

ai

—A

Let « € R, a€ R", and A€ R™" If Ais symmetric, then

T

A — aaa’ is also symmetric.




Theorem 10.2.3 [The recursive test of positive definiteness]

T
Let n be a positive integer, and let A= [ ————— } (with a € R,

a c R", and A’ € R"™") be a symmetric matrix in R(7+1)x(n+1),
Then A is positive definite iff « > 0 and A" — éaaT is positive
definite.

o Remark: If o # 0, then Proposition 10.2.2 guarantees that
the matrix A" — éaaT is symmetric, and Proposition 10.2.1

guarantees that

is the matrix obtained from A by (sequentially or
simultaneously) performing the elementary row operations of
the form “R; — R; + BiRy" (for i € {2,...,n}), with the j;'s
chosen so that, with the exception of the 1,1-th entry, the
leftmost column becomes zero.



Theorem 10.2.6 [The Gaussian elim. test of positive definiteness]

Let A € R™" be a symmetric matrix. Then the following
algorithm correctly determines whether A is positive definite.

@ Step 0: Set A; := A, and go to Step 1.

e For j € {1,...,n}, and assuming the matrix A; has already
been generated, we proceed as follows.
Step J:

o If the main diagonal of A; is not positive, then the algorithm
returns the answer that A is not positive definite and
terminates.

o If the main diagonal of A; is positive and j = n, then the
algorithm returns the answer that A is positive definite and

terminates.
o If the main diagonal of A; is positive and j < n — 1, then for
each index i € {j +1,...,n}, we add a suitable scalar multiple

of the j-th row of A; to the i-th row of A; so that the i, j-th
entry of the matrix becomes zero; we call the resulting matrix
Ajt+1, and we go to Step j + 1.



@ The proof of Theorem 10.2.6 (the Gaussian elimination test of
positive definiteness) follows from Theorem 10.2.3 (the
recursive test of positive definiteness) via an induction.

o Essentially, the steps of the Gaussian elim. test keep generating
ever smaller “bottom right corners” (A’ — 1aaT).

Theorem 10.2.3 [The recursive test of positive definiteness]

T
Let n be a positive integer, and let A= [z L= } (with a € R,

a c R", and A’ € R"™") be a symmetric matrix in R("+1)x(n+1),
Then A is positive definite iff « > 0 and A" — éaaT is positive
definite.

2,1
Rz—‘Rz—TRl

1
3,1
R3—>Ry— =Ry

an,1

Rp—Rp— R: ! T
a1 aT " " 1,1 1 B O L
_91 9 ~ T
a A1 0 Al — —1-aa
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let AK) be the k x k matrix in the upper left corner of A.



@ We now turn to Sylvester's criterion of positive definiteness.

e Given any n x n matrix A, and any index k € {1,...,n}, we
let AK) be the k x k matrix in the upper left corner of A.

o For example, if

o o1 N
O O W

then we have that

A(l):[1}’ Al —

| — |
—
N
| I
>
®
I
~N A=
oo O1 N
O O W



@ We now turn to Sylvester's criterion of positive definiteness.

e Given any n x n matrix A, and any index k € {1,...,n}, we
let AK) be the k x k matrix in the upper left corner of A.

o For example, if

o o1 N
O O W

then we have that

1 9 1 2 3
A(l):[1}’ A(2):[45], A — |4 5 6
7 8 9

@ Clearly, for any n x n matrix A, we have that Al — A



Theorem 10.2.9 [Sylvester's criterion of positive definiteness]

For all symmetric matrices A € R"™", the following are equivalent:
@ A is positive definite;
@ det(AM), ... det(AlM) > 0.

@ Proof: Lecture Notes.
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Theorem 10.2.9 [Sylvester's criterion of positive definiteness]

For all symmetric matrices A € R"™", the following are equivalent:
@ A is positive definite;
@ det(AM), ... det(AlM) > 0.

@ Proof: Lecture Notes.

@ Sylvester's criterion of positive definiteness essentially follows
from the recursive test of positive definiteness
(Theorem 10.2.3) by induction on the size of the matrix,
where we also use the following:
o the determinant of any positive definite matrix is positive (by
Corollary 10.1.3(a));
e adding a scalar multiple of one row of a square matrix to
another (“R; — R; 4+ aR;") does not change the value of the
determinant (by Theorem 7.3.2(c)).



