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This lecture has four parts:

1 A brief review of eigenvalues and eigenvectors (last lecture)
2 Further properties of eigenvalues and eigenvectors, plus the

Invertible Matrix Theorem (version 4)
3 The relationship between algebraic and geometric multiplicities

of eigenvalues
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1 A brief review of eigenvalues and eigenvectors (last lecture)

Definition
Suppose that V is a vector spaces over a field F, and that
f : V → V is a linear function. An eigenvector of f is a vector
v ∈ V \ {0} for which there exists a scalar λ ∈ F, called the
eigenvalue of f associated with the eigenvector v, s.t.

f (v) = λv.

Under these circumstances, we also say that v is an eigenvector of
f associated with the eigenvalue λ.
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For a linear function f : V → V , where V is a vector space
over a field F, and for a scalar λ ∈ F, we define

Eλ(f ) := {v ∈ V | f (v) = λv}.

Eλ(f ) is a subspace of Fn, and it is non-trivial iff λ is an
eigenvalue of f (Proposition 8.1.4).
If λ is an eigenvalue of f , then Eλ(f ) is called the eigenspace
of f associated with the eigenvalue λ, and the geometric
multiplicity of λ is dim

(
Eλ(f )

)
.



Definition
Let F be a field, and let A ∈ Fn×n be a square matrix. An
eigenvector of A is a vector v ∈ Fn \ {0} for which there exists a
scalar λ ∈ F, called the eigenvalue of A associated with the
eigenvector v, s.t.

Av = λv.

Under these circumstances, we also say that v is an eigenvector of
A associated with the eigenvalue λ.



For a field F, a matrix A ∈ Fn×n, and a scalar λ ∈ F, we define

Eλ(A) := {v ∈ Fn | Av = λv}.

Eλ(A) is a subspace of Fn, and it is non-trivial iff λ is an
eigenvalue of A (Proposition 8.1.6).
If λ is an eigenvalue of A, then Eλ(A) is called the eigenspace
of A associated with the eigenvalue λ, and the geometric
multiplicity of λ is dim

(
Eλ(A)

)
.



Definition
Given a field F and a matrix A ∈ Fn×n, the characteristic
polynomial of A is defined to be

pA(λ) := det
(
λIn − A

)
.

The characteristic equation of A is the equation
det

(
λIn − A

)
= 0.

So, the roots of the characteristic polynomial of A are precisely the
solutions of the characteristic equation of A.



Example 8.2.1
Compute the characteristic polynomial of the following matrix in
C3×3:

A =

 1 −2 3
−1 0 2

2 −1 −3

 .

Solution.

The characteristic polynomial of A is:

pA(λ) = det(λI3 − A) =

∣∣∣∣∣∣
λ − 1 2 −3

1 λ −2
−2 1 λ + 3

∣∣∣∣∣∣
= λ3 + 2λ2 − 9λ − 3.

□
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Theorem 8.2.2
Let F be a field, let A ∈ Fn×n, and let λ0 ∈ F. Then

Eλ0(A) = Nul
(
λ0In − A

)
= Nul

(
A − λ0In

)
.

Moreover, the following are equivalent:
(1) λ0 is an eigenvalue of A;
(2) λ0 is a root of the characteristic polynomial of A, i.e.

pA(λ0) = 0;
(3) λ0 is a solution of the characteristic equation of A, i.e.

det
(
λ0In − A

)
= 0.



By Theorem 8.2.2, the eigenvalues of a square matrix are
precisely the roots of its characteristic polynomial.

For a field F, a matrix A ∈ Fn×n, and an eigenvalue λ0 of A,
the algebraic multiplicity of the eigenvalue λ0 is its multiplicity
as a root of the characteristic polynomial of A, or in other
words, it is the largest integer k such that (λ − λ0)k | pA(λ),
i.e. such that (λ − λ0)k divides the polynomial pA(λ).
Since deg

(
pA(λ)

)
= n, the sum of algebraic multiplicities of

the eigenvalues of the matrix A ∈ Fn×n is at most n; if the
field F is algebraically closed, then the sum of algebraic
multiplicities of the eigenvalues of A is exactly n.
The spectrum of a square matrix A ∈ Fn×n is the multiset of
all eigenvalues of A, with algebraic multiplicities taken into
account.

