Linear Algebra 2

Lecture #23

Diagonalization

Irena Penev

April 30, 2025



@ This lecture has two parts:



@ This lecture has two parts:
@ Eigenvectors and linear independence. Eigenbases



@ This lecture has two parts:

@ Eigenvectors and linear independence. Eigenbases
@ Diagonalization



@ Eigenvectors and linear independence. Eigenbases



@ Eigenvectors and linear independence. Eigenbases

Definition

For a finite-dimensional vector space V over a field F and a linear
function f : V — V/, an eigenbasis of V' associated with f is a
basis B of V s.t. all vectors in B are eigenvectors of f.

Definition

For an field F and a matrix A € F"*", an eigenbasis of F"
associated with A is a basis B of F” s.t. all vectors in B are
eigenvectors of A.
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@ Eigenvectors and linear independence. Eigenbases

Definition

For a finite-dimensional vector space V over a field F and a linear
function f : V — V/, an eigenbasis of V' associated with f is a
basis B of V s.t. all vectors in B are eigenvectors of f.

Definition

For an field F and a matrix A € F"*", an eigenbasis of F"
associated with A is a basis B of F” s.t. all vectors in B are
eigenvectors of A.

@ Eigenbases do not always exist, and one of our goals in this
section is to determine when they do and do not exist.

@ As we shall see (later!), eigenbases play a crucial role in
matrix “diagonalization.”



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.
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{v1,...,vj,viy1} is linearly independent.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof. We will prove inductively that for all i € {0, ..., k}, the set

{v1,...,v;} is linearly independent.
For i = 0, we have that {v1,...,v;} =), which is obviously a
linearly independent set.
Now, fix an index i € {0,..., k — 1}, and assume inductively that
the set {v1,...,v;} is linearly independent. We must show that
{v1,...,vj,viy1} is linearly independent. Fix scalars
a1,...,04, Qi1 € F s.t.

apvy + -+ avi +ajpvipn = 0.

WTSalz---:a;:af+1:0.
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Let V be a vector space over a field IF, let f : V — V be a linear
function, let A1,..., Ak € IF be pairwise distinct eigenvalues of f,
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@ Ajroavi+ -+ Aipraivi + Aipraipavipr = 0.



Proposition 8.4.1

Let V be a vector space over a field IF, let f : V — V be a linear

function, let A1,..., Ak € IF be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{vi1,...,vk} is a linearly independent set.

Proof (continued). Reminder: {vi,...,v;} is linearly independent;
vy + -+ aivi + ajrvier = 0, WTS

a; = =a; =aj41 =0.

If we multiply both sides of the equation above by Aj;1, we obtain
@ Aijioqvi+ -+ Ajaivi + Aip1aigvipr = 0.

If, on the other hand, we apply the function f to both sides and
also use the fact that £(0) = 0, then we obtain

@ f(avi+---+av+ajpviyr) = 0.



Proposition 8.4.1

Let V be a vector space over a field I, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). We now compute:

0 @ flavi + - 4 v + @j11Vit1)
(;) alf(vl)+..._|_aif(v,')+0£i+1f(vi+l)
(x)

= o Av1 + -+ QA Qi A 1Vig,

where (*) follows from the linearity of f, and (**) follows from the
fact that vi,...,vj,v;+1 are eigenvectors of f associated with
eigenvalues A1, ..., Aj, A\jy1, respectively.
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function, let A1,..., Ak € IF be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{vi1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
Q Njiaavi+ -+ Apaivi + Ajieipavip = 0;
Q f(avi+---+ avi +aifvip) = 0;
Q@ aghvi+ -+ aidivi + ajp1Aipavipr = 0.



Proposition 8.4.1

Let V be a vector space over a field IF, let f : V — V be a linear
function, let A1,..., Ak € IF be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{vi1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
Q Njiaavi+ -+ Apaivi + Ajieipavip = 0;
Q f(avi+---+ avi +aifvip) = 0;
Q@ aghvi+ -+ aidivi + ajp1Aipavipr = 0.
Combining (1) and (3), we obtain:
Q1AIVL + o+ AV 1AV

= ANigy1oavy + -+ AoV Ao,



Proposition 8.4.1

Let V be a vector space over a field IF, let f : V — V be a linear
function, let A1,..., Ak € IF be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{vi1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
Q Nij1a1vi + -+ Aipraivi + Aipaipavizr = 0;
Q f(aqvi+ -+ ajvi + ajp1vit1) = 0;
Q@ aghvi+ -+ aidivi + ajp1Aipavipr = 0.
Combining (1) and (3), we obtain:
Q1AIVL + o+ AV 1AV
= ANigy1oavy + -+ AoV Ao,

By subtracting one side from the other and factoring, we get

a1(Ar — Aiga)ve + -+ (A — Aig)vi = 0.
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Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
at(A = Aig)vi + -+ ai(Ai = Aij)vi = 0

By the ind. hyp., vi,...,v; are linearly independent, and it follows
that ag(A1 — Aip1) = - = ai(Ai — A\ip1) = 0.
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function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
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Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
at(A = Aig)vi + -+ ai(Ai = Aij)vi = 0

By the ind. hyp., vi,...,v; are linearly independent, and it follows
that 041(/\1 — )\,’+1) == Oé,'(/\,' — )\iJr]_) = 0. Since

Al — )\,’.;,.1, ey /\,' — )\,‘.;,.1 are all non-zero (because /\1, Ceey )\,’, )\,‘.;,.1
are pairwise distinct), we deduce that a3 = --- = a; = 0. Plugging
this into our equation ajvi + -+ 4+ a;v; + aji1vipr = 0, we get

ajrvisr = 0.

