Linear Algebra 2

Lecture #25

Matrix definiteness

Irena Penev

May 21, 2025

A **symmetric** matrix  $A \in \mathbb{R}^{n \times n}$  is said to be

- positive definite if  $\mathbf{x}^T A \mathbf{x} > 0$  for all  $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ;
- positive semi-definite if  $\mathbf{x}^T A \mathbf{x} \geq 0$  for all  $\mathbf{x} \in \mathbb{R}^n$ ;
- negative definite if  $\mathbf{x}^T A \mathbf{x} < 0$  for all  $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ;
- negative semi-definite if  $\mathbf{x}^T A \mathbf{x} \leq 0$  for all  $\mathbf{x} \in \mathbb{R}^n$ ;
- indefinite if it is neither positive semi-definite nor negative semi-definite.
- Remark: Obviously, any positive definite matrix is positive semi-definite, and any negative definite matrix if negative semi-definite.

• **Remark:** The definitions from the previous slide would also make sense without the requirement that A be symmetric.

- **Remark:** The definitions from the previous slide would also make sense without the requirement that A be symmetric.
  - However, for any matrix  $A \in \mathbb{R}^{n \times n}$ , the matrix  $\frac{1}{2}(A + A^T)$  is symmetric:

$$(\frac{1}{2}(A+A^T))^T = \frac{1}{2}(A^T+A) = \frac{1}{2}(A+A^T),$$

- **Remark:** The definitions from the previous slide would also make sense without the requirement that A be symmetric.
  - However, for any matrix  $A \in \mathbb{R}^{n \times n}$ , the matrix  $\frac{1}{2}(A + A^T)$  is symmetric:

$$(\frac{1}{2}(A+A^T))^T = \frac{1}{2}(A^T+A) = \frac{1}{2}(A+A^T),$$

and for all vectors  $\mathbf{x} \in \mathbb{R}^n$ , we have that

$$\mathbf{x}^{T}(\frac{1}{2}(A + A^{T}))\mathbf{x} = \frac{1}{2}(\mathbf{x}^{T}A\mathbf{x}) + \frac{1}{2}(\mathbf{x}^{T}A^{T}\mathbf{x})$$

$$\stackrel{(*)}{=} \frac{1}{2}(\mathbf{x}^{T}A\mathbf{x}) + \frac{1}{2}(\mathbf{x}^{T}A^{T}\mathbf{x})^{T}$$

$$= \frac{1}{2}(\mathbf{x}^{T}A\mathbf{x}) + \frac{1}{2}(\mathbf{x}^{T}A\mathbf{x})$$

$$= \mathbf{x}^{T}A\mathbf{x},$$

where (\*) follows from the fact that  $\mathbf{x}^T A \mathbf{x}$  is a  $1 \times 1$  matrix, and is consequently symmetric.

- **Remark:** The definitions from the previous slide would also make sense without the requirement that A be symmetric.
  - However, for any matrix  $A \in \mathbb{R}^{n \times n}$ , the matrix  $\frac{1}{2}(A + A^T)$  is symmetric:

$$\left(\frac{1}{2}(A+A^T)\right)^T = \frac{1}{2}(A^T+A) = \frac{1}{2}(A+A^T),$$

and for all vectors  $\mathbf{x} \in \mathbb{R}^n$ , we have that

$$\mathbf{x}^{T} \left( \frac{1}{2} (A + A^{T}) \right) \mathbf{x} = \frac{1}{2} (\mathbf{x}^{T} A \mathbf{x}) + \frac{1}{2} (\mathbf{x}^{T} A^{T} \mathbf{x})$$

$$\stackrel{(*)}{=} \frac{1}{2} (\mathbf{x}^{T} A \mathbf{x}) + \frac{1}{2} (\mathbf{x}^{T} A^{T} \mathbf{x})^{T}$$

$$= \frac{1}{2} (\mathbf{x}^{T} A \mathbf{x}) + \frac{1}{2} (\mathbf{x}^{T} A \mathbf{x})$$

$$= \mathbf{x}^{T} A \mathbf{x},$$

where (\*) follows from the fact that  $\mathbf{x}^T A \mathbf{x}$  is a  $1 \times 1$  matrix, and is consequently symmetric.

• So, instead of considering an arbitrary square matrix A, we can consider the symmetric matrix  $\frac{1}{2}(A+A^T)$  instead.

- **Remark:** The definitions from the previous slide would also make sense without the requirement that *A* be symmetric.
  - However, for any matrix  $A \in \mathbb{R}^{n \times n}$ , the matrix  $\frac{1}{2}(A + A^T)$  is symmetric:

$$\left(\frac{1}{2}(A+A^T)\right)^T = \frac{1}{2}(A^T+A) = \frac{1}{2}(A+A^T),$$

and for all vectors  $\mathbf{x} \in \mathbb{R}^n$ , we have that

$$\mathbf{x}^{T}(\frac{1}{2}(A+A^{T}))\mathbf{x} = \frac{1}{2}(\mathbf{x}^{T}A\mathbf{x}) + \frac{1}{2}(\mathbf{x}^{T}A^{T}\mathbf{x})$$

$$\stackrel{(*)}{=} \frac{1}{2}(\mathbf{x}^{T}A\mathbf{x}) + \frac{1}{2}(\mathbf{x}^{T}A^{T}\mathbf{x})^{T}$$

$$= \frac{1}{2}(\mathbf{x}^{T}A\mathbf{x}) + \frac{1}{2}(\mathbf{x}^{T}A\mathbf{x})$$

$$= \mathbf{x}^{T}A\mathbf{x},$$

where (\*) follows from the fact that  $\mathbf{x}^T A \mathbf{x}$  is a  $1 \times 1$  matrix, and is consequently symmetric.

- So, instead of considering an arbitrary square matrix A, we can consider the symmetric matrix  $\frac{1}{2}(A+A^T)$  instead.
- This is important because some tests of definiteness only work if we assume that the matrix in question is symmetric.

• Remark: Matrix definiteness plays an important role in optimization, though we will not cover this.

- **Remark:** Matrix definiteness plays an important role in optimization, though we will not cover this.
- Another reason for caring about positive definite matrices in particular is the following theorem.

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;
- there exists a basis  $\mathcal{B}$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite.

- $\bullet$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- of or all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;
- there exists a basis  $\mathcal{B}$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite.
  - We start by proving Theorem 10.4.1 (plus an easy corollary).

- $( \cdot, \cdot )$  is a scalar product in V;
- ① for all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;
- there exists a basis  $\mathcal{B}$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite.
  - We start by proving Theorem 10.4.1 (plus an easy corollary).
  - After that, we prove a few results about matrix definiteness, and finally, we present three methods of testing whether a symmetric matrix is positive definite.

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- of or all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;
- there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.
  - We start by proving Theorem 10.4.1 (plus an easy corollary).
  - After that, we prove a few results about matrix definiteness, and finally, we present three methods of testing whether a symmetric matrix is positive definite.
  - Before proving Theorem 10.4.1, we recall a couple of definitions, plus Theorem 9.2.2 (from the previous lecture).



A *bilinear form* on a vector space V over a field  $\mathbb{F}$  is a function  $f: V \times V \to \mathbb{F}$  that satisfies the following four axioms:

b.1. 
$$\forall \mathbf{x}_1, \mathbf{x}_2, \mathbf{y} \in V$$
:  $f(\mathbf{x}_1 + \mathbf{x}_2, \mathbf{y}) = f(\mathbf{x}_1, \mathbf{y}) + f(\mathbf{x}_2, \mathbf{y})$ ;  
b.2.  $\forall \mathbf{x}, \mathbf{y} \in V$  and  $\alpha \in \mathbb{F}$ :  $f(\alpha \mathbf{x}, \mathbf{y}) = \alpha f(\mathbf{x}, \mathbf{y})$ ;

b.3. 
$$\forall x, y_1, y_2 \in V$$
:  $f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$ ;

b.4. 
$$\forall \mathbf{x}, \mathbf{y} \in V, \alpha \in \mathbb{F}$$
:  $f(\mathbf{x}, \alpha \mathbf{y}) = \alpha f(\mathbf{x}, \mathbf{y})$ .

The bilinear form f is said to be *symmetric* if it further satisfies the property that  $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$  for all  $\mathbf{x}, \mathbf{y} \in V$ .

A scalar product (also called inner product) in a **real** vector space V is a function  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$  that satisfies the following four axioms:

- r.1.  $\forall \mathbf{x} \in V : \langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ , and equality holds iff  $\mathbf{x} = \mathbf{0}$ ;
- r.2.  $\forall x, y, z \in V$ :  $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ ;
- r.3.  $\forall \mathbf{x}, \mathbf{y} \in V, \alpha \in \mathbb{R}: \langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle;$
- r.4.  $\forall \mathbf{x}, \mathbf{y} \in V$ :  $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ .

r.2'. 
$$\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$$
,  $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$ ;  
r.3'.  $\forall \mathbf{x}, \mathbf{y} \in V$  and  $\alpha \in \mathbb{R}$ ,  $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$ .

A scalar product (also called inner product) in a **real** vector space V is a function  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$  that satisfies the following four axioms:

- r.1.  $\forall \mathbf{x} \in V$ :  $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ , and equality holds iff  $\mathbf{x} = \mathbf{0}$ ;
- r.2.  $\forall x, y, z \in V$ :  $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ ;
- r.3.  $\forall \mathbf{x}, \mathbf{y} \in V, \alpha \in \mathbb{R}$ :  $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$ ;
- r.4.  $\forall \mathbf{x}, \mathbf{y} \in V$ :  $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ .
- r.2'.  $\forall x, y, z \in V$ ,  $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ ;
- r.3'.  $\forall \mathbf{x}, \mathbf{y} \in V$  and  $\alpha \in \mathbb{R}$ ,  $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$ .
  - **Remark:** every scalar product  $\langle \cdot, \cdot \rangle$  in a **real** vector space V is a symmetric bilinear form.
    - Indeed, r.2, r.3, r.2', and r.3' are precisely the axioms b.1, b.2, b.3, and b.4, respectively.
    - Moreover, by r.4, scalar products in real vector spaces are symmetric.