This means that the number of times that an eigenvalue
appears in the spectrum is equal to the algebraic multiplicity of
that eigenvalue. The order in which we list the eigenvalues in
the spectrum does not matter, but repetitions do matter.
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Theorem 8.2.3
Let F be a field, and let A ∈ Fn×n. Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Proof: Later!
Schematically, Theorem 8.2.3 states that for an eigenvalue λ
of A:

geometric multiplicity of λ ≤ algebraic multiplicity of λ.

For now, we have only stated Theorem 8.2.3. We will not use
this theorem before proving it.
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2 Further properties of eigenvalues and eigenvectors, plus the
Invertible Matrix Theorem (version 4)

For a matrix A ∈ Cn×n, the spectral radius of A, denoted by
ρ(A), is the maximum absolute value of any eigenvalue of A.

For example, if the spectrum of a matrix A ∈ C5×5 is
{1, 1 + i , 1 + i , 1 − i , 1 − i}, then the spectral radius of A is

ρ(A) = max{|1|, |1 + i |, |1 + i |, |1 − i |, |1 − i |} =
√

2,

since |1| = 1, |1 + i | =
√

2, and |1 − i | =
√

2.

Reminder:

Theorem 0.3.6
Let p(x) be any polynomial with real coefficients, and let z ∈ C.
Then z is a root of p(x) iff its complex conjugate z is a root of
p(x).
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In view of Theorems 0.3.6 and 8.2.2., we can visualize the
complex eigenvalues of an n × n matrix A with real entries
(however, we consider A to be a matrix in the vector space
Cn×n, so that it can have complex eigenvalues).

Its characteristic polynomial pA(λ) is of degree n and has real
coefficients.
By Theorem 0.3.6, the roots of this polynomial come in
conjugate pairs (each real root is its own conjugate pair), and
moreover, by Theorem 8.2.2, those roots are precisely the
eigenvalues of A.
The eigenvalues all lie in the complex plane, in the disk
centered at the origin and with radius ρ(A), and they are
symmetric about the real axis.
Visually, the eigenvalues λ1, λ2, λ3, λ4, λ5 of a matrix A ∈ C5×5

with real entries might appear as in the picture on the next
slide (the conjugate pairs are color coded for emphasis).
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Definition
Let F be a field. Given matrices A, B ∈ Fn×n, we say that A is
similar to B if there exists an invertible matrix P ∈ Fn×n s.t.
B = P−1AP.

Theorem 4.5.16
Let F be a field, let B, C ∈ Fn×n be matrices, and let V be an
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) B and C are similar;
(b) for all bases B of V and linear functions f : V → V s.t.

B = B

[
f

]
B, there exists a basis C of V s.t. C = C

[
f

]
C;

(c) for all bases C of V and linear functions f : V → V s.t.
C = C

[
f

]
C, there exists a basis B of V s.t. B = B

[
f

]
B;

(d) there exist bases B and C of V and a linear function
f : V → V s.t. B = B

[
f

]
B and C = C

[
f

]
C.
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Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Warning: Similar matrices A and B need not have the same
eigenspaces, that is, for an eigenvalue λ of A and B:

Eλ(A) ��ZZ= Eλ(B)



Reminder:

Proposition 8.1.7
Let V be a non-trivial, finite-dimensional vector space over a field
F, let B = {b1, . . . , bn} be a basis of V , and let f : V → V be a
linear function. Then for all λ ∈ F, we have that

Eλ

(
B

[
f

]
B

)
=

{ [
v

]
B

| v ∈ Eλ(f )
}

.

Consequently, the linear function f and the matrix
B

[
f

]
B

have
exactly the same eigenvalues, with exactly the same corresponding
geometric multiplicities.
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for f and the matrix B = B

[
f

]
B. So, A and B have exactly the

same eigenvalues with exactly the same corresponding geometric
multiplicities.



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof. Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.

Since A and B are similar, Theorem 4.5.16 guarantees that there
exists a linear function f : Fn → Fn and bases A and B of Fn s.t.
A = A

[
f

]
A and B = B

[
f

]
B.

But then by Proposition 8.1.7, the linear function f and the matrix
A = A

[
f

]
A have exactly the same eigenvalues, with exactly the

same corresponding geometric multiplicities, and the same holds
for f and the matrix B = B

[
f

]
B. So, A and B have exactly the

same eigenvalues with exactly the same corresponding geometric
multiplicities.