But v;41 is an eigenvector of f, and so by definition, v;+1 # 0. So,
Qi1 = 0. ThUS, A =+ =0 = Qj41 = 0.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:

at(A = Aig)vi + -+ ai(Ai = Aij)vi = 0
By the ind. hyp., vi,...,v; are linearly independent, and it follows
that 041(/\1 — )\,’+1) =...= Oé,'(/\,' — )\iJr]_) = 0. Since
Al — )\,’.;,.1, ey /\,' — )\,‘.;,.1 are all non-zero (because /\1, Ceey )\,’, )\,‘.;,.1
are pairwise distinct), we deduce that a3 = --- = a; = 0. Plugging
this into our equation ajvi + -+ 4+ a;v; + aji1vipr = 0, we get

ajrvisr = 0.

But v;41 is an eigenvector of f, and so by definition, v;+1 # 0. So,
ajr1 =0. Thus, a3 = -+ = a; = ajt1 = 0. So, {vi,...,vi,vit1}
is linearly independent. This completes the induction. [J
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Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.

Proposition 8.4.2

Let V be a vector space over a field I, let f : V — V be a linear
function, and let A1, Ao, ..., A\ € F be pairwise distinct
eigenvalues of f. For each i € {1,... k}, let vi1,...,v; be
linearly independent eigenvectors of f associated with the
eigenvalue \;. Then the eigenvectors

V171, e ,V17t1,V271, Ce ,V27t2, 0009 Ufkilyooao ,Vk‘t,<
are linearly independent.




Proof.



Proof. Fix a1 1,..., 006,001, ., 02 5y vy Ok 1se ., okt €EF
s.t.

M=

(Oéhlvi,l ++ Oéi,tivf,t,) = 0.
1
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@ Vo i=Qp1Vo1 t+ Q2 V21,

@ Vi = Q1Vk1 o Qo Vit
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i€{l,...,k}, the vector v; is a linear combination of vectors in
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Proof. Fix QL Ty s Oty Q215w ey Q2 gy e ey O Ty ey Q. t, € F

s.t. K

> (Oéi,lvi,l o+ Oéi,t,-vf,t,-) = 0.
i=1

Vie{l,... k}: setvi:=aj1vi1+ -+ ajyViy, thatis
@ Vi :=Q11Vi1+ -+ a1V,

@ Vo i=Qp1Vo1 t+ Q2 V21,

@ Vi = g iVk1 Tt Qe Vit -
So, vi +vo + --- 4+ v, = 0. Now, note that for each
i€{l,..., k}, the vector v; is a linear combination of vectors in
E\,(f); since Ey.(f) is a subsapce of V/, it follows that v; € E),(f).
Consequently, Vi € {1,..., k}: v; is either 0 or an eigenvector of f
associated with the eigenvalue A;. WIS vi =vo =--- =v, =0.



Proof. Fix QL Ty s Oty Q215w ey Q2 gy e ey O Ty ey Q. t, € F

s.t. K

'21 (Oéi,lvi,l ++ Oéi,t,-vf,t,-) = 0.
=
Vie{l,... k}: setvi:=aj1vi1+ -+ ajyViy, thatis

@ Vi :=Q11Vi1+ -+ a1V,

@ Vo i=Qp1Vo1 t+ Q2 V21,

@ Vi = g iVk1 Tt Qe Vit -
So, vi +vo + --- 4+ v, = 0. Now, note that for each
i€{l,..., k}, the vector v; is a linear combination of vectors in
E\,(f); since Ey.(f) is a subsapce of V/, it follows that v; € E),(f).
Consequently, Vi € {1,..., k}: v; is either 0 or an eigenvector of f
associated with the eigenvalue A;. WIS vi =vo =--- =v, =0.
Suppose otherwise.



Proof. Fix QL Ty s Oty Q215w ey Q2 gy e ey O Ty ey Q. t, € F
s.t. K

> (Oéi,lvi,l o+ Oéi,t,-vf,t,-) = 0.

i=1

Vie{l,... k}: setvi:=aj1vi1+ -+ ajyViy, thatis
@ Vi :=Q11Vi1+ -+ a1V,

@ Vo i=Qp1Vo1 t+ Q2 V21,

@ Vi = g iVk1 Tt Qe Vit -
So, vi +vo + --- 4+ v, = 0. Now, note that for each
i€{l,...,k}, the vector v; is a linear combination of vectors in
E\,(f); since Ey.(f) is a subsapce of V/, it follows that v; € E),(f).
Consequently, Vi € {1,..., k}: v; is either 0 or an eigenvector of f

associated with the eigenvalue A;. WIS vi =vo =--- =v, =0.
Suppose otherwise. By symmetry, WMA 3¢ € {1,...,k} s.t.
vi,...,Vp are all non-zero (and are consequently eigenvectors of f

associated with A1,...,\), while vpiq, ..., vy are all zero.



Proof (continued). So,
vitootv = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.



Proof (continued). So,
vitootv = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that vi = --- = v, = 0.



Proof (continued). So,
vitootv = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that vi = --- = v, = 0. So, for all indices
i€{l,...,k}, we have that

aivii+ -t aigviy = 0



Proof (continued). So,
vitootv = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that vi = --- = v, = 0. So, for all indices
i€{l,...,k}, we have that

aivii+ -t aigviy = 0

since vectors v;1,...,V; are linearly independent, it follows that
aj1=-=aj =0



Proof (continued). So,
vitootv = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that vi = --- = v, = 0. So, for all indices
i€{l,...,k}, we have that

aivii+ -t aigviy = 0

since vectors v;1,...,V; are linearly independent, it follows that
aj1=-=aj =0

Since this holds for all indices i € {1,..., k}, we deduce that the
eigenvectors

Vil -5V, V21y o s V2 ity e oy Vi Ty o e oy Vit

are linearly independent, which is what we needed to show. [



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.

Proposition 8.4.2

Let V be a vector space over a field I, let f : V — V be a linear
function, and let A1, Ao, ..., A\ € F be pairwise distinct
eigenvalues of f. For each i € {1,... k}, let vi1,...,v; be
linearly independent eigenvectors of f associated with the
eigenvalue \;. Then the eigenvectors

V171, e ,V17t1,V271, Ce ,V27t2, 0009 Ufkilyooao ,Vk‘t,<
are linearly independent.