# Theorem 9.2.2

Let V be a non-trivial, finite-dimensional vector space over a field  $\mathbb{F}$ , and let  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  be a basis of V.

⑤ For every matrix  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  in  $\mathbb{F}^{n \times n}$ , the function  $f: V \times V \to \mathbb{F}$  given by

 $f(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}}^{\mathsf{T}} A \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$  for all  $\mathbf{x}, \mathbf{y} \in V$ 

- is a bilinear form on V, and moreover, all the following hold: (a.1)  $f(\mathbf{b}_i, \mathbf{b}_j) = a_{i,j}$  for all  $i, j \in \{1, ..., n\}$ ,
- (a.2)  $f\left(\sum_{i=1}^{n} c_{i}\mathbf{b}_{i}, \sum_{j=1}^{n} d_{j}\mathbf{b}_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}c_{i}d_{j}$  for all  $c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n} \in \mathbb{F}$ , (a.3) f is symmetric iff A is symmetric.
- For every bilinear form f on V, there exists a unique matrix  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  in  $\mathbb{F}^{n \times n}$ , called the *matrix of the bilinear form*

f w.r.t. the basis  $\mathcal{B}$ , that satisfies the property that  $f(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}}^T A \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$  for all  $\mathbf{x}, \mathbf{y} \in V$ . Moreover, the entries of the matrix A are given by

 $a_{i,j} = f(\mathbf{b}_i, \mathbf{b}_i)$  for all indices  $i, j \in \{1, \dots, n\}$ .

Let V be a non-trivial, finite-dimensional real vector space, and let  $\langle \cdot, \cdot \rangle$  be a bilinear form on V. Then the following are equivalent:

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;
- $\bullet$  there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof.

Let V be a non-trivial, finite-dimensional real vector space, and let  $\langle \cdot, \cdot \rangle$  be a bilinear form on V. Then the following are equivalent:

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;
- there exists a basis  $\mathcal{B}$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite.

*Proof.* It is enough to prove the following sequence of implications:

$$\text{``(i)}\Longrightarrow\text{(ii)}\Longrightarrow\text{(iii)}\Longrightarrow\text{(i)."}$$

Let V be a non-trivial, finite-dimensional real vector space, and let  $\langle \cdot, \cdot \rangle$  be a bilinear form on V. Then the following are equivalent:

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;
- there exists a basis  $\mathcal{B}$  of V s.t. the matrix  $\mathcal{B}$  of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite.

*Proof.* It is enough to prove the following sequence of implications: "(i)  $\Longrightarrow$  (ii)  $\Longrightarrow$  (iii)  $\Longrightarrow$  (iii)  $\Longrightarrow$  (iii)" is obvious, and so in fact, we just need to prove the implications "(i)  $\Longrightarrow$  (ii)" and "(iii)  $\Longrightarrow$  (i)."

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- for all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;

Proof (continued). We first assume (i) and prove (ii).

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;

Proof (continued). We first assume (i) and prove (ii).

Fix any basis  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  of V, and let B be the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;

Proof (continued). We first assume (i) and prove (ii).

Fix any basis  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  of V, and let B be the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

Since (i) holds, the bilinear form  $\langle \cdot, \cdot \rangle$  is symmetric, and so by Theorem 9.2.2(a), the matrix B is also symmetric.

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;

Proof (continued). We first assume (i) and prove (ii).

Fix any basis  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  of V, and let B be the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

Since (i) holds, the bilinear form  $\langle \cdot, \cdot \rangle$  is symmetric, and so by Theorem 9.2.2(a), the matrix B is also symmetric.

Now, fix any non-zero vector  $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$  in  $\mathbb{R}^n$ ; WTS  $\mathbf{x}^T B \mathbf{x} > 0$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;

Proof (continued). We first assume (i) and prove (ii).

Fix any basis  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  of V, and let B be the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

Since (i) holds, the bilinear form  $\langle \cdot, \cdot \rangle$  is symmetric, and so by Theorem 9.2.2(a), the matrix B is also symmetric.

Now, fix any non-zero vector  $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$  in  $\mathbb{R}^n$ ; WTS  $\mathbf{x}^T B \mathbf{x} > 0$ . Set  $\mathbf{v} := x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n$ , so that  $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \mathbf{x}$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;

Proof (continued). We first assume (i) and prove (ii).

Fix any basis  $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  of V, and let B be the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

Since (i) holds, the bilinear form  $\langle \cdot, \cdot \rangle$  is symmetric, and so by Theorem 9.2.2(a), the matrix B is also symmetric.

Now, fix any non-zero vector  $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$  in  $\mathbb{R}^n$ ; WTS  $\mathbf{x}^T B \mathbf{x} > 0$ . Set  $\mathbf{v} := x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n$ , so that  $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \mathbf{x}$ . Since  $\mathbf{x} \neq \mathbf{0}$ , and since  $\begin{bmatrix} \cdot \end{bmatrix}_{\mathcal{B}}$  is an isomorphism, we have that  $\mathbf{v} \neq \mathbf{0}$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- 0 for all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle\cdot,\cdot\rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;

*Proof (continued).* Reminder:  $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ,  $[\mathbf{v}]_{\mathcal{B}} = \mathbf{x}$ ,  $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ ; WTS  $\mathbf{x}^T B \mathbf{x} > 0$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;

*Proof (continued).* Reminder: 
$$\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$$
,  $[\mathbf{v}]_{\mathcal{B}} = \mathbf{x}$ ,  $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ ; WTS  $\mathbf{x}^T B \mathbf{x} > 0$ .

Then

$$\mathbf{x}^T B \mathbf{x} = \begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}}^T B \begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} \stackrel{(*)}{=} \langle \mathbf{v}, \mathbf{v} \rangle \stackrel{(**)}{>} 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$ , and (\*\*) follows from (i), and more precisely, from the axiom r.1.

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;

Proof (continued). Reminder:  $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ,  $[\mathbf{v}]_{\mathcal{B}} = \mathbf{x}$ ,  $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ ; WTS  $\mathbf{x}^T B \mathbf{x} > 0$ .

Then

$$\mathbf{x}^T B \mathbf{x} = \begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}}^T B \begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} \stackrel{(*)}{=} \langle \mathbf{v}, \mathbf{v} \rangle \stackrel{(**)}{>} 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$ , and (\*\*) follows from (i), and more precisely, from the axiom r.1. This proves that B is positive definite, and (ii) follows.

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- lacktriangledown there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle\cdot,\cdot\rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof (continued). We now assume (iii) and prove (i).

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- lacktriangledown there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle\cdot,\cdot\rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof (continued). We now assume (iii) and prove (i).

First of all, since  $\langle\cdot,\cdot\rangle$  is a bilinear form, it satisfies axioms r.2 and r.3 from the definition of a scalar product;

- $(\cdot, \cdot)$  is a scalar product in V;
- 0 there exists a basis  $\mathcal{B}$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite.

Proof (continued). We now assume (iii) and prove (i).

First of all, since  $\langle \cdot, \cdot \rangle$  is a bilinear form, it satisfies axioms r.2 and r.3 from the definition of a scalar product; it remains to show that it satisfies axioms r.1 and r.4.

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- 0 there exists a basis  $\mathcal{B}$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite.

Proof (continued). We now assume (iii) and prove (i).

First of all, since  $\langle \cdot, \cdot \rangle$  is a bilinear form, it satisfies axioms r.2 and r.3 from the definition of a scalar product; it remains to show that it satisfies axioms r.1 and r.4.

Using (iii), we fix a basis  $\mathcal{B}$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite.

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof (continued). We now assume (iii) and prove (i).

First of all, since  $\langle \cdot, \cdot \rangle$  is a bilinear form, it satisfies axioms r.2 and r.3 from the definition of a scalar product; it remains to show that it satisfies axioms r.1 and r.4.

Using (iii), we fix a basis  $\mathcal{B}$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite. Since B is positive definite, it is in particular symmetric, and so by Theorem 9.2.2(a), the bilinear form  $\langle \cdot, \cdot \rangle$  is also symmetric, i.e. r.4 holds.

It remains to show that r.1 holds (next slide).

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof (continued). First, we have that

$$\langle \mathbf{0}, \mathbf{0} \rangle \stackrel{(*)}{=} \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}}^{\mathsf{T}} B \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}} = \mathbf{0}^{\mathsf{T}} B \mathbf{0} = 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof (continued). First, we have that

$$\langle \mathbf{0}, \mathbf{0} \rangle \stackrel{(*)}{=} \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}}^{\mathsf{T}} B \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}} = \mathbf{0}^{\mathsf{T}} B \mathbf{0} = 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

Now, fix any vector  $\mathbf{x} \in V \setminus \{\mathbf{0}\}$ . WTS  $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof (continued). First, we have that

$$\langle \mathbf{0}, \mathbf{0} \rangle \stackrel{(*)}{=} \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}}^{\mathsf{T}} B \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}} = \mathbf{0}^{\mathsf{T}} B \mathbf{0} = 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

Now, fix any vector  $\mathbf{x} \in V \setminus \{\mathbf{0}\}$ . WTS  $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ . Since  $[\cdot]_{\mathcal{B}}$  is an isomorphism, we see that  $[\mathbf{x}]_{\mathcal{B}} \neq \mathbf{0}$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof (continued). First, we have that

$$\langle \mathbf{0}, \mathbf{0} \rangle \stackrel{(*)}{=} \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}}^{\mathsf{T}} B \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathcal{B}} = \mathbf{0}^{\mathsf{T}} B \mathbf{0} = 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

Now, fix any vector  $\mathbf{x} \in V \setminus \{\mathbf{0}\}$ . WTS  $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ . Since  $[\cdot]_{\mathcal{B}}$  is an isomorphism, we see that  $[\mathbf{x}]_{\mathcal{B}} \neq \mathbf{0}$ . We then have that

$$\langle \mathbf{x}, \mathbf{x} \rangle \stackrel{(*)}{=} \left[ \mathbf{x} \right]_{\mathcal{B}} B \left[ \mathbf{x} \right]_{\mathcal{B}} \stackrel{(**)}{>} 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$ , and (\*\*) follows from the fact that B is positive definite and  $[\mathbf{x}]_{\mathcal{B}} \neq \mathbf{0}$ .