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof. Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.
Since A and B are similar, Theorem 4.5.16 guarantees that there
exists a linear function f : Fn → Fn and bases A and B of Fn s.t.
A = A

[
f

]
A and B = B

[
f

]
B.

But then by Proposition 8.1.7, the linear function f and the matrix
A = A

[
f

]
A have exactly the same eigenvalues, with exactly the

same corresponding geometric multiplicities, and the same holds
for f and the matrix B = B

[
f

]
B. So, A and B have exactly the

same eigenvalues with exactly the same corresponding geometric
multiplicities.



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof. Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.
Since A and B are similar, Theorem 4.5.16 guarantees that there
exists a linear function f : Fn → Fn and bases A and B of Fn s.t.
A = A

[
f

]
A and B = B

[
f

]
B.

But then by Proposition 8.1.7, the linear function f and the matrix
A = A

[
f

]
A have exactly the same eigenvalues, with exactly the

same corresponding geometric multiplicities, and the same holds
for f and the matrix B = B

[
f

]
B.

So, A and B have exactly the
same eigenvalues with exactly the same corresponding geometric
multiplicities.



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof. Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.
Since A and B are similar, Theorem 4.5.16 guarantees that there
exists a linear function f : Fn → Fn and bases A and B of Fn s.t.
A = A

[
f

]
A and B = B

[
f

]
B.

But then by Proposition 8.1.7, the linear function f and the matrix
A = A

[
f

]
A have exactly the same eigenvalues, with exactly the

same corresponding geometric multiplicities, and the same holds
for f and the matrix B = B

[
f

]
B. So, A and B have exactly the

same eigenvalues with exactly the same corresponding geometric
multiplicities.



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
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Proof (continued). It now remains to show that A and B have the
same characteristic polynomial, since this will (by definition) imply
that A and B have the same spectrum, and in particular, that the
eigenvalues of A and B have the same corresponding algebraic
multiplicities.

Since A and B are similar, we know that there exists an invertible
matrix P ∈ Fn×n s.t. B = P−1AP. We now compute (next slide):



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof (continued). It now remains to show that A and B have the
same characteristic polynomial, since this will (by definition) imply
that A and B have the same spectrum, and in particular, that the
eigenvalues of A and B have the same corresponding algebraic
multiplicities.

Since A and B are similar, we know that there exists an invertible
matrix P ∈ Fn×n s.t. B = P−1AP.

We now compute (next slide):



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof (continued). It now remains to show that A and B have the
same characteristic polynomial, since this will (by definition) imply
that A and B have the same spectrum, and in particular, that the
eigenvalues of A and B have the same corresponding algebraic
multiplicities.

Since A and B are similar, we know that there exists an invertible
matrix P ∈ Fn×n s.t. B = P−1AP. We now compute (next slide):



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
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Proof (continued).

pB(λ) = det
(
λIn − B

)
= det

(
λIn − P−1AP

)
= det

(
P−1(λIn − A)P

)
= det(P−1) det

(
λIn − A

)
det(P) by Theorem 7.5.2

= 1
det(P) det

(
λIn − A

)
det(P) by Corollary 7.5.3

= det
(
λIn − A

)
= pA(λ). □



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Remark: The converse of Theorem 8.2.9 is false: two
matrices in Fn×n (where F is a field) that have the same
characteristic polynomial, as well as the same eigenvalues,
with the same corresponding algebraic multiplicities, and the
same corresponding geometric multiplicities, need not be
similar.

We will see examples of this when we study the “Jordan
normal form.”



Definition
The trace of a square matrix A =

[
ai,j

]
n×n with entries in some

field F is defined to be trace(A) :=
∑n

i=1 ai ,i , i.e. the trace of A is
the sum of entries on the main diagonal of A.

For example, for the matrix

A =

 1 2 3
4 5 6
7 8 9


in C3×3, we have that trace(A) = 1 + 5 + 9 = 15.



Theorem 8.2.10
Let F be a field, let A =

[
ai,j

]
n×n be a matrix in Fn×n, and

assume that {λ1, . . . , λn} is the spectrum of A. Then
(a) det(A) = λ1 . . . λn;
(b) trace(A) = λ1 + · · · + λn.

Proof (outline).

(a) Compute pA(0) in two different ways.
(b) Compute the coefficient in front of λn−1 in pA(λ) in two
different ways. (Details: Lecture Notes.) □

Warning: Theorem 8.2.10 only applies if the spectrum of the
matrix A ∈ Fn×n contains n eigenvalues (counting algebraic
multiplicities)!