Proposition 10.3.1

Let L € R™" be a lower triangular matrix with a positive main
diagonal. Then the matrix A := LLT is positive definite.

@ Proof: Lecture Notes (easy).



Proposition 10.3.1
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Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix A € R"*", there exists a unique
lower triangular matrix L € R"™" with a positive main diagonal
and satisfying A= LLT.

@ Proof: Next slide.



Proposition 10.3.1

Let L € R™" be a lower triangular matrix with a positive main
diagonal. Then the matrix A := LLT is positive definite.

@ Proof: Lecture Notes (easy).

Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix A € R"*", there exists a unique
lower triangular matrix L € R"™" with a positive main diagonal
and satisfying A= LLT.

@ Proof: Next slide.

@ Remark: The main reason for interest in the Cholesky
decomposition for positive definite matrices is that it allows us
to solve equations of the form Ax = b (where A is positive
definite) faster, as well as to compute the inverse of A faster.
We omit the details.
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For every positive definite matrix A € R"*", there exists a unique
lower triangular matrix L € R"™" with a positive main diagonal
and satisfying A= LLT.

Proof. We proceed by induction on n.

For n =1, we fix a positive definite matrix A= a | in R¥*! and
we note that a > 0 (because A is positive definite). We set

L:=[ /a ], and we observe that A= LLT. The uniqueness of L is
obvious.



Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix A € R"*", there exists a unique
lower triangular matrix L € R"™" with a positive main diagonal
and satisfying A= LLT.

Proof. We proceed by induction on n.

For n =1, we fix a positive definite matrix A= a | in R¥*! and
we note that a > 0 (because A is positive definite). We set

L:=[ /a ], and we observe that A= LLT. The uniqueness of L is
obvious.

Now, fix a positive integer n, and assume the theorem is true for
positive definite matrices in R™". Fix a positive definite matrix
A e R(Dx(m41)  3nd set

o al
A = laA/ )

where € R, a € R"”, and A’ € R™*",



Proof (continued). Reminder: A = [: -5 }
(



Proof (continued). Reminder: A = [ 77777 } .
| (n+1)x (n+1)

By Theorem 10.2.3, we have that a > 0 and that the matrix
A — éaaT is positive definite. By the induction hypothesis, there

exists a unique lower triangular matrix L’ € R"*" with a positive
main diagonal and s.t. A’ — éaaT = L'l'T. We now set

Clearly, L is lower triangular with a positive main diagonal.



Proof (continued). Reminder: A = [ 77777 } .

| (n+1)x (n+1)
By Theorem 10.2.3, we have that a > 0 and that the matrix
A — éaaT is positive definite. By the induction hypothesis, there
exists a unique lower triangular matrix L’ € R"*" with a positive
main diagonal and s.t. A’ — éaaT = L'l'T. We now set

Clearly, L is lower triangular with a positive main diagonal.
Moreover, we have that

ro_ [ Va0 Ve grat
LT = Yo XS Lval
LR R




Proof (continued). We have now proven existence: A= LLT.
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It remains to show that L is unique.
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It remains to show that L is unique. So far, our set-up is the

following:
:l , e L= |: l/j 1= ] ,
| (n+1)x(n+1) \/a ! nxn
where L' is the unique lower triangular matrix L' € R"*" with a
positive main diagonal and s.t. A’ — 2aa” = L'L'T (equivalently:
laam +L'L'T = A).
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laam +L'L'T = A).
Suppose that L; € R(™1)x(n+1) is 5 |ower triangular matrix with a
positive main diagonal and satisfying A = LiL{; WTS L; = L.



Proof (continued). We have now proven existence: A= LLT.

It remains to show that L is unique. So far, our set-up is the

following;:

0A—|:aA,:| ’ 0L—|:\/>:| ,

' (n+1)x(n+1) Va©, nxn

where L' is the unique lower triangular matrix L' € R"*" with a
positive main diagonal and s.t. A’ — 2aa” = L'L'T (equivalently:
laam +L'L'T = A).
Suppose that L; € R(™1)x(n+1) is 5 |ower triangular matrix with a
positive main diagonal and satisfying A = L1L1T; WTS L; = L. Set

where (5 is some positive real number, b is some vector in R”, and
L} is some lower triangular matrix in R"*" with a positive main
diagonal.



Proof (continued). We have now proven existence: A= LLT.