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Proof (continued). First, we have that

$$\langle \mathbf{0}, \mathbf{0} \rangle \stackrel{(*)}{=} \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathbf{R}}^{\mathsf{T}} B \begin{bmatrix} \mathbf{0} \end{bmatrix}_{\mathbf{R}} = \mathbf{0}^{\mathsf{T}} B \mathbf{0} = 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$ .

Now, fix any vector  $\mathbf{x} \in V \setminus \{\mathbf{0}\}$ . WTS  $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ . Since  $[\ \cdot\ ]_{\mathcal{B}}$  is an isomorphism, we see that  $[\ \mathbf{x}\ ]_{\mathcal{B}} \neq \mathbf{0}$ . We then have that

$$\langle \mathbf{x}, \mathbf{x} \rangle \stackrel{(*)}{=} [\mathbf{x}]_{\mathcal{B}} B[\mathbf{x}]_{\mathcal{B}} \stackrel{(**)}{>} 0,$$

where (\*) follows from the fact that B is the matrix of the bilinear form  $\langle\cdot,\cdot\rangle$ , and (\*\*) follows from the fact that B is positive definite and  $\left[\begin{array}{c}\mathbf{x}\end{array}\right]_{\mathcal{B}}\neq\mathbf{0}$ . Thus, r.1 holds. This proves (i).  $\square$ 

Let V be a non-trivial, finite-dimensional real vector space, and let  $\langle \cdot, \cdot \rangle$  be a bilinear form on V. Then the following are equivalent:

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal B$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite;
- there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

Let V be a non-trivial, finite-dimensional real vector space, and let  $\langle \cdot, \cdot \rangle$  be a bilinear form on V. Then the following are equivalent:

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product in V;
- ① for all bases  $\mathcal{B}$  of V, the matrix B of the bilinear form  $\langle \cdot, \cdot \rangle$  w.r.t. the basis  $\mathcal{B}$  is positive definite;
- lacktriangledown there exists a basis  $\mathcal B$  of V s.t. the matrix B of the bilinear form  $\langle\cdot,\cdot\rangle$  w.r.t. the basis  $\mathcal B$  is positive definite.

# Corollary 10.4.2

For any function  $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ , the following are equivalent:

- $\bigcirc$   $\langle \cdot, \cdot \rangle$  is a scalar product on  $\mathbb{R}^n$ ;
- ① there exists a positive definite matrix  $A \in \mathbb{R}^{n \times n}$  s.t. for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ , we have  $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T A \mathbf{y}$ .
  - Proof: Lecture Notes (easily follows from Theorem 10.4.1).

- Let us now state some basic results about matrix definiteness.
  - We give some proofs, while omitting others.

- Let us now state some basic results about matrix definiteness.
  - We give some proofs, while omitting others.

- $\bigcirc$  A is positive definite iff -A is negative definite;
- lacktriangle A is positive semi-definite iff -A is negative semi-definite.
  - Proof: Lecture Notes (easy).

- Let us now state some basic results about matrix definiteness.
  - We give some proofs, while omitting others.

- $\bullet$  A is positive definite iff -A is negative definite;
- $\bigcirc$  A is positive semi-definite iff -A is negative semi-definite.
  - Proof: Lecture Notes (easy).
  - Remark: In view of Proposition 10.1.1, results for positive (semi-)definite matrices can easily be translated into corresponding results for negative (semi-)definite matrices.

- Let us now state some basic results about matrix definiteness.
  - We give some proofs, while omitting others.

- $\bigcirc$  A is positive definite iff -A is negative definite;
- $\bigcirc$  A is positive semi-definite iff -A is negative semi-definite.
  - Proof: Lecture Notes (easy).
  - **Remark:** In view of Proposition 10.1.1, results for positive (semi-)definite matrices can easily be translated into corresponding results for negative (semi-)definite matrices.
    - So, it makes sense to focus on positive (semi-)definite matrices.

- Let us now state some basic results about matrix definiteness.
  - We give some proofs, while omitting others.

- $\bigcirc$  A is positive definite iff -A is negative definite;
- $\bigcirc$  A is positive semi-definite iff -A is negative semi-definite.
  - Proof: Lecture Notes (easy).
  - **Remark:** In view of Proposition 10.1.1, results for positive (semi-)definite matrices can easily be translated into corresponding results for negative (semi-)definite matrices.
    - So, it makes sense to focus on positive (semi-)definite matrices.
    - In what follows, we will mostly (but not exclusively) focus on positive definite matrices, which are somewhat easier to deal with than the more general positive semi-definite ones.

• Reminder:

# Corollary 8.7.4

Every symmetric matrix in  $\mathbb{R}^{n\times n}$  has n real eigenvalues (with algebraic multiplicities taken into account). In other words, for every symmetric matrix  $A\in\mathbb{R}^{n\times n}$ , the sum of algebraic multiplicities of its distinct (real) eigenvalues is n.

Reminder:

# Corollary 8.7.4

Every symmetric matrix in  $\mathbb{R}^{n\times n}$  has n real eigenvalues (with algebraic multiplicities taken into account). In other words, for every symmetric matrix  $A\in\mathbb{R}^{n\times n}$ , the sum of algebraic multiplicities of its distinct (real) eigenvalues is n.

## Definition

The *signature* of a symmetric matrix  $A \in \mathbb{R}^{n \times n}$  to be the ordered triple  $(n_+, n_-, n_0)$ , where

- $n_+$  is the number of positive eigenvalues of A (counting algebraic multiplicities),
- $n_{-}$  is the number of negative eigenvalues of A (counting algebraic multiplicities),
- $\bullet$   $n_0 := n n_+ n_-$ .

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

- ① A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);
- ① A is positive semi-definite iff  $n_+ + n_0 = n$  (i.e. all eigenvalues of A are non-negative);
- ② A is negative definite iff  $n_- = n$  (i.e. all eigenvalues of A are negative);
- ② A is negative semi-definite iff  $n_- + n_0 = n$  (i.e. all eigenvalues of A are non-positive);
- ② A is indefinite iff  $n_+$  and  $n_-$  are both non-zero (i.e. A has at least one positive and at least one negative eigenvalue).

Proof.

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

- **a** A is positive definite iff  $n_+=n$  (i.e. all eigenvalues of A are positive);
- **(b)** A is positive semi-definite iff  $n_+ + n_0 = n$  (i.e. all eigenvalues of A are non-negative);
- **(9)** A is negative definite iff  $n_- = n$  (i.e. all eigenvalues of A are negative);
- ① A is negative semi-definite iff  $n_- + n_0 = n$  (i.e. all eigenvalues of A are non-positive);
- ② A is indefinite iff  $n_+$  and  $n_-$  are both non-zero (i.e. A has at least one positive and at least one negative eigenvalue).

*Proof.* Obviously, (b) and (d) together imply (e).

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

- ① A is positive definite iff  $n_+=n$  (i.e. all eigenvalues of A are positive);
- **(b)** A is positive semi-definite iff  $n_+ + n_0 = n$  (i.e. all eigenvalues of A are non-negative);
- **(9)** A is negative definite iff  $n_- = n$  (i.e. all eigenvalues of A are negative);
- ② A is indefinite iff  $n_+$  and  $n_-$  are both non-zero (i.e. A has at least one positive and at least one negative eigenvalue).

*Proof.* Obviously, (b) and (d) together imply (e). So, we just need to prove (a)-(d).

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

- **1** A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);
- $\bigcirc$  A is positive semi-definite iff  $n_+ + n_0 = n$  (i.e. all eigenvalues of A are non-negative);
- **(9)** A is negative definite iff  $n_- = n$  (i.e. all eigenvalues of A are negative);
- 0 A is negative semi-definite iff  $n_- + n_0 = n$  (i.e. all eigenvalues of A are non-positive);
- ② A is indefinite iff  $n_+$  and  $n_-$  are both non-zero (i.e. A has at least one positive and at least one negative eigenvalue).

*Proof.* Obviously, (b) and (d) together imply (e). So, we just need to prove (a)-(d). Here, we prove (a). The proofs of (b)-(d) are similar.

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

② A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose first that *A* is positive definite.

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

② A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose first that A is positive definite. Fix an eigenvalue  $\lambda$  of A, and let  $\mathbf{x}$  be an associated eigenvector of A;

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

ⓐ A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose first that A is positive definite. Fix an eigenvalue  $\lambda$  of A, and let  $\mathbf{x}$  be an associated eigenvector of A; after possibly normalizing the eigenvector  $\mathbf{x}$  (i.e. replacing  $\mathbf{x}$  by  $\frac{\mathbf{x}}{||\mathbf{x}||}$ ), we may assume that  $||\mathbf{x}||=1$ .

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

② A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose first that A is positive definite. Fix an eigenvalue  $\lambda$  of A, and let  $\mathbf{x}$  be an associated eigenvector of A; after possibly normalizing the eigenvector  $\mathbf{x}$  (i.e. replacing  $\mathbf{x}$  by  $\frac{\mathbf{x}}{||\mathbf{x}||}$ ), we may assume that  $||\mathbf{x}||=1$ . Then

$$0 \stackrel{(*)}{<} \mathbf{x}^T A \mathbf{x} \stackrel{(**)}{=} \mathbf{x}^T (\lambda \mathbf{x}) = \lambda (\mathbf{x}^T \mathbf{x}) = \lambda (\mathbf{x} \cdot \mathbf{x}) = \lambda ||\mathbf{x}||^2 \stackrel{(***)}{=} \lambda,$$

where (\*) follows from the fact that A is positive definite and  $\mathbf{x} \neq \mathbf{0}$ , (\*\*) follows from the fact that  $\mathbf{x}$  is an eigenvector of A associated with the eigenvalue  $\lambda$ , and (\*\*\*) follows from the fact that  $||\mathbf{x}|| = 1$ .