This will always be the case if the field F is algebraically
closed (for example, if F = C), but need not be the case
otherwise.
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Proposition 8.2.11
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff 0 is not
an eigenvalue of A.

Proof.

It suffices to show that 0 is an eigenvalue of A iff A is not
invertible. We have the following sequence of equivalent
statements:

0 is eigenvalue of A Thm. 8.2.2⇐⇒ det(0In − A) = 0

⇐⇒ det(−A) = 0

Prop. 7.2.3⇐⇒ (−1)ndet(A) = 0

⇐⇒ det(A) = 0

Thm. 7.4.1⇐⇒ A is not invertible
□



Proposition 8.2.11
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff 0 is not
an eigenvalue of A.

Proof. It suffices to show that 0 is an eigenvalue of A iff A is not
invertible.

We have the following sequence of equivalent
statements:

0 is eigenvalue of A Thm. 8.2.2⇐⇒ det(0In − A) = 0

⇐⇒ det(−A) = 0

Prop. 7.2.3⇐⇒ (−1)ndet(A) = 0

⇐⇒ det(A) = 0

Thm. 7.4.1⇐⇒ A is not invertible
□



Proposition 8.2.11
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff 0 is not
an eigenvalue of A.

Proof. It suffices to show that 0 is an eigenvalue of A iff A is not
invertible. We have the following sequence of equivalent
statements:

0 is eigenvalue of A Thm. 8.2.2⇐⇒ det(0In − A) = 0

⇐⇒ det(−A) = 0

Prop. 7.2.3⇐⇒ (−1)ndet(A) = 0

⇐⇒ det(A) = 0

Thm. 7.4.1⇐⇒ A is not invertible
□



Proposition 8.2.11
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff 0 is not
an eigenvalue of A.

We now add the eigenvalue condition from Proposition 8.2.11
to our previous version of the Invertible Matrix Theorem to
obtain the fourth and final version of that theorem (next three
slides).

It uses all 26 letters of the English alphabet!



The Invertible Matrix Theorem (version 4)
Let F be a field, and let A ∈ Fn×n be a square matrix. Further, let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn.a Then the
following are equivalent:

(a) A is invertible (i.e. A has an inverse);
(b) AT is invertible;
(c) RREF(A) = In;
(d) RREF

( [
A In

] )
=

[
In B

]
for some matrix B ∈ Fn×n;

(e) rank(A) = n;
(f) rank(AT ) = n;
(g) is a product of elementary matrices;

aSince f is a matrix transformation, Proposition 1.10.4 guarantees that f is
linear. Moreover, A is the standard matrix of f .



The Invertible Matrix Theorem (version 4, continued)
(h) the homogeneous matrix-vector equation Ax = 0 has only the

trivial solution (i.e. the solution x = 0);
(i) there exists some vector b ∈ Fn s.t. the matrix-vector

equation Ax = b has a unique solution;
(j) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has

a unique solution;
(k) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has

at most one solution;
(l) for all vectors b ∈ Fn, the matrix-vector equation Ax = b is

consistent;
(m) f is one-to-one;
(n) f is onto;
(o) f is an isomorphism;



The Invertible Matrix Theorem (version 4, continued)
(p) there exists a matrix B ∈ Fn×n s.t. BA = In (i.e. A has a left

inverse);
(q) there exists a matrix C ∈ Fn×n s.t. AC = In (i.e. A has a right

inverse);
(r) the columns of A are linearly independent;
(s) the columns of A span Fn (i.e. Col(A) = Fn);
(t) the columns of A form a basis of Fn;
(u) the rows of A are linearly independent;
(v) the rows of A span F1×n (i.e. Row(A) = F1×n);
(w) the rows of A form a basis of F1×n;
(x) Nul(A) = {0} (i.e. dim

(
Nul(A)

)
= 0);

(y) det(A) ̸= 0;
(z) 0 is not an eigenvalue of A.



Reminder:
Suppose that V is a non-trivial, finite-dimensional vector space
over a field F, and that f : V → V is a linear function. Then
we define the determinant of f to be

det(f ) := det
(

B

[
f

]
B

)
,

where B is any basis of V .