It remains to show that L is unique. So far, our set-up is the

following;:
:l , e L= |: l/j 1= ] ,

' (n+1)x(n+1) \/a | nxn
where L' is the unique lower triangular matrix L' € R"*" with a
positive main diagonal and s.t. A’ — 2aa” = L'L'T (equivalently:
laam +L'L'T = A).
Suppose that L; € R(™1)x(n+1) is 5 |ower triangular matrix with a
positive main diagonal and satisfying A = L1L1T; WTS L; = L. Set

where (5 is some positive real number, b is some vector in R”, and

L} is some lower triangular matrix in R"*" with a positive main

diagonal. Then

A = LLT N ,@i,bT, — ,ng‘,,ﬂb-r
I B N o' — [ BbUbbT + LT



Proof (continued). We now have that
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Proof (continued). We now have that
s L __pbT — A= |
Bb bbT + LT | n

But then 32 =, fb=a, and bb" + [ [}7 = Laal + /1T,



Proof (continued). We now have that

Y o e aT
e oL T AT [atlarorT |

But then 32 =, fb=a, and bb" + [ [}7 = Laal + /1T,
This, together with the fact that g > 0, yields the fact that
f=\a b=-a and i1} = L'L'T.



Proof (continued). We now have that

[62 ﬁbT ] oA [

But then 32 =, fb=a, and bb" + [ [}7 = Laal + /1T,
This together with the fact that 8 > 0, yields the fact that
=a, b= fa and LjL)T =1'L'T,

Moreover, by the uniqueness of L', we have that [} = L.

@ Indeed, L’ is the unique lower triangular matrix in R"*" with a
positive main diagonal s.t. A’ — éaaT =L'L'T. Since L} is a
lower triangular matrix in R™*" with a positive main diagonal
st. LT =10 = A — éaaT, the uniqueness of L’
guarantees that [} = '

laaT £ IL7 ] |



Proof (continued). We now have that
s L __pbT — A= |
Bb bbT + LT | n

But then 32 =, fb=a, and bb" + [ [}7 = Laal + /1T,
This together with the fact that 8 > 0, yields the fact that
=a, b= fa and LjL)T =1'L'T,

laaT £ IL7 ] |

Moreover, by the uniqueness of L', we have that [} = L.

@ Indeed, L’ is the unique lower triangular matrix in R"*" with a
positive main diagonal s.t. A’ — éaaT =L'L'T. Since L} is a
lower triangular matrix in R™*" with a positive main diagonal
st. LT =10 = A — éaaT, the uniqueness of L’
guarantees that [} = '

Thus,

This proves the uniqueness of L. [J



Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix A € R"*", there exists a unique
lower triangular matrix L € R"™" with a positive main diagonal
and satisfying A= LLT.

@ There is also an algorithm that, for a positive definite matrix
A= a }an in R™" computes the Cholesky decomposition
of A, i.e. computes the (unique) lower triangular matrix
L= tyj ], in R™" with a positive main diagonal and
satisfying A= LLT.

@ We construct the matrix L column by column, from left to
right. Each column is constructed from top to bottom.

o Algorithm: next slide.



@ We construct the first (i.e. leftmost) column of L as follows:

o l11:=,/a11,
o Uiy = \/a% forall i € {2,...,n}.
@ Forall j € {2,...,n}, assuming we have constructed the first

(i.e. leftmost) j — 1 columns of L, we construct the j-th
column of L as follows (from top to bottom):

o lij:=0forallie{l,...,j—1},
j—-1

o ljji=ylajj— > éﬁk,
k=1

j—1
o lij = %(a,, k;e,-,km) forallie{j+1,...,n}.



@ We construct the first (i.e. leftmost) column of L as follows:

° fl,l = \/‘31,1,
o Uiy = \/a% forall i € {2,...,n}.
@ Forall j € {2,...,n}, assuming we have constructed the first

(i.e. leftmost) j — 1 columns of L, we construct the j-th
column of L as follows (from top to bottom):

o lij:=0forallie{l,...,j—1},
j—1 5
o ljji=ylajj— > gj,k'
k=1
j—1
° lij= ﬁ(au - Elei’kfj’k) forall 7€ {i+1,.-,nk

@ We omit the proof of correctness of the construction above,
but it essentially follows from Theorem 10.2.3 and from the
proof of Theorem 10.3.2.

@ Numerical example: Lecture Notes.