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

**a** A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose first that A is positive definite. Fix an eigenvalue  $\lambda$  of A, and let  $\mathbf x$  be an associated eigenvector of A; after possibly normalizing the eigenvector  $\mathbf x$  (i.e. replacing  $\mathbf x$  by  $\frac{\mathbf x}{||\mathbf x||}$ ), we may assume that  $||\mathbf x||=1$ . Then

$$0 \stackrel{(*)}{<} \mathbf{x}^T A \mathbf{x} \stackrel{(**)}{=} \mathbf{x}^T (\lambda \mathbf{x}) = \lambda (\mathbf{x}^T \mathbf{x}) = \lambda (\mathbf{x} \cdot \mathbf{x}) = \lambda ||\mathbf{x}||^2 \stackrel{(***)}{=} \lambda,$$

where (\*) follows from the fact that A is positive definite and  $\mathbf{x} \neq \mathbf{0}$ , (\*\*) follows from the fact that  $\mathbf{x}$  is an eigenvector of A associated with the eigenvalue  $\lambda$ , and (\*\*\*) follows from the fact that  $||\mathbf{x}|| = 1$ . We have now shown that  $\lambda > 0$ ; since  $\lambda$  was an arbitrarily chosen eigenvalue of A, we deduce that all eigenvalues of A are positive, i.e.  $n_+ = n$ .

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

① A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose conversely that  $n_+ = n$ , i.e. that all eigenvalues of A are positive. WTS A is positive definite.

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

① A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose conversely that  $n_+ = n$ , i.e. that all eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices guarantees that  $\mathbb{R}^n$  has an orthonormal eigenbasis  $\mathcal{B} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$  associated with A.

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

② A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose conversely that  $n_+ = n$ , i.e. that all eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices guarantees that  $\mathbb{R}^n$  has an orthonormal eigenbasis  $\mathcal{B} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$  associated with A. For each  $i \in \{1, \dots, n\}$ , let  $\lambda_i$  be the eigenvalue of A associated with the eigenvector  $\mathbf{x}_i$ .

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

② A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose conversely that  $n_+ = n$ , i.e. that all eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices guarantees that  $\mathbb{R}^n$  has an orthonormal eigenbasis  $\mathcal{B} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$  associated with A. For each  $i \in \{1, \dots, n\}$ , let  $\lambda_i$  be the eigenvalue of A associated with the eigenvector  $\mathbf{x}_i$ . Set  $\lambda_0 := \min\{\lambda_1, \dots, \lambda_n\}$ ;

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

**a** A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose conversely that  $n_+ = n$ , i.e. that all eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices guarantees that  $\mathbb{R}^n$  has an orthonormal eigenbasis  $\mathcal{B} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$  associated with A. For each  $i \in \{1, \dots, n\}$ , let  $\lambda_i$  be the eigenvalue of A associated with the eigenvector  $\mathbf{x}_i$ . Set  $\lambda_0 := \min\{\lambda_1, \dots, \lambda_n\}$ ; since all eigenvalues of A are positive, we see that  $\lambda_0 > 0$ .

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

① A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

*Proof (continued).* Suppose conversely that  $n_+ = n$ , i.e. that all eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices guarantees that  $\mathbb{R}^n$  has an orthonormal eigenbasis  $\mathcal{B} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$  associated with A. For each  $i \in \{1, \dots, n\}$ , let  $\lambda_i$  be the eigenvalue of A associated with the eigenvector  $\mathbf{x}_i$ . Set  $\lambda_0 := \min\{\lambda_1, \dots, \lambda_n\}$ ; since all eigenvalues of A are positive, we see that  $\lambda_0 > 0$ . Now, fix any  $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ; WTS  $\mathbf{x}^T A \mathbf{x} > 0$ . Since  $\mathcal{B}$  is a basis of  $\mathbb{R}^n$ , we know that there exist scalars  $\alpha_1, \dots, \alpha_n \in \mathbb{R}$  s.t.  $\mathbf{x} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n$ .

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

**a** A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive):

*Proof (continued).* Suppose conversely that  $n_+ = n$ , i.e. that all eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices guarantees that  $\mathbb{R}^n$  has an orthonormal eigenbasis  $\mathcal{B} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$  associated with A. For each  $i \in \{1, \dots, n\}$ , let  $\lambda_i$  be the eigenvalue of A associated with the eigenvector  $\mathbf{x}_i$ . Set  $\lambda_0 := \min\{\lambda_1, \dots, \lambda_n\}$ ; since all eigenvalues of A are positive, we see that  $\lambda_0 > 0$ . Now, fix any  $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ; WTS  $\mathbf{x}^T A \mathbf{x} > 0$ . Since  $\mathcal{B}$  is a basis of  $\mathbb{R}^n$ , we know that there exist scalars  $\alpha_1, \dots, \alpha_n \in \mathbb{R}$  s.t.  $\mathbf{x} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n$ . Since  $\mathbf{x} \neq \mathbf{0}$ , at least

one of  $\alpha_1, \ldots, \alpha_n$  is non-zero. We now compute (next two slides):

*Proof (continued).* Reminder: WTS  $\mathbf{x}^T A \mathbf{x} > 0$ .

$$\mathbf{x}^T A \mathbf{x} = \left(\sum_{i=1}^n \alpha_i \mathbf{x}_i\right)^T A \left(\sum_{j=1}^n \alpha_j \mathbf{x}_j\right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \mathbf{x}_i^T A \mathbf{x}_j$$

$$= \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \mathbf{x}_i^T (\lambda_j \mathbf{x}_j)$$
because each  $\mathbf{x}_j$  is an eigenvector of  $A$  associated with the eigenvalue  $\lambda_j$ 

$$= \sum_{i=1}^n \sum_{j=1}^n \lambda_j \alpha_i \alpha_j (\mathbf{x}_i^T \mathbf{x}_j)$$

$$= \sum_{i=1}^n \sum_{j=1}^n \lambda_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$
because  $\mathbf{x}_1, \dots, \mathbf{x}_n$  are pairwise orthogonal (by the orthonormality of  $B$ )
$$= \sum_{i=1}^n \lambda_i \alpha_i^2 ||\mathbf{x}_i||^2$$

$$= \sum_{i=1}^n \lambda_i \alpha_i^2$$
because  $\mathbf{x}_1, \dots, \mathbf{x}_n$  are unit vectors (by the orthonormality of  $B$ )
(continued on next slide)

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

② A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive);

$$\begin{array}{lll} \mathbf{x}^T A \mathbf{x} & = & \sum_{i=1}^n \lambda_i \alpha_i^2 & \qquad \text{from the previous slide} \\ \\ & \geq & \sum_{i=1}^n \lambda_0 \alpha_i^2 & \qquad \text{because } \lambda_0 = \min\{\lambda_1, \dots, \lambda_n\} \\ \\ & = & \text{and } \alpha_1^2, \dots, \alpha_n^2 \geq 0 \\ \\ & > & 0 & \qquad \text{because } \lambda_0 > 0 \text{ and at least} \\ \\ & = & \text{one of } \alpha_1, \dots, \alpha_n \text{ is non-zero.} \end{array}$$

Thus, A is positive definite. This proves (a).  $\square$ 

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix, and let  $(n_+, n_-, n_0)$  be the signature of A. Then all the following hold:

- ① A is positive definite iff  $n_+ = n$  (i.e. all eigenvalues of A are positive):
- ① A is positive semi-definite iff  $n_+ + n_0 = n$  (i.e. all eigenvalues of A are non-negative);
- ① A is negative definite iff  $n_- = n$  (i.e. all eigenvalues of A are negative);
- ① A is negative semi-definite iff  $n_- + n_0 = n$  (i.e. all eigenvalues of A are non-positive);
- $\bigcirc$  A is indefinite iff  $n_+$  and  $n_-$  are both non-zero (i.e. A has at least one positive and at least one negative eigenvalue).

Reminder:

## Theorem 8.2.10

Let  $\mathbb F$  be a field, let  $A=\left[\begin{array}{c}a_{i,j}\end{array}\right]_{n\times n}$  be a matrix in  $\mathbb F^{n\times n}$ , and assume that  $\{\lambda_1,\ldots,\lambda_n\}$  is the spectrum of A. Then

- $b trace(A) = \lambda_1 + \cdots + \lambda_n.$

Reminder:

### Theorem 8.2.10

Let  $\mathbb F$  be a field, let  $A = [a_{i,j}]_{n \times n}$  be a matrix in  $\mathbb F^{n \times n}$ , and assume that  $\{\lambda_1, \ldots, \lambda_n\}$  is the spectrum of A. Then

- - Theorem 10.1.2 (from the previous slide) and Theorem 8.2.10 together imply the following corollary.

# Corollary 10.1.3

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix.

- ① If A is positive definite, then det(A) and trace(A) are both positive.
- If A is positive semi-definite, then det(A) and trace(A) are both non-negative.

# Corollary 10.1.3

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix.

- ① If A is positive definite, then det(A) and trace(A) are both positive.
- If A is positive semi-definite, then det(A) and trace(A) are both non-negative.

Proof.

## Corollary 10.1.3

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix.

- If A is positive definite, then det(A) and trace(A) are both positive.
- ① If A is positive semi-definite, then det(A) and trace(A) are both non-negative.

*Proof.* Since A is symmetric, Corollary 8.7.4 guarantees that it has n real eigenvalues (with algebraic multiplicities taken into account).

# Corollary 10.1.3

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix.

- ① If A is positive definite, then det(A) and trace(A) are both positive.
- ① If A is positive semi-definite, then det(A) and trace(A) are both non-negative.

*Proof.* Since A is symmetric, Corollary 8.7.4 guarantees that it has n real eigenvalues (with algebraic multiplicities taken into account). So, let  $\{\lambda_1,\ldots,\lambda_n\}$  be the spectrum of A.

#### Corollary 10.1.3

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix.

- ① If A is positive definite, then det(A) and trace(A) are both positive.
- ① If A is positive semi-definite, then det(A) and trace(A) are both non-negative.

*Proof.* Since A is symmetric, Corollary 8.7.4 guarantees that it has n real eigenvalues (with algebraic multiplicities taken into account). So, let  $\{\lambda_1, \ldots, \lambda_n\}$  be the spectrum of A.

By Theorem 8.2.10, we have that  $det(A) = \lambda_1 \dots \lambda_n$  and  $trace(A) = \lambda_1 + \dots + \lambda_n$ .

#### Corollary 10.1.3

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix.

- ① If A is positive definite, then det(A) and trace(A) are both positive.
- ① If A is positive semi-definite, then det(A) and trace(A) are both non-negative.