Theorem 8.4.3

Let V be a non-trivial, finite-dimensional vector space over a field
F, and set n:=dim(V). Let f : V — V be a linear function, let
A1, ..., Ak be all (distinct) the eigenvalues of f, and let By, ..., By
be bases of the associated eigenspaces Ey, (f), ..., Ex(f),
respectively. Set B := B1 U---U By. Then all the following hold:

@ B is a linearly independent set of eigenvectors of f;

@ dim(Ey (f)) + - +dim(E\ (f)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of f is at most n;

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V' associated
with the linear function f.



Theorem 8.4.3

Let V be a non-trivial, finite-dimensional vector space over a field
IF, and set n:=dim(V). Let f : V — V be a linear function, let
A1, ..., Ak be all (distinct) the eigenvalues of f, and let By, ..., Bk
be bases of the associated eigenspaces Ey, (f), ..., Ex (),
respectively. Set B := By U---U Bg. Then all the following hold:

@ B is a linearly independent set of eigenvectors of f;

@ dim(Ey,(f)) + -+ dim(Ey, (f)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of f is at most n;

Proof. Part (a) follows immediately from Proposition 8.4.2.




Theorem 8.4.3

Let V be a non-trivial, finite-dimensional vector space over a field
IF, and set n:=dim(V). Let f : V — V be a linear function, let
A1, ..., Ak be all (distinct) the eigenvalues of f, and let By, ..., Bk
be bases of the associated eigenspaces Ey, (f), ..., Ex (),
respectively. Set B := By U---U Bg. Then all the following hold:

@ B is a linearly independent set of eigenvectors of f;

@ dim(Ey,(f)) + -+ dim(Ey, (f)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of f is at most n;

Proof. Part (a) follows immediately from Proposition 8.4.2.

Part (b) follows from (a) and from the fact that, by
Theorem 3.2.17(a), any linearly independent set of vectors in an
n-dimensional vector space contains at most n vectors.




Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c).
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@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c). Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c). Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n. Then
B is a linearly independent set of size n in the n-dimensional vector
space V.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c). Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n. Then
B is a linearly independent set of size n in the n-dimensional vector
space V. So, by Corollary 3.2.20(a), B is a basis of V.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c). Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n. Then
B is a linearly independent set of size n in the n-dimensional vector
space V. So, by Corollary 3.2.20(a), B is a basis of V. Since all
vectors in B are eigenvectors of f, it follows that B is an eigenbasis
of V associated with f.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f;
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@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE),(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EAi(f)> many vectors from Ej () for any index

ied{l,... k}.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE),(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EAi(f)> many vectors from Ej () for any index

i€{l,...,k}. So, |C] <dim(E\(f)) + - +dim(E\(f)).



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE),(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than

dim(EAi(f)> many vectors from Ej () for any index

ie{l,...,k}. So, |C| < dim(E)\l(f)) +-~+dim(E,\k(f)). But
now we have that

n = |C| < dim(E\(f)) +---+dim(Ey,()) (2) n,



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE),(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EAi(f)> many vectors from Ej () for any index

ie{l,...,k}. So, |C| < dim(E)\l(f)) +-~+dim(E,\k(f)). But
now we have that

n = |C| < dim(E\(f)) +---+dim(Ey,()) (2 n,

and it follows that dim(Ey, (f)) + - -+ +dim(E\,(f)) = n,



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE),(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EAi(f)> many vectors from Ej () for any index

ie{l,...,k}. So, [C] <dim(E)(f)) +---+dim(Ey(f)). But
now we have that
(b)
n = |C| < dim(Ex(f)) +---+dim(E\ (f)) < n,
and it follows that dim(Ey, (f)) + - -+ +dim(E\,(f)) = n, i.e. the
sum of geometric multiplicities of the eigenvalues of f is n. This
proves (c).



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V' associated
with the linear function f.

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n,



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V' associated
with the linear function f.

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n, and so by (c), V has an eigenbasis associated with f,
and B is one such eigenbasis.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V' associated
with the linear function f.

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n, and so by (c), V has an eigenbasis associated with f,
and B is one such eigenbasis.

For the converse, assume that V' has an eigenbasis C associated
with f.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V' associated
with the linear function f.

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n, and so by (c), V has an eigenbasis associated with f,
and B is one such eigenbasis.

For the converse, assume that V' has an eigenbasis C associated
with f. Let A1,..., Ak be the eigenvalues of f, with geometric
multiplicities gy, . . ., gk, respectively, and algebraic multiplicities

ai, ..., ag, respectively.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated

with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gx = n.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated

with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gk = n. On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.

ap+---+ax<n



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gk = n. On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.
a; + -+ ax < n. But by Theorem 8.2.17, the geometric
multiplicity of an eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue, that is, g; < a; for all indices
ied{l,...,n}.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gk = n. On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.
a; + -+ ax < n. But by Theorem 8.2.17, the geometric
multiplicity of an eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue, that is, g; < a; for all indices
i€{l,...,n}. We now have that

n = g+ +g < a+---+a < n,



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gk = n. On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.
a; + -+ ax < n. But by Theorem 8.2.17, the geometric
multiplicity of an eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue, that is, g; < a; for all indices
i€{l,...,n}. We now have that

n = g+ +g < aat--+a < n

and we deduce that a; + - -+ + a, = n and that g; = a; for all
i€{l,..., k}. This proves (d). O



Theorem 8.4.3

Let V be a non-trivial, finite-dimensional vector space over a field
F, and set n:=dim(V). Let f : V — V be a linear function, let
A1, ..., Ak be all (distinct) the eigenvalues of f, and let By, ..., By
be bases of the associated eigenspaces Ey, (f), ..., Ex(f),
respectively. Set B := B1 U---U By. Then all the following hold:

@ B is a linearly independent set of eigenvectors of f;

@ dim(Ey (f)) + - +dim(E\ (f)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of f is at most n;

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V' associated
with the linear function f.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n := dim(V/). If a linear function f : V — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof.
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Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n := dim(V/). If a linear function f : V — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n := dim(V/). If a linear function f : V — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(Ey,(f)) > 1
forall i € {1,...,n}.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n := dim(V/). If a linear function f : V — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(Ey,(f)) > 1
for all i € {1,...,n}. Consequently,
dim(Ex,(f)) + -+ + dim(Ey,(f)) > n.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n := dim(V/). If a linear function f : V — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(Ey,(f)) > 1
for all i € {1,...,n}. Consequently,
dim(Ex,(f)) + -+ + dim(Ey,(f)) > n.

On the other hand, Theorem 8.4.3(b) guarantees that
dim(Ey,(f)) + -+ + dim(Ey,(f)) < n.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n := dim(V/). If a linear function f : V — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(Ey,(f)) > 1
for all i € {1,...,n}. Consequently,
dim(Ex,(f)) + -+ + dim(Ey,(f)) > n.

On the other hand, Theorem 8.4.3(b) guarantees that
dim(Ey,(f)) + -+ + dim(Ey,(f)) < n.

Thus, dim(Ey,(f)) + --- +dim(Ey,(f)) = n,



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n := dim(V/). If a linear function f : V — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(Ey,(f)) > 1
for all i € {1,...,n}. Consequently,

dim(Ex,(f)) + -+ + dim(Ey,(f)) > n.

On the other hand, Theorem 8.4.3(b) guarantees that
dim(Ey,(f)) + -+ + dim(Ey,(f)) < n.

Thus, dim(Ey,(f)) + - -- +dim(Ey,(f)) = n, and so by
Theorem 8.4.3(c), V has an eigenbasis associated with f. [



@ We would now like to “translate” Theorem 8.4.3 and
Corollary 8.4.4 into the language of matrices.



e We would now like to “translate” Theorem 8.4.3 and
Corollary 8.4.4 into the language of matrices.
@ Given a field F and a square matrix A € F"™*", we can define
fa:F" — F" by setting fa(v) = Av for all v € F".
e So, f4 is linear, and its standard matrix is A.



e We would now like to “translate” Theorem 8.4.3 and
Corollary 8.4.4 into the language of matrices.
@ Given a field F and a square matrix A € F"™*", we can define
fa:F" — F" by setting fa(v) = Av for all v € F".
e So, f4 is linear, and its standard matrix is A.

@ We can apply Theorem 8.4.3 and Corollary 8.4.4 to the linear
function fa, and then get the same result for A “for free."

o Next two slides!



Theorem 8.4.5

Let IF be a field, and let A € F"™*". Let A1,..., A« be all the
(distinct) eigenvalues of A, and let By, ..., Bk be bases of the
associated eigenspaces Ey, (A),. .., Ex (A), respectively. Set
B:=B1U---UDByg. Then all the following hold:

@ B is a linearly independent set of eigenvectors of A;

@ dim(Ey, (A)) + - +dim(Ey,(A)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of A is at most n;

@ T has an eigenbasis associated with A iff the sum of
geometric multiplicities of the eigenvalues of A is n, and in
this case, B is such an eigenbasis;

@ [F" has an eigenbasis associated with A iff the sum of
algebraic multiplicities of the eigenvalues of A is n, and the
geometric multiplicity of each eigenvalue is equal to its
algebraic multiplicity; in this case, B is an eigenbasis of F"
associated with the matrix A.



Corollary 8.4.6

Let IF be a field, and let A € F"*". If A has n distinct eigenvalues,
then [F" has an eigenbasis associated with A.




@ Diagonalization



@ Diagonalization

Definition

For a field F, a square matrix D € F"*" is diagonal if all its entries
off the main diagonal are zero (the entries on the main diagonal
may or may not be zero). For scalars A1, A2, ..., A, €T,

D(A1, A2, ..., Ap) is the n X n matrix with A1, A2,..., A, on the
main diagonal (appearing in that order) and 0's everywhere else,
i.e.

A O 0
0 X 0
D(>\1,>\2,...,>\n) = .
0 O An
= [ /\181 /\ne,, } s

where as usual, ey, ..., e, are the standard basis vectors of F".

\
A



@ Diagonalization

Definition

For a field F, a square matrix D € F"*" is diagonal if all its entries
off the main diagonal are zero (the entries on the main diagonal
may or may not be zero). For scalars A1, A2, ..., A, €T,

D(A1, A2, ..., Ap) is the n X n matrix with A1, A2,..., A, on the
main diagonal (appearing in that order) and 0's everywhere else,
i.e.

A1 O 0
0 X 0
D(>\1,>\2,...,>\n) = .
0 O An
= [ /\181 /\ne,, } s
where as usual, ey, ..., e, are the standard basis vectors of F".

@ Note that diagonal matrices are, in particular, triangular.

\
A



@ Diagonalization

Definition

For a field F, a square matrix D € F"*" is diagonal if all its entries
off the main diagonal are zero (the entries on the main diagonal
may or may not be zero). For scalars A1, A2, ..., A, €T,

D(A1, A2, ..., Ap) is the n X n matrix with A1, A2,..., A, on the
main diagonal (appearing in that order) and 0's everywhere else,
i.e.

A1 O 0
0 X 0
D(>\1,>\2,...,>\n) = .
0 O An
= [ /\181 /\ne,, } s
where as usual, ey, ..., e, are the standard basis vectors of F".

@ Note that diagonal matrices are, in particular, triangular.
@ So, Propositions 7.3.1 and 8.2.7 (next slide) apply.