*Proof.* Since A is symmetric, Corollary 8.7.4 guarantees that it has n real eigenvalues (with algebraic multiplicities taken into account). So, let  $\{\lambda_1, \ldots, \lambda_n\}$  be the spectrum of A.

By Theorem 8.2.10, we have that  $det(A) = \lambda_1 \dots \lambda_n$  and  $trace(A) = \lambda_1 + \dots + \lambda_n$ .

By Theorem 10.1.2(a), all eigenvalues of a positive definite matrix are positive, and it follows that (a) holds.

### Corollary 10.1.3

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix.

- ① If A is positive definite, then det(A) and trace(A) are both positive.
- ① If A is positive semi-definite, then det(A) and trace(A) are both non-negative.

*Proof.* Since A is symmetric, Corollary 8.7.4 guarantees that it has n real eigenvalues (with algebraic multiplicities taken into account). So, let  $\{\lambda_1, \ldots, \lambda_n\}$  be the spectrum of A.

By Theorem 8.2.10, we have that  $det(A) = \lambda_1 \dots \lambda_n$  and  $trace(A) = \lambda_1 + \dots + \lambda_n$ .

By Theorem 10.1.2(a), all eigenvalues of a positive definite matrix are positive, and it follows that (a) holds. Similarly, by Theorem 10.1.2(b), all eigenvalues of a positive semi-definite matrix are non-negative, and it follows that (b) holds.  $\Box$ 

• The main diagonal of a square matrix  $A \in \mathbb{R}^{n \times n}$  is positive (resp. non-negative, negative, non-positive) if all entries on the main diagonal of A are positive (resp. non-negative, negative, non-positive).

• The main diagonal of a square matrix  $A \in \mathbb{R}^{n \times n}$  is positive (resp. non-negative, negative, non-positive) if all entries on the main diagonal of A are positive (resp. non-negative, negative, non-positive).

#### Proposition 10.1.4

The main diagonal of any positive definite (resp. positive semi-definite, negative definite, negative semi-definite) matrix is positive (resp. non-negative, negative, non-positive).

Proof.

• The main diagonal of a square matrix  $A \in \mathbb{R}^{n \times n}$  is positive (resp. non-negative, negative, non-positive) if all entries on the main diagonal of A are positive (resp. non-negative, negative, non-positive).

#### Proposition 10.1.4

The main diagonal of any positive definite (resp. positive semi-definite, negative definite, negative semi-definite) matrix is positive (resp. non-negative, negative, non-positive).

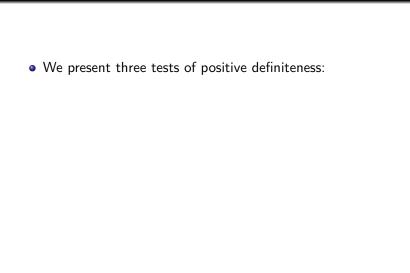
*Proof.* Fix a matrix  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  in  $\mathbb{R}^{n \times n}$ . Then for all indices  $i \in \{1, \dots, n\}$ , we have that  $\mathbf{e}_i^T A \mathbf{e}_i = a_{i,i}$ . The result now follows from the appropriate definitions.<sup>1</sup>  $\square$ 

Let us explain this in a bit more detail. Suppose that A is positive definite. Then for each  $i \in \{1, \ldots, n\}$ , we have that  $a_{i,i} = \mathbf{e}_i^T A \mathbf{e}_i > 0$ , i.e. the main diagonal of A is positive. Similar remarks apply for the cases of positive semi-definiteness, negative definiteness, and negative semi-definiteness.

#### Proposition 10.1.5

Let  $A, B \in \mathbb{R}^{n \times n}$  and  $\alpha \in \mathbb{R}$ . Then all the following hold:

- (a) if A and B are both positive definite (resp. positive semi-definite, negative definite, negative semi-definite), then A+B is positive definite (resp. positive semi-definite, negative definite, negative semi-definite);
- ① if A is positive definite (resp. positive semi-definite, negative definite, negative semi-definite) and  $\alpha > 0$ , then  $\alpha A$  is positive definite (resp. positive semi-definite, negative definite, negative semi-definite);
- (a) if A is positive definite (resp. positive semi-definite, negative definite, negative semi-definite) and  $\alpha < 0$ , then  $\alpha A$  is negative definite (resp. negative semi-definite, positive definite, positive semi-definite);
- o if  $A \in \mathbb{R}^{n \times n}$  is positive definite (respectively: negative definite), then A is invertible and its inverse  $A^{-1}$  is positive definite (respectively: negative definite).
  - Parts (a)-(c) are trivial.
  - The proof of (d) is in the Lecture Notes.



- We present three tests of positive definiteness:
  - the recursive test of positive definiteness (see Theorem 10.2.3);

- We present three tests of positive definiteness:
  - the recursive test of positive definiteness (see Theorem 10.2.3);
  - the Gaussian elimination test of positive definiteness (see Theorem 10.2.6);

- We present three tests of positive definiteness:
  - the recursive test of positive definiteness (see Theorem 10.2.3);
  - the Gaussian elimination test of positive definiteness (see Theorem 10.2.6);
    - Sylvester's criterion of positive definiteness (see Theorem 10.2.9.

- We present three tests of positive definiteness:
- the recursive test of positive definiteness (see Theorem 10.2.3);
  - the Gaussian elimination test of positive definiteness (see Theorem 10.2.6);
  - Sylvester's criterion of positive definiteness (see Theorem 10.2.9.
- Of these three tests, the first is arguably the least convenient for computing (at least if we are computing by hand), but it is a key ingredient in the proof of correctness of the other two tests.

- We present three tests of positive definiteness:
  - the recursive test of positive definiteness (see Theorem 10.2.3);
    - the Gaussian elimination test of positive definiteness (see Theorem 10.2.6);
    - Sylvester's criterion of positive definiteness (see Theorem 10.2.9
- Of these three tests, the first is arguably the least convenient for computing (at least if we are computing by hand), but it is a key ingredient in the proof of correctness of the other two tests.
- The proofs of these tests can be found in the Lecture Notes.

Let n be a positive integer, and let  $A = \begin{bmatrix} \alpha & \mathbf{a}' \\ \mathbf{a} & A' \end{bmatrix}$  (with  $\alpha \in \mathbb{R}$ ,  $\mathbf{a} \in \mathbb{R}^n$ , and  $A' \in \mathbb{R}^{n \times n}$ ) be a symmetric matrix in  $\mathbb{R}^{(n+1) \times (n+1)}$ . Then A is positive definite iff  $\alpha > 0$  and  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T$  is positive definite.

• Note that A is an  $(n+1) \times (n+1)$  matrix, whereas  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T$  is an  $n \times n$  matrix. (This is why the test is called "recursive.")

Let n be a positive integer, and let  $A = \begin{bmatrix} -\alpha & \mathbf{a}' \\ \mathbf{a} & A' \end{bmatrix}$  (with  $\alpha \in \mathbb{R}$ ,  $\mathbf{a} \in \mathbb{R}^n$ , and  $A' \in \mathbb{R}^{n \times n}$ ) be a symmetric matrix in  $\mathbb{R}^{(n+1) \times (n+1)}$ . Then A is positive definite iff  $\alpha > 0$  and  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T$  is positive definite.

- Note that A is an  $(n+1) \times (n+1)$  matrix, whereas  $A' \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T$  is an  $n \times n$  matrix. (This is why the test is called "recursive.")
- The proof of Theorem 10.2.3 is in the Lecture Notes.
  - However, let's try to gain some intuition for where the matrix  $A' \frac{1}{a}aa^T$  came from.

Let n be a positive integer, and let  $A = \begin{bmatrix} -\alpha & -\mathbf{a}^T \\ \mathbf{a} & A^T \end{bmatrix}$  (with  $\alpha \in \mathbb{R}$ ,  $\mathbf{a} \in \mathbb{R}^n$ , and  $A' \in \mathbb{R}^{n \times n}$ ) be a symmetric matrix in  $\mathbb{R}^{(n+1) \times (n+1)}$ . Then A is positive definite iff  $\alpha > 0$  and  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T$  is positive definite.

- Note that A is an  $(n+1) \times (n+1)$  matrix, whereas  $A' \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T$  is an  $n \times n$  matrix. (This is why the test is called "recursive.")
- The proof of Theorem 10.2.3 is in the Lecture Notes.
  - However, let's try to gain some intuition for where the matrix  $A' \frac{1}{2} \mathbf{a} \mathbf{a}^T$  came from.
- In what follows, for a matrix  $A \in \mathbb{R}^{n \times n}$   $(n \ge 2)$  and indices  $i, j \in \{1, ..., n\}$ , we will denote by  $A_{i,j}$  the submatrix of A obtained by deleting the i-th row and j-th column of A.

#### Proposition 10.2.1

Let  $A = [a_{i,j}]_{n \times n}$   $(n \ge 2)$  be a symmetric matrix in  $\mathbb{R}^{n \times n}$ , assume that  $a_{1,1} \ne 0$ , and set  $\mathbf{a} := [a_{2,1} \dots a_{n,1}]^T$ , so that

$$A = \left[ -\frac{a_{1,1}}{\mathbf{a}} \middle| \frac{\mathbf{a}^T}{\bar{A}_{1,1}} - \right].$$

Let  $\widetilde{A}$  be the matrix obtained from A by (sequentially or simultaneously) performing the following elementary row operations on A:

• 
$$R_2 \to R_2 - \frac{a_{2,1}}{a_{1,1}} R_1$$
;

• 
$$R_3 \to R_3 - \frac{a_{3,1}}{a_{1,1}} R_1$$
;

•  $R_n \to R_n - \frac{a_{n,1}}{a_{1,1}} R_1$ .

Then 
$$\widetilde{A} = \begin{bmatrix} -\frac{a_{1,1}}{0} & -\frac{\mathbf{a}^T}{A_{1,1}} - \frac{\mathbf{a}^T}{a_{1,1}} & \mathbf{a}^T \end{bmatrix}.$$

• Schematically, Proposition 10.2.1 states the following:

$$\underbrace{\begin{bmatrix} -\frac{a_{1,1}}{a} & \frac{1}{A_{1,1}} & \frac{a^{T}}{A_{1,1}} \\ -\frac{a^{T}}{a} & \frac{1}{A_{1,1}} & \frac{a^{T}}{A_{1,1}} \end{bmatrix}}_{=A} \xrightarrow{R_{n} \to R_{n} - \frac{a_{n,1}}{a_{1,1}} R_{1}} \underbrace{\begin{bmatrix} -\frac{a_{1,1}}{0} & \frac{1}{A_{1,1}} - \frac{a^{T}}{a_{1,1}} - \frac{a^{T}}$$

• Schematically, Proposition 10.2.1 states the following:

$$\underbrace{\begin{bmatrix} -\frac{a_{1,1}}{a} & \frac{1}{a} & \frac{\mathbf{a}^{T}}{A_{1,1}} \\ -\frac{a_{1,1}}{a} & \frac{1}{a} & \frac{\mathbf{a}^{T}}{A_{1,1}} \end{bmatrix}}_{=A} \xrightarrow{R_{n} \to R_{n} - \frac{a_{n,1}}{a_{1,1}} R_{1}} \underbrace{\begin{bmatrix} -\frac{a_{1,1}}{0} & \frac{1}{a} & \frac{\mathbf{a}^{T}}{A_{1,1}} - \frac{1}{a_{1,1}} \mathbf{a} \mathbf{a}^{T} \\ -\frac{a_{1,1}}{a_{1,1}} & \frac{1}{a} & \frac{\mathbf{a}^{T}}{A_{1,1}} - \frac{1}{a_{1,1}} \mathbf{a} \mathbf{a}^{T} \end{bmatrix}}_{=\widetilde{A}}$$

#### Proposition 10.2.2

Let  $\alpha \in \mathbb{R}$ ,  $\mathbf{a} \in \mathbb{R}^n$ , and  $A \in \mathbb{R}^{n \times n}$ . If A is symmetric, then  $A - \alpha \mathbf{a} \mathbf{a}^T$  is also symmetric.

Let n be a positive integer, and let  $A = \begin{bmatrix} -\alpha & -\mathbf{a}^T & \mathbf{a}^T \\ \mathbf{a} & -\overline{A}^T & \mathbf{a} \end{bmatrix}$  (with  $\alpha \in \mathbb{R}$ ,  $\mathbf{a} \in \mathbb{R}^n$ , and  $A' \in \mathbb{R}^{n \times n}$ ) be a symmetric matrix in  $\mathbb{R}^{(n+1) \times (n+1)}$ . Then A is positive definite iff  $\alpha > 0$  and  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T$  is positive definite.

• **Remark:** If  $\alpha \neq 0$ , then Proposition 10.2.2 guarantees that the matrix  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T$  is symmetric, and Proposition 10.2.1 guarantees that

$$\begin{bmatrix} \alpha & \mathbf{a}^T \\ \mathbf{0} & A^T - \mathbf{a}^T \\ \mathbf{a}^T & A^T - \mathbf{a}^T \end{bmatrix}$$

is the matrix obtained from A by (sequentially or simultaneously) performing the elementary row operations of the form " $R_i \to R_i + \beta_i R_1$ " (for  $i \in \{2, ..., n\}$ ), with the  $\beta_i$ 's chosen so that, with the exception of the 1, 1-th entry, the leftmost column becomes zero.

# Theorem 10.2.6 [The Gaussian elim. test of positive definiteness]

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix. Then the following algorithm correctly determines whether A is positive definite.

- Step 0: Set  $A_1 := A$ , and go to Step 1.
- For  $j \in \{1, ..., n\}$ , and assuming the matrix  $A_j$  has already been generated, we proceed as follows.

## Step j:

- If the main diagonal of A<sub>j</sub> is **not** positive, then the algorithm returns the answer that A is **not** positive definite and terminates
- If the main diagonal of  $A_j$  is positive and j = n, then the algorithm returns the answer that A is positive definite and terminates.
- If the main diagonal of  $A_j$  is positive and  $j \leq n-1$ , then for each index  $i \in \{j+1,\ldots,n\}$ , we add a suitable scalar multiple of the j-th row of  $A_j$  to the i-th row of  $A_j$  so that the i,j-th entry of the matrix becomes zero; we call the resulting matrix  $A_{j+1}$ , and we go to Step j+1.

- The proof of Theorem 10.2.6 (the Gaussian elimination test of positive definiteness) follows from Theorem 10.2.3 (the recursive test of positive definiteness) via an induction.
  - Essentially, the steps of the Gaussian elim. test keep generating ever smaller "bottom right corners"  $(A' - \frac{1}{a}aa^T)$ .

Let n be a positive integer, and let  $A = \left| -\frac{\alpha}{\mathbf{a}} \left| \frac{\mathbf{a}'}{A'} - \right|$  (with  $\alpha \in \mathbb{R}$ ,  $\mathbf{a} \in \mathbb{R}^n$ , and  $A' \in \mathbb{R}^{n \times n}$ ) be a symmetric matrix in  $\mathbb{R}^{(n+1) \times (n+1)}$ . Then A is positive definite iff  $\alpha > 0$  and  $A' - \frac{1}{\alpha} a a^T$  is positive definite.

$$R_{2} \rightarrow R_{2} - \frac{a_{2,1}}{a_{1,1}} R_{1}$$

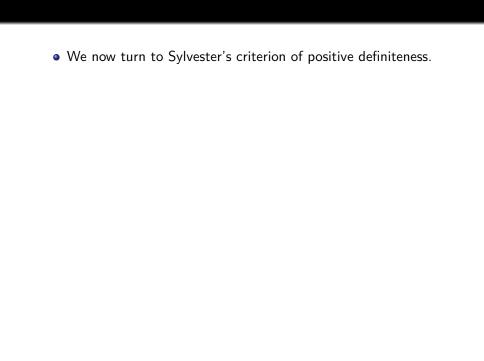
$$R_{3} \rightarrow R_{3} - \frac{a_{3,1}}{a_{1,1}} R_{1}$$

$$\vdots$$

$$R_{n} \rightarrow R_{n} - \frac{a_{n,1}}{a_{1,1}} R_{1}$$

$$\sim \begin{bmatrix} -\frac{a_{1,1}}{a} - \frac{1}{a_{1,1}} -$$

$$\underbrace{\begin{bmatrix} -\frac{\partial_1}{\partial} & --\frac{\mathbf{a}^T}{A_{1,1}} - \frac{\mathbf{a}^T}{\frac{1}{\partial_{1,1}}} \mathbf{a} \mathbf{a}^T & -\\ & = \widetilde{A} \end{bmatrix}}_{=\widetilde{A}}$$



- We now turn to Sylvester's criterion of positive definiteness.
- Given any  $n \times n$  matrix A, and any index  $k \in \{1, ..., n\}$ , we let  $A^{(k)}$  be the  $k \times k$  matrix in the upper left corner of A.

- We now turn to Sylvester's criterion of positive definiteness.
- Given any  $n \times n$  matrix A, and any index  $k \in \{1, ..., n\}$ , we let  $A^{(k)}$  be the  $k \times k$  matrix in the upper left corner of A.
- For example, if

$$A = \left[ \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right],$$

then we have that

$$A^{(1)} = \begin{bmatrix} 1 \end{bmatrix}, \qquad A^{(2)} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}, \qquad A^{(3)} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

- We now turn to Sylvester's criterion of positive definiteness.
- Given any  $n \times n$  matrix A, and any index  $k \in \{1, ..., n\}$ , we let  $A^{(k)}$  be the  $k \times k$  matrix in the upper left corner of A.
- For example, if

$$A = \left| \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right|,$$

then we have that

$$A^{(1)} = \begin{bmatrix} 1 \end{bmatrix}, \qquad A^{(2)} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}, \qquad A^{(3)} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

• Clearly, for any  $n \times n$  matrix A, we have that  $A^{(n)} = A$ .

- A is positive definite;
- $\emptyset$   $\det(A^{(1)}), \ldots, \det(A^{(n)}) > 0.$ 
  - Proof: Lecture Notes.

- A is positive definite;
- $\bigoplus \det(A^{(1)}), \ldots, \det(A^{(n)}) > 0.$ 
  - Proof: Lecture Notes.
  - Sylvester's criterion of positive definiteness essentially follows from the recursive test of positive definiteness (Theorem 10.2.3) by induction on the size of the matrix, where we also use the following:

- A is positive definite;
- $\oplus$   $\det(A^{(1)}), \ldots, \det(A^{(n)}) > 0.$ 
  - Proof: Lecture Notes.
  - Sylvester's criterion of positive definiteness essentially follows from the recursive test of positive definiteness (Theorem 10.2.3) by induction on the size of the matrix, where we also use the following:
    - the determinant of any positive definite matrix is positive (by Corollary 10.1.3(a));

- A is positive definite;
- $\emptyset$   $\det(A^{(1)}), \ldots, \det(A^{(n)}) > 0.$ 
  - Proof: Lecture Notes.
  - Sylvester's criterion of positive definiteness essentially follows from the recursive test of positive definiteness (Theorem 10.2.3) by induction on the size of the matrix, where we also use the following:
    - the determinant of any positive definite matrix is positive (by Corollary 10.1.3(a));
    - adding a scalar multiple of one row of a square matrix to another ("R<sub>i</sub> → R<sub>i</sub> + αR<sub>j</sub>") does not change the value of the determinant (by Theorem 7.3.2(c)).

#### Proposition 10.3.1

Let  $L \in \mathbb{R}^{n \times n}$  be a lower triangular matrix with a positive main diagonal. Then the matrix  $A := LL^T$  is positive definite.

• Proof: Lecture Notes (easy).

#### Proposition 10.3.1

Let  $L \in \mathbb{R}^{n \times n}$  be a lower triangular matrix with a positive main diagonal. Then the matrix  $A := LL^T$  is positive definite.

• Proof: Lecture Notes (easy).

# Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix  $A \in \mathbb{R}^{n \times n}$ , there exists a unique lower triangular matrix  $L \in \mathbb{R}^{n \times n}$  with a positive main diagonal and satisfying  $A = LL^T$ .

Proof: Next slide.