\
A



Proposition 7.3.1

Let ¥ be a field, and let A= [ a;; | be a triangular matrix in
F"*". Then det(A) = [[i_; aij = a1,182,2 . . . an,n, that is, det(A) is
equal to the product of entries on the main diagonal of A.




Proposition 7.3.1

Let ¥ be a field, and let A= [ a;; | be a triangular matrix in
F"*". Then det(A) = [[i_; aij = a1,182,2 . . . an,n, that is, det(A) is
equal to the product of entries on the main diagonal of A.

Proposition 8.2.7

Let F be a field, and let A= [ a;; |
F"*" Then the characteristic polynomial of A is

pa(A) = ﬁ (A—ai) = (A—a11)(A—a22)...(A—ann),

i=

be a triangular matrix in
nxn

the eigenvalues of A are precisely the entries of A on its main
diagonal, and moreover, the algebraic multiplicity of each
eigenvalue is precisely the number of times that it appears on the
main diagonal of A. Consequently, the spectrum of A is
{a11,822,...,ann}, i.e. the multiset formed precisely by the main
diagonal entries of A, with each number appearing in the spectrum
of A the same number of times as on the main diagonal of A.




@ Thus, for scalars A1,..., A\, € F (where F is a field), and for
the diagonal matrix D := D(A1,...,A,), we have the
following:

o det(D) = A1... Ay
o pp(A)=(A=A1)...(A=Xp).



@ Thus, for scalars A1,..., A\, € F (where F is a field), and for
the diagonal matrix D := D(A1,...,A,), we have the
following:

o det(D) = A1... Ay
o pp(A)=(A=A1)...(A=Xp).

@ We now state three simple propositions about diagonal
matrices.
e The proofs are easy and we omit them here.
e However, the proofs can be found in the Lecture Notes.



Proposition 8.5.1

Let F be a field, let A1,..., A\, € F (n > 1) be arbitrary scalars,
and set D := D(A1,...,An). Then both the following hold:

@ forall vectors x=1[ x1 ... x, ]T in I, we have that
A1xq
Dx = : ;
AnXn
@ for all matrices A= a; ... a,|inF™*", we have that
AD = [ Aai ... Anan }

@ Proof: Lecture Notes (easy!).



Proposition 8.5.2

Let F be a field, and let A1, ..., A\p, i1, ..., tn €F (n>1) be
arbitrary scalars. Then

D()\l,...,/\n) D(,ul,...,,u,,) = D()\lul,...,/\nun).

@ Proof: Lecture Notes (easy!)



Proposition 8.5.2

Let F be a field, and let A1, ..., A\p, i1, ..., tn €F (n>1) be
arbitrary scalars. Then

D()\l,...,/\n) D(,ul,...,,u,,) = D()\llilaw-a/\n,un)'

@ Proof: Lecture Notes (easy!)

Proposition 8.5.3

Let F be a field, let A1,..., Ay € F (n> 1), and set

D := D(A1,...,An). Then both the following hold:

@ for all non-negative integers m, we have that
D™ = DA, ..., A™);

@ D is invertible iff A\1,..., A, are all non-zero, and in this case,
we have that D™ = D(A], ..., A7) for all integers m.

@ Proof: Lecture Notes (easy!)



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,v,} be abasisof V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

Bl:f]g = D()‘la"'v)\n)a
where A\1,...,\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

o First a remark (with pictures!), and then a proof.



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.

e By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the
basis elements.

A1V
f AoVo

Vi —

N




@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.

e By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVo
Vi A
%VZ
o Indeed, suppose that B = {vy,...,v,} is some basis of V, and

that A\1,..., A\, € F are some scalars.



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.

e By Theorems 4.3.2 and 8.5.4, linear functions from V to V

that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVo
Vi P
%VZ
o Indeed, suppose that B = {vy,...,v,} is some basis of V, and
that A\1,..., A\, € F are some scalars.

o By Theorem 4.3.2, there exists a unique linear function
f:V—= Vst f(V,') = A\jV;.



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.

e By Theorems 4.3.2 and 8.5.4, linear functions from V to V

that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVo
Vi P
%VZ
o Indeed, suppose that B = {vy,...,v,} is some basis of V, and
that A\1,..., A\, € F are some scalars.

o By Theorem 4.3.2, there exists a unique linear function
f:V—= Vst f(V,') = A\jV;.

o But then by Theorem 85.4, ,[ f |, = D(\1,...,\n).

B



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.
e By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVo
Vi P
%VZ
o Indeed, suppose that B = {vy,...,v,} is some basis of V, and
that A\1,..., A\, € F are some scalars.

o By Theorem 4.3.2, there exists a unique linear function
f:V—= Vst f(V,') = A\jV;.

o But then by Theorem 85.4, ,[ f |, = D(\1,...,\n).

e By Theorem 8.5.4, the converse also holds.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f | is diagonal. Moreover, in this case, we have that

B[ f ]B = D(Ai,..., \n),
where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

Proof.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f | is diagonal. Moreover, in this case, we have that

B[ f ]B = D(Ai,..., \n),
where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

Proof. Suppose first that 3 is an eigenbasis of V associated with
f.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f | is diagonal. Moreover, in this case, we have that

B[ f ]B = D(Ai,..., \n),
where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

Proof. Suppose first that 3 is an eigenbasis of V associated with
f. Then, by definition, vectors vy, ..., v, are eigenvectors of f, and
we let A1,..., A,, respectively, be the associated eigenvalues.




Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f | is diagonal. Moreover, in this case, we have that

B[ f ]B = D(Ai,..., \n),
where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

Proof. Suppose first that 3 is an eigenbasis of V associated with
f. Then, by definition, vectors vy, ..., v, are eigenvectors of f, and
we let A1,..., A,, respectively, be the associated eigenvalues. Then
f(vi) = Aiv; for all indices i € {1,...,n}, and we have the
following (next slide):




Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

sl fls = DOy,
where A1,...,\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.
Proof (continued).
slflsg = [ [ f(v1) ]z - [ f(v1) 5 ] by Theorem 4.5.1
= [[Avi]g o [ A [y ]
= [ /\181 /\ne,, ]

D(A1, ..., An).