#### Proposition 10.3.1

Let  $L \in \mathbb{R}^{n \times n}$  be a lower triangular matrix with a positive main diagonal. Then the matrix  $A := LL^T$  is positive definite.

• Proof: Lecture Notes (easy).

## Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix  $A \in \mathbb{R}^{n \times n}$ , there exists a unique lower triangular matrix  $L \in \mathbb{R}^{n \times n}$  with a positive main diagonal and satisfying  $A = LL^T$ .

- Proof: Next slide.
- **Remark:** The main reason for interest in the Cholesky decomposition for positive definite matrices is that it allows us to solve equations of the form  $A\mathbf{x} = \mathbf{b}$  (where A is positive definite) faster, as well as to compute the inverse of A faster. We omit the details

## Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix  $A \in \mathbb{R}^{n \times n}$ , there exists a unique lower triangular matrix  $L \in \mathbb{R}^{n \times n}$  with a positive main diagonal and satisfying  $A = LL^T$ .

Proof.

## Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix  $A \in \mathbb{R}^{n \times n}$ , there exists a unique lower triangular matrix  $L \in \mathbb{R}^{n \times n}$  with a positive main diagonal and satisfying  $A = LL^T$ .

*Proof.* We proceed by induction on n.

## Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix  $A \in \mathbb{R}^{n \times n}$ , there exists a unique lower triangular matrix  $L \in \mathbb{R}^{n \times n}$  with a positive main diagonal and satisfying  $A = LL^T$ .

*Proof.* We proceed by induction on n.

For n=1, we fix a positive definite matrix  $A=\begin{bmatrix} a \end{bmatrix}$  in  $\mathbb{R}^{1\times 1}$ , and we note that a>0 (because A is positive definite). We set  $L:=\begin{bmatrix} \sqrt{a} \end{bmatrix}$ , and we observe that  $A=LL^T$ . The uniqueness of L is obvious.

## Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix  $A \in \mathbb{R}^{n \times n}$ , there exists a unique lower triangular matrix  $L \in \mathbb{R}^{n \times n}$  with a positive main diagonal and satisfying  $A = LL^T$ .

*Proof.* We proceed by induction on n.

For n=1, we fix a positive definite matrix  $A=\begin{bmatrix} a \end{bmatrix}$  in  $\mathbb{R}^{1\times 1}$ , and we note that a>0 (because A is positive definite). We set  $L:=\begin{bmatrix} \sqrt{a} \end{bmatrix}$ , and we observe that  $A=LL^T$ . The uniqueness of L is obvious.

Now, fix a positive integer n, and assume the theorem is true for positive definite matrices in  $\mathbb{R}^{n\times n}$ . Fix a positive definite matrix  $A\in\mathbb{R}^{(n+1)\times (n+1)}$ , and set

$$A = \left[ -\frac{\alpha}{\mathbf{a}} + \frac{\mathbf{a}^T}{A^T} \right],$$

where  $\alpha \in \mathbb{R}$ ,  $\mathbf{a} \in \mathbb{R}^n$ , and  $A' \in \mathbb{R}^{n \times n}$ .

## *Proof (continued).* Reminder: $A = \begin{bmatrix} \alpha & \mathbf{a}^T \\ \mathbf{a} & A^T \end{bmatrix}_{(n+1)\times(n+1)}$ .

*Proof (continued).* Reminder:  $A = \begin{bmatrix} -\alpha & \mathbf{a}' \\ \mathbf{a} & A' \end{bmatrix}_{(n+1)\times(n+1)}$ 

By Theorem 10.2.3, we have that  $\alpha > 0$  and that the matrix  $A' - \frac{1}{2}aa^T$  is positive definite. By the induction hypothesis, there exists a unique lower triangular matrix  $L' \in \mathbb{R}^{n \times n}$  with a positive main diagonal and s.t.  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T = L' L'^T$ . We now set

$$L := \left[ -\frac{\sqrt{\alpha}}{\frac{1}{\sqrt{\alpha}}} \mathbf{a} \stackrel{!}{=} \frac{\mathbf{0}}{L'} - \right]_{n \times n}.$$

Clearly, L is lower triangular with a positive main diagonal.

*Proof (continued).* Reminder:  $A = \begin{bmatrix} -\alpha & \mathbf{a}' \\ \mathbf{a} & A' \end{bmatrix}_{(n+1)\times(n+1)}$ .

By Theorem 10.2.3, we have that  $\alpha > 0$  and that the matrix  $A' - \frac{1}{2}aa^T$  is positive definite. By the induction hypothesis, there exists a unique lower triangular matrix  $L' \in \mathbb{R}^{n \times n}$  with a positive main diagonal and s.t.  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T = L' L'^T$ . We now set

$$L := \left[ -\frac{\sqrt{\alpha}}{\frac{1}{\sqrt{\alpha}}} \frac{1}{a} \cdot \frac{0}{L'} \cdot \right]_{n \times n}.$$

Clearly, L is lower triangular with a positive main diagonal. Moreover, we have that

$$LL^{T} = \begin{bmatrix} \sqrt{\alpha} & \mathbf{0}^{T} \\ \frac{1}{\sqrt{\alpha}} \mathbf{a} & L^{T} \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} & \frac{1}{\sqrt{\alpha}} \mathbf{a}^{T} \\ \mathbf{0} & L^{TT} \end{bmatrix}$$
$$= \begin{bmatrix} \alpha & \mathbf{a}^{T} \\ \mathbf{a} & \Delta \mathbf{a}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{a}^{T} \\ \mathbf{a} & L^{TT} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a} \mid \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T + L'L'' \end{bmatrix}$$

$$= \begin{bmatrix} \alpha \mid \mathbf{a}^T \\ \mathbf{a} \mid A' \end{bmatrix} = A.$$

It remains to show that L is unique.

It remains to show that L is unique. So far, our set-up is the following:

• 
$$A = \begin{bmatrix} -\alpha & \mathbf{a}^T \\ \mathbf{a} & \overline{A}^T \end{bmatrix}_{(n+1)\times(n+1)}$$
, •  $L = \begin{bmatrix} -\sqrt{\alpha} & \mathbf{0} \\ \frac{1}{\sqrt{\alpha}} \mathbf{a} & \overline{L}^T \end{bmatrix}_{n\times n}$ , where  $L'$  is the unique lower triangular matrix  $L' \in \mathbb{R}^{n\times n}$  with a

positive main diagonal and s.t.  $A' - \frac{1}{2}aa^T = L'L'^T$  (equivalently:

 $\frac{1}{a}$ aa<sup>T</sup> +  $L'L'^T = A'$ ).

It remains to show that L is unique. So far, our set-up is the following:

following:

• 
$$A = \begin{bmatrix} -\alpha & \mathbf{a}^T \\ \mathbf{a} & \overline{A'} \end{bmatrix}_{(n+1)\times(n+1)}$$
,

•  $L = \begin{bmatrix} -\sqrt{\alpha} & \mathbf{0} \\ \frac{1}{\sqrt{\alpha}} \mathbf{a} & \overline{L'} \end{bmatrix}_{n\times n}$ ,

where L' is the unique lower triangular matrix  $L' \in \mathbb{R}^{n \times n}$  with a positive main diagonal and s.t.  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T = L' L'^T$  (equivalently:

positive main diagonal and s.t. 
$$A' - \frac{1}{\alpha} a a' = L' L'$$
 (equivalently:  $\frac{1}{\alpha} a a^T + L' L'^T = A'$ ).

Suppose that  $L_1 \in \mathbb{R}^{(n+1)\times (n+1)}$  is a lower triangular matrix with a positive main diagonal and satisfying  $A = L_1L_1^T$ ; WTS  $L_1 = L$ .

It remains to show that L is unique. So far, our set-up is the following:

$$\bullet \ A = \begin{bmatrix} \alpha & \mathbf{a}^T \\ \mathbf{a} & \overline{A'} \end{bmatrix}_{(n+1)\times(n+1)}, \qquad \bullet \ L = \begin{bmatrix} \sqrt{\alpha} & \mathbf{0} \\ \frac{1}{\sqrt{\alpha}} \mathbf{a} & \overline{L'} \end{bmatrix}_{n\times n},$$

where L' is the unique lower triangular matrix  $L' \in \mathbb{R}^{n \times n' \times n'}$  with a positive main diagonal and s.t.  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T = L' L'^T$  (equivalently:  $\frac{1}{\alpha} \mathbf{a} \mathbf{a}^T + L' L'^T = A'$ ).

Suppose that  $L_1 \in \mathbb{R}^{(n+1)\times(n+1)}$  is a lower triangular matrix with a positive main diagonal and satisfying  $A = L_1L_1^T$ ; WTS  $L_1 = L$ . Set

$$L_1 = \begin{bmatrix} -\frac{\beta}{\mathbf{b}} & 0^T \\ -\frac{\zeta}{\mathbf{b}} & L_1^T \end{bmatrix},$$

where  $\beta$  is some positive real number, **b** is some vector in  $\mathbb{R}^n$ , and  $L'_1$  is some lower triangular matrix in  $\mathbb{R}^{n \times n}$  with a positive main diagonal.

It remains to show that L is unique. So far, our set-up is the following:

$$\bullet \ A = \begin{bmatrix} \alpha & \mathbf{a}^T \\ \mathbf{a} & \overline{A'} \end{bmatrix}_{(n+1)\times(n+1)}, \qquad \bullet \ L = \begin{bmatrix} \sqrt{\alpha} & 0 \\ \frac{1}{\sqrt{\alpha}} \mathbf{a} & \overline{L'} \end{bmatrix}_{n\times n},$$

where L' is the unique lower triangular matrix  $L' \in \mathbb{R}^{n \times n' \times n'}$  with a positive main diagonal and s.t.  $A' - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T = L' L'^T$  (equivalently:  $\frac{1}{\alpha} \mathbf{a} \mathbf{a}^T + L' L'^T = A'$ ).

Suppose that  $L_1 \in \mathbb{R}^{(n+1)\times(n+1)}$  is a lower triangular matrix with a positive main diagonal and satisfying  $A = L_1L_1^T$ ; WTS  $L_1 = L$ . Set

$$L_1 = \begin{bmatrix} -\frac{\beta}{\mathbf{b}} & \mathbf{0}^T \\ -\frac{L_1^T}{\mathbf{b}} \end{bmatrix},$$

where  $\beta$  is some positive real number, **b** is some vector in  $\mathbb{R}^n$ , and  $L_1'$  is some lower triangular matrix in  $\mathbb{R}^{n\times n}$  with a positive main diagonal. Then

$$A = L_1 L_1^T = \begin{bmatrix} -\beta & \mathbf{0}^T \\ \mathbf{b} & L_1^T \end{bmatrix} \begin{bmatrix} -\beta & \mathbf{b}^T \\ \mathbf{0} & L_1^T \end{bmatrix} = \begin{bmatrix} -\beta^2 & \beta \mathbf{b}^T \\ -\beta \mathbf{b} & b - \mathbf{b} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\beta^2}{\beta \mathbf{b}} & \frac{\beta \mathbf{b}^T}{\mathbf{b} \mathbf{b}^T} + \underline{L_1^T} \underline{L_1^T}^T \end{bmatrix} = A = \begin{bmatrix} \frac{\alpha}{\mathbf{a}} & \frac{\mathbf{a}^T}{1} & \mathbf{a}^T \\ \frac{\alpha}{\mathbf{a}} & \frac{1}{\alpha} & \mathbf{a}^T + \underline{L}^T \underline{L}^T \end{bmatrix}.$$

$$\begin{bmatrix} \frac{\beta^2}{\beta \mathbf{b}} & \frac{\beta \mathbf{b}^T}{b \mathbf{b}^T} + \underline{L_1^T} \underline{L_1^T}^T \end{bmatrix} = A = \begin{bmatrix} \frac{\alpha}{\mathbf{a}} & \mathbf{a}^T \\ \frac{1}{\alpha} \mathbf{a} & T + \underline{L_1^T} \underline{L_1^T}^T \end{bmatrix}.$$

But then 
$$\beta^2 = \alpha$$
,  $\beta \mathbf{b} = \mathbf{a}$ , and  $\mathbf{b} \mathbf{b}^T + L_1' L_1'^T = \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T + L' L'^T$ .

$$\begin{bmatrix}
\frac{\beta^2}{\beta \mathbf{b}} & \mathbf{b} \mathbf{b}^T + \underline{L}_1^T \underline{L}_1^T \\
\end{bmatrix} = A = \begin{bmatrix}
\frac{\alpha}{\mathbf{a}} & \mathbf{a}^T \\
\frac{1}{\alpha} \mathbf{a} \mathbf{a}^T + \underline{L}_1^T \underline{L}_1^T
\end{bmatrix}.$$

But then  $\beta^2 = \alpha$ ,  $\beta \mathbf{b} = \mathbf{a}$ , and  $\mathbf{b}\mathbf{b}^T + L_1'L_1'^T = \frac{1}{\alpha}\mathbf{a}\mathbf{a}^T + L'L'^T$ . This, together with the fact that  $\beta > 0$ , yields the fact that  $\beta = \sqrt{\alpha}$ ,  $\mathbf{b} = \frac{1}{\sqrt{\alpha}}\mathbf{a}$ , and  $L_1'L_1'^T = L'L'^T$ .

$$\left[ -\frac{\beta^2}{\beta \mathbf{b}} \Big| \frac{\beta \mathbf{b}^T}{\mathbf{b} \mathbf{b}^T} + \underline{L_1'} \underline{L_1'^T} \cdot \right] = A = \left[ -\frac{\alpha}{\mathbf{a}} \Big| \frac{\mathbf{a}^T}{\frac{1}{\alpha} \mathbf{a} \mathbf{a}^T} + \underline{L'} \underline{L'^T} \cdot \right].$$

But then  $\beta^2 = \alpha$ ,  $\beta \mathbf{b} = \mathbf{a}$ , and  $\mathbf{b}\mathbf{b}^T + L_1'L_1'^T = \frac{1}{\alpha}\mathbf{a}\mathbf{a}^T + L'L'^T$ . This, together with the fact that  $\beta > 0$ , yields the fact that  $\beta = \sqrt{\alpha}$ ,  $\mathbf{b} = \frac{1}{\sqrt{\alpha}}\mathbf{a}$ , and  $L_1'L_1'^T = L'L'^T$ .

Moreover, by the uniqueness of L', we have that  $L'_1 = L'$ .

• Indeed, L' is the unique lower triangular matrix in  $\mathbb{R}^{n\times n}$  with a positive main diagonal s.t.  $A'-\frac{1}{\alpha}\mathbf{aa}^T=L'L'^T$ . Since  $L'_1$  is a lower triangular matrix in  $\mathbb{R}^{n\times n}$  with a positive main diagonal s.t.  $L'_1L'_1^T=L'L'^T=A'-\frac{1}{\alpha}\mathbf{aa}^T$ , the uniqueness of L' guarantees that  $L'_1=L'$ .

$$\left[ -\frac{\beta^2}{\beta \mathbf{b}} \Big| \frac{\beta \mathbf{b}^T}{\mathbf{b} \mathbf{b}^T} + \underline{L_1'} \underline{L_1'T} \cdot \right] = A = \left[ -\frac{\alpha}{\mathbf{a}} \Big| \frac{\mathbf{a}^T}{\frac{1}{\alpha} \mathbf{a} \mathbf{a}^T} + \underline{L'} \underline{L'}^T \cdot \right].$$

But then  $\beta^2 = \alpha$ ,  $\beta \mathbf{b} = \mathbf{a}$ , and  $\mathbf{b} \mathbf{b}^T + L_1' L_1'^T = \frac{1}{\alpha} \mathbf{a} \mathbf{a}^T + L' L'^T$ . This, together with the fact that  $\beta > 0$ , yields the fact that  $\beta = \sqrt{\alpha}$ ,  $\mathbf{b} = \frac{1}{\sqrt{\alpha}} \mathbf{a}$ , and  $L_1' L_1'^T = L' L'^T$ .

Moreover, by the uniqueness of L', we have that  $L'_1 = L'$ .

• Indeed, L' is the unique lower triangular matrix in  $\mathbb{R}^{n\times n}$  with a positive main diagonal s.t.  $A'-\frac{1}{\alpha}\mathbf{a}\mathbf{a}^T=L'L'^T$ . Since  $L'_1$  is a lower triangular matrix in  $\mathbb{R}^{n\times n}$  with a positive main diagonal s.t.  $L'_1L'^T_1=L'L'^T=A'-\frac{1}{\alpha}\mathbf{a}\mathbf{a}^T$ , the uniqueness of L' guarantees that  $L'_1=L'$ .

Thus,

$$L_1 = \begin{bmatrix} -\frac{\beta}{\mathbf{b}} & \mathbf{0}^T \\ \frac{1}{\mathbf{b}} & L_1^T \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{\alpha}}{\sqrt{\alpha}} & \mathbf{0} \\ \frac{1}{\sqrt{\alpha}} & \frac{1}{\mathbf{b}} & L_1^T \end{bmatrix} = L.$$

This proves the uniqueness of L.  $\square$ 

## Theorem 10.3.2 [Cholesky decomposition]

For every positive definite matrix  $A \in \mathbb{R}^{n \times n}$ , there exists a unique lower triangular matrix  $L \in \mathbb{R}^{n \times n}$  with a positive main diagonal and satisfying  $A = LL^T$ .

- There is also an algorithm that, for a positive definite matrix  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  in  $\mathbb{R}^{n \times n}$ , computes the Cholesky decomposition of A, i.e. computes the (unique) lower triangular matrix  $L = \begin{bmatrix} \ell_{i,j} \end{bmatrix}_{n \times n}$  in  $\mathbb{R}^{n \times n}$  with a positive main diagonal and satisfying  $A = LL^T$ .
- We construct the matrix *L* column by column, from left to right. Each column is constructed from top to bottom.
  - Algorithm: next slide.

- We construct the first (i.e. leftmost) column of L as follows:
  - $\ell_{1,1} := \sqrt{a_{1,1}},$   $\ell_{1,1} := a_{i,1}$  for all  $i \in \{2, \dots, n\}$
  - $\ell_{i,1} := \frac{a_{i,1}}{\sqrt{a_{1,1}}}$  for all  $i \in \{2, \dots, n\}$ .
- ② For all  $j \in \{2, ..., n\}$ , assuming we have constructed the first (i.e. leftmost) j-1 columns of L, we construct the j-th column of L as follows (from top to bottom):
  - $\ell_{i,j} := 0$  for all  $i \in \{1, \dots, j-1\}$ ,
  - $\ell_{j,j} := 0$  for all  $i \in \{1, \dots, j-1\}$ •  $\ell_{j,j} := \sqrt{a_{j,j} - \sum_{k=1}^{j-1} \ell_{j,k}^2}$ ,
  - $\ell_{i,j} := \frac{1}{\ell_{j,j}} \left( a_{i,j} \sum_{k=1}^{j-1} \ell_{i,k} \ell_{j,k} \right)$  for all  $i \in \{j+1, \dots, n\}$ .

- We construct the first (i.e. leftmost) column of L as follows:
  - $\ell_{1,1} := \sqrt{a_{1,1}}$ ,
  - $\ell_{i,1}^{1,1} := \frac{V_{a_{i,1}}}{\sqrt{a_{1,1}}}$  for all  $i \in \{2,\ldots,n\}$ .
- ② For all  $j \in \{2, ..., n\}$ , assuming we have constructed the first (i.e. leftmost) j 1 columns of L, we construct the j-th column of L as follows (from top to bottom):
  - $\bullet \ \ell_{i,j} := 0 \text{ for all } i \in \{1, \dots, j-1\},$
  - $\bullet \ \ell_{j,j} := \sqrt{a_{j,j} \sum\limits_{k=1}^{j-1} \ell_{j,k}^2},$
  - $\ell_{i,j} := \frac{1}{\ell_{j,j}} \left( a_{i,j} \sum_{k=1}^{j-1} \ell_{i,k} \ell_{j,k} \right)$  for all  $i \in \{j+1, \dots, n\}$ .
  - We omit the proof of correctness of the construction above, but it essentially follows from Theorem 10.2.3 and from the proof of Theorem 10.3.2.
  - Numerical example: Lecture Notes.