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix ,[ f | is diagonal. Moreover, in this case, we have that

sl fls = DO ),
where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

Proof (continued). Conversely, suppose that the matrix [ f | is
diagonal, and let A1,..., A, be the entries of this matrix on the
main diagonal, so that

B[f]g = D(/\1>~--;/\n) = [)\181 /\,,e,,},

A



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix ,[ f | is diagonal. Moreover, in this case, we have that

sl fls = DO ),
where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

A

Proof (continued). Conversely, suppose that the matrix [ f | is

diagonal, and let A1,..., A, be the entries of this matrix on the
main diagonal, so that

B[f]B = D(Al,...,An) = [)\181 /\,,e,,}.
We will show that the basis vectors vi, ..., v, are eigenvectors of f

with associated eigenvalues A1, ..., A, respectively.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix ,[ f | is diagonal. Moreover, in this case, we have that

sl fls = DO ),
where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

A

Proof (continued). Conversely, suppose that the matrix [ f | is
diagonal, and let A1,..., A, be the entries of this matrix on the
main diagonal, so that

B[f]B = D(Al,...,An) = [}\181 /\,,e,,}.
We will show that the basis vectors vi, ..., v, are eigenvectors of f

with associated eigenvalues A1,..., A, respectively. Fix any index
ie{l,....n}; WTS f(v;) = A\jv;.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f | is diagonal. Moreover, in this case, we have that

B[f]s = D(A1,---520),

where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

sl

A

Proof (continued). Conversely, suppose that the matrix [ f | is
diagonal, and let A1,..., A, be the entries of this matrix on the
main diagonal, so that

sl Flg = DOwecsda) = [ Mer oo Ages |
We will show that the basis vectors vi, ..., v, are eigenvectors of f
with associated eigenvalues A1,..., A, respectively. Fix any index
ie{l,...,n}; WTS f(v;) = A\jv;. Since v; is the i-th basis vector

of B, we have that [ v; |, =e;.

B



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f | is diagonal. Moreover, in this case, we have that

B[f]s = D(A1,---520),

where \1,..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.

sl

A

Proof (continued). Conversely, suppose that the matrix [ f | is
diagonal, and let A1,..., A, be the entries of this matrix on the
main diagonal, so that

sl Flg = DOwecsda) = [ Mer oo Ages |
We will show that the basis vectors vi, ..., v, are eigenvectors of f
with associated eigenvalues A1,..., A, respectively. Fix any index
ie{l,...,n}; WTS f(v;) = A\jv;. Since v; is the i-th basis vector

of B, we have that | v; }B = e;. We now compute (next slide):



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f |, is diagonal. Moreover, in this case, we have that

sl flg = DO ),
where A1,..., A, are the eigenvalues of f associated with the
eigenvectors vi,...,V,, respectively.
Proof (continued).
[ f(vi) ]B = B[ f }B[ Vi ]B = [Mer ... es e
(;) Aiej = /\i[ Vi }B (*:*) [ Aiv; ]B,

where (*) follows from Proposition 1.4.4, and (**) follows from
the linearity of [ - |,. Since [ - ], is an isomorphism (and in
particular, one-to-one), it follows that f(v;) = A;v;, which is what
we needed to show. [



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f | is diagonal. Moreover, in this case, we have that

sl flg = DO ),
where A1, ..., )\, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.
A1V
f AaVo
Vi —




Definition

A matrix A € F™" (where F is a field) is diagonalizable if it is
similar to a diagonal matrix. To diagonalize a diagonalizable
matrix A means to compute a diagonal matrix D and an invertible
matrix P s.t. D = P~1AP (equivalently: A= PDP1).




Theorem 8.5.6

Let F be a field, and let A € F"*" be a matrix. Then A is
diagonalizable iff F” has an eigenbasis associated with A.
Moreover, if P = {p1,...,pn} is any eigenbasis of F" associated
with A, and Ay, ..., A, are the eigenvalues of A associated with
the eigenvectors p1, ..., Pn, respectively, then

D = P'AP and A = PDP,
where D = D(A1,...,Ap) and P=[p1 ... pn .

@ Proof: Lecture Notes.



Theorem 8.5.6

Let F be a field, and let A € F"*" be a matrix. Then A is
diagonalizable iff F” has an eigenbasis associated with A.
Moreover, if P = {p1,...,pn} is any eigenbasis of F" associated
with A, and Ay, ..., A, are the eigenvalues of A associated with
the eigenvectors p1, ..., Pn, respectively, then

D = P'AP and A = PDP,
where D = D(A1,...,Ap) and P=[p1 ... pn .

@ Proof: Lecture Notes.
e Theorem 8.5.6 can be obtained as a corollary of Theorem 8.5.4
(try ith).
o However, in the Lecture Notes, there is a proof “from scratch”
(i.e. one that uses matrices only).



Theorem 8.5.6

Let F be a field, and let A € F"*" be a matrix. Then A is
diagonalizable iff IF" has an eigenbasis associated with A.
Moreover, if P = {p1,...,Pn} is any eigenbasis of F" associated
with A, and A1,..., A, are the eigenvalues of A associated with
the eigenvectors pi, ..., Pn, respectively, then

D = PlAP and A = PDP1,
where D = D(A1,...,Ap) and P=[p1 ... pn ]

Corollary 8.5.7

Let F be a field, and let A € F"*". If A has n distinct eigenvalues,
then A is diagonalizable.

Proof.



Theorem 8.5.6

Let F be a field, and let A € F"*" be a matrix. Then A is
diagonalizable iff IF" has an eigenbasis associated with A.
Moreover, if P = {p1,...,Pn} is any eigenbasis of F" associated
with A, and A1,..., A, are the eigenvalues of A associated with
the eigenvectors pi, ..., Pn, respectively, then

D = PlAP and A = PDP1,
where D = D(A1,...,Ap) and P=[p1 ... pn ]

Corollary 8.5.7

Let F be a field, and let A € F"*". If A has n distinct eigenvalues,
then A is diagonalizable.

Proof. Assume that A has n distinct eigenvalues. By
Corollary 8.4.6, F" has an eigenbasis associated with A. So, by
Theorem 8.5.6, A is diagonalizable. [J



@ Theorems 8.4.5 and 8.5.6 together give us a recipe for
determining whether a matrix A € F"*" is diagonalizable, and
if so, for diagonalizing it (i.e. for finding a diagonal matrix D
and an invertible matrix P, both in F"™", st. D = P~1AP).

@ We proceed as follows (next two slides).



@ We compute the characteristic polynomial pa(\) and its roots.
By Theorem 8.2.2, the roots of pa(\) are the eigenvalues of
A, and we can read off the algebraic multiplicities of those
eigenvalues from the polynomial pa()).
o Computing the roots of pa()) is the computationally tricky
part, since there is no formula for computing the roots of a
high-degree polynomial. If we cannot figure out how to
compute the roots of pa()), then we are stuck: the matrix A
may or may not be diagonalizable, but computationally, we
cannot diagonalize it.



@ We compute the characteristic polynomial pa(\) and its roots.
By Theorem 8.2.2, the roots of pa(\) are the eigenvalues of
A, and we can read off the algebraic multiplicities of those
eigenvalues from the polynomial pa()).
o Computing the roots of pa()) is the computationally tricky
part, since there is no formula for computing the roots of a
high-degree polynomial. If we cannot figure out how to
compute the roots of pa()), then we are stuck: the matrix A
may or may not be diagonalizable, but computationally, we
cannot diagonalize it.

@ If the sum of algebraic multiplicities of the eigenvalues of A is
less than n, then by Theorem 8.4.5, F" does not have an
eigenbasis associated with A, and so by Theorem 8.5.6, A is
not diagonalizable.



@ We compute the characteristic polynomial pa(\) and its roots.
By Theorem 8.2.2, the roots of pa(\) are the eigenvalues of
A, and we can read off the algebraic multiplicities of those
eigenvalues from the polynomial pa()).

o Computing the roots of pa()) is the computationally tricky
part, since there is no formula for computing the roots of a
high-degree polynomial. If we cannot figure out how to
compute the roots of pa()), then we are stuck: the matrix A
may or may not be diagonalizable, but computationally, we
cannot diagonalize it.

@ If the sum of algebraic multiplicities of the eigenvalues of A is
less than n, then by Theorem 8.4.5, F" does not have an
eigenbasis associated with A, and so by Theorem 8.5.6, A is
not diagonalizable.

© From now on, we assume that the sum of algebraic
multiplicities of the eigenvalues of A, call them A1,..., Ak, is
n. We then compute a basis B; for each eigenspace Ej,(A),
which allows us to compute the geometric multiplicities of all
the eigenvalues of A.



@ If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, F" does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.



@ If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, F" does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.

© From now on, we assume that the geometric multiplicity of
each eigenvalue of A is equal to its algebraic multiplicity.
Theorem 8.4.5 then guarantees that " has an eigenbasis
associated with A, and moreover, that B=8B; U---U By is
one such eigenbasis.



@ If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, F" does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.

© From now on, we assume that the geometric multiplicity of
each eigenvalue of A is equal to its algebraic multiplicity.
Theorem 8.4.5 then guarantees that " has an eigenbasis
associated with A, and moreover, that B=8B; U---U By is
one such eigenbasis.

@ By Theorem 8.5.6, A is diagonalizable. We now follow the
recipe from Theorem 8.5.6 to actually diagonalize A.



@ If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, F" does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.

© From now on, we assume that the geometric multiplicity of
each eigenvalue of A is equal to its algebraic multiplicity.
Theorem 8.4.5 then guarantees that " has an eigenbasis
associated with A, and moreover, that B=B; U---UBy is
one such eigenbasis.

@ By Theorem 8.5.6, A is diagonalizable. We now follow the
recipe from Theorem 8.5.6 to actually diagonalize A.

@ We form the matrix P whose columns are precisely the vectors
in the eigenbasis B. We form the diagonal matrix D, where on
the main diagonal we place the eigenvalues of A, taking care
that, for each i € {1,..., n}, the i-th entry on the main
diagonal of D is the eigenvalue associated with the i-th
column of P (which is, by construction, an eigenvector of A).
Now D = P71AP.



Example 8.5.8.

Consider the following matrix in C3*3:

4 0 -2
A = 2 5 4.
0 0 5

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution.



Example 8.5.8.

Consider the following matrix in C3*3:

4 0 -2
A= |25 4].
00 5

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.4.
In that example, we determined that A has two eigenvalues:
@ \; = 4 (with algebraic multiplicity 1 and geometric
multiplicity 1);
@ )\p =5 (with algebraic multiplicity 2 and geometric
multiplicity 2).



Example 8.5.8.

Consider the following matrix in C3*3:

4 0 -2
A= |25 4].
00 5

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.4.
In that example, we determined that A has two eigenvalues:

@ \; = 4 (with algebraic multiplicity 1 and geometric
multiplicity 1);
@ )\p =5 (with algebraic multiplicity 2 and geometric
multiplicity 2).
Since the sum of algebraic multiplicities of the eigenvalues of A is
3, and since the geometric multiplicity of each eigenvalue of A is
equal to its algebraic multiplicity, we see that the 3 x 3 matrix A is
indeed diagonalizable.



Solution (continued). Reminder: A1 =4, A» = 5.

In Example 8.2.4, we saw that:

[ -1

° { 2 } } is a basis of the eigespace E), (A);
0

[0 -2
° { 1, 0 } is a basis of the eigenspace E),(A).
0 1



Solution (continued). Reminder: A1 =4, A» = 5.

In Example 8.2.4, we saw that:

[ —1
° { 2 } } is a basis of the eigespace E), (A);
0
[0 -2
° { 1, 0 } is a basis of the eigenspace E),(A).
0 1
So, we set
4 00 -1 0 -2
D = |05 0 and P = 21 0|,
0 0 5 00 1

and we see that D = P~1AP. O



Example 8.5.9

Consider the following matrix in C>*5:

12 0 0 0
0 2 00O
A = 0 011 3
0 00 3 3
0 00 0 3

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution.



Example 8.5.9

Consider the following matrix in C>*5:

12 0 0 0
0 2 00O
A = 0 011 3
0 00 3 3
0 00 0 3

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.8.



Example 8.5.9

Consider the following matrix in C>*5:

12 0 0 0
0 2 00O
A = 0 011 3
0 00 3 3
0 00 0 3

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.8.
In that example, we determined that A has three eigenvalues:

e \; =1 (with alg. mult. 2 and geom. mult. 2);
@ Ay =2 (with alg. mult. 1 and geom. mult. 1);
e A3 = 3 (with alg. mult. 2 and geom. mult. 1).



Example 8.5.9

Consider the following matrix in C>*5:

12 0 0 0
0 2 00O
A = 0 011 3
0 00 3 3
0 00 0 3

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.8.
In that example, we determined that A has three eigenvalues:

e \; =1 (with alg. mult. 2 and geom. mult. 2);
@ Ay =2 (with alg. mult. 1 and geom. mult. 1);
e A3 = 3 (with alg. mult. 2 and geom. mult. 1).

Since the geometric multiplicity of the eigenvalue A3 = 3 is strictly
smaller than the algebraic multiplicity, we see that A is not
diagonalizable. (]



@ Suppose that we have successfully diagonalized a square
matrix A € F"*" (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in F"*" st. D = P~1AP.



@ Suppose that we have successfully diagonalized a square
matrix A € F"*" (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in F"*" st. D = P~1AP.

@ Then we can easily read off the spectrum and a basis of each
eigenspace of A, as Proposition 8.5.12 (next slide) shows.



@ Suppose that we have successfully diagonalized a square
matrix A € F"*" (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in F"*" st. D = P~1AP.

@ Then we can easily read off the spectrum and a basis of each
eigenspace of A, as Proposition 8.5.12 (next slide) shows.

@ This proposition essentially summarizes various facts about
diagonalizable matrices that we have proven already, but it is
convenient to have them stated in one proposition.



@ Suppose that we have successfully diagonalized a square
matrix A € F"*" (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in F"*" st. D = P~1AP.

@ Then we can easily read off the spectrum and a basis of each
eigenspace of A, as Proposition 8.5.12 (next slide) shows.
@ This proposition essentially summarizes various facts about

diagonalizable matrices that we have proven already, but it is
convenient to have them stated in one proposition.

e The proof is in the Lecture Notes. Here, we omit it.



Proposition 8.5.12

Let F be a field, and let A € F"™". Assume that D = P~ 1AP,
where D = D(A1,..., ) is a diagonaland P=[ p1 ... p, | an
invertible matrix, both in F"*". Then the characteristic polynomial
of Ais

n
pa(A) = Hl(/\ =A) = (A=) (A=),

=
and the spectrum of A'is {\1,..., Ap}. Moreover, for each
eigenvalue \g of A,? the algebraic and geometric multiplicity of Ag
are both equal to the number of times that Ay appears on the
main diagonal of D, and moreover, if A\g appears precisely in
positions i1, ..., iy of the main diagonal of D, then the
corresponding columns of P (i.e. vectors pj,,...,pj,) form a basis
of the eigenspace Ey,(A). Finally, {p1,...,pn} is an eigenbasis of
F™ associated with the matrix A.

?So, Ao € {A1,...,An}, since {A1,..., A\, } is the spectrum of A.



Example 8.5.13

Consider the following matrices in C®*® (color coded for
emphasis):

500000 1 3 8 8 3 4
0 40000 2 8 00 0 2
D— 0 05000 p_ 5 46 4 5 0
0 00 3 00|’ 0 58 5 4 3
0 00O0 40 1 08 0 3 0
0 00 0O O0 4 0 20 3 0 2

It can be checked that P is invertible (for example, we can
compute that det(P) = —1020 # 0, and so by Theorem 7.4.1, P is
invertible). We now set A= PDP~1, so that D = P~1AP. Then
by Proposition 8.5.12, all the following hold (next three slides):



5 0 0 0 0 O 1 3 8 8 3 4
0O 4 0 0 0 O 2 8 0 0 0 2
D= 0O 0 5 0 0 O p— 5 4 6 4 5 0
0O 0 0 3 0 O 0O 5 8 5 4 3
0O 0 0O O 4 O 1 0 8 0 3 0
0O 0 0O O 0 4 o 2 0 3 0 2

Example 8.5.13 (continued)

@ the characteristic polynomial of A is
pald) = (A—3)(A—4P(\—5)
@ the spectrum of A is {5,4,5,3,4,4}, which we can optionally

reorder as {3,4,4,4,5,5};

@ the eigenvalues of A are 3 (with algebraic and geometric
multiplicity 1), 4 (with algebraic and geometric multiplicity 3),
and 5 (with algebraic and geometric multiplicity 2);
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Example 8.5.13 (continued)

@ we can read off bases of the eigenspaces E3(A), Ea(A), and

Es(A), as follows:

o a basis of £5(A) is {

o a basis of £4(A) is {

o a basis of E5(A) is {
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5
0
0
0
0
0

Example 8.5.13 (continued)

@ the columns of P form an eigenbasis of C" associated with
the matrix A.