As we explained in section 7.5, the reason that det(f ) is well
defined is because, by Theorem 4.5.16, all matrices of the form
B

[
f

]
B are similar, and therefore (by Corollary 7.5.4) have

the same determinant.
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Definition
Let V is a non-trivial, finite-dimensional vector space over a field
F. The characteristic polynomial of a linear function f : V → V is
defined to be the polynomial

pf (λ) := det
(
λIdV − f

)
= det

(
B

[
λIdV − f

]
B

)
,

where B is any basis of V .a

aAs usual, IdV is the identity function on V , i.e. it is the function
IdV : V → V given by IdV (v) = v for all v ∈ V .

As per our discussion above, the polynomial pf (λ) depends
only on f , and not on the particular choice of the basis B.
The characteristic equation of f is the equation

det
(
λIdV − f

)
= 0.

So, the roots of the characteristic polynomial of f are
precisely the solutions of the characteristic equation of f .
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Definition
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As per our discussion above, the polynomial pf (λ) depends
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Proposition 8.2.12
Let V be a non-trivial, finite-dimensional vector space over a field
F, let B be any basis of V , let f : V → V be a linear function, and
set B := B

[
f

]
B. Then pf (λ) = pB(λ).

Proof.

We compute:

pf (λ) = det
(
λIdV − f

)
by definition

= det
(

B

[
λIdV − f

]
B

)
by definition

= det
(

λ B

[
IdV

]
B − B

[
f

]
B

)
by Theorem 4.5.3

= det
(
λIn − B

)
= pB(λ) by definition.

□
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Reminder:

Theorem 8.2.2
Let F be a field, let A ∈ Fn×n, and let λ0 ∈ F. Then

Eλ0(A) = Nul
(
λ0In − A

)
= Nul

(
A − λ0In

)
.

Moreover, the following are equivalent:
(1) λ0 is an eigenvalue of A;
(2) λ0 is a root of the characteristic polynomial of A, i.e.

pA(λ0) = 0;
(3) λ0 is a solution of the characteristic equation of A, i.e.

det
(
λ0In − A

)
= 0.

Analogously, we have the following (next slide):
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Theorem 8.2.13
Let V be a non-trivial, finite-dimensional vector space over a field
F, let f : V → V be a linear function, and let λ0 ∈ F. Then

Eλ0(f ) = Ker
(
λ0IdV − f

)
= Ker

(
f − λ0IdV

)
.

Moreover, the following are equivalent:
(1) λ0 is an eigenvalue of f ;
(2) λ0 is a root of the characteristic polynomial of f , i.e.

pf (λ0) = 0;
(3) λ0 is a solution of the characteristic equation of f , i.e.

det
(
λ0IdV − f

)
= 0.

Proof: Lecture Notes. (Similar to the proof of
Theorem 8.2.2.)



Suppose that f : V → V is a linear function, where V is a
non-trivial, finite-dimensional vector space over a field F.

In view of Theorem 8.2.13, we may define the algebraic
multiplicity of an eigenvalue λ0 of f to be the largest positive
integer k such that (λ − λ0)k divides the polynomial pf (λ).
The spectrum of f is the multiset of all the eigenvalues of f ,
with algebraic multiplicities taken into account.
Reminder: The geometric multiplicity of an eigenvalue λ0 of
f is dim

(
Ef (λ0)

)
.
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Proposition 8.2.14
Let V be a non-trivial, finite-dimensional vector space over a field
F, let f : V → V be a linear function, and let B be any basis of V .
Then f and B

[
f

]
B have the same characteristic polynomial,

and the same spectrum. Moreover, f and B

[
f

]
B have exactly

the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

Proof.

The fact that f and B

[
f

]
B have the same eigenvalues,

with the same geometric multiplicities, follows immediately from
Proposition 8.1.7.

The fact that they have the same characteristic polynomial (and
consequently the same spectrum) follows immediately from
Proposition 8.2.12. Since f and B

[
f

]
B have the same spectrum,

their eigenvalues have the same algebraic multiplicities. □
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Proposition 8.2.14
Let V be a non-trivial, finite-dimensional vector space over a field
F, let f : V → V be a linear function, and let B be any basis of V .
Then f and B

[
f

]
B have the same characteristic polynomial,

and the same spectrum. Moreover, f and B

[
f

]
B have exactly

the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

As a special case for linear functions of the form f : Fn → Fn

(where F is a field) and their standard matrices, we have the
following proposition (next slide).



Proposition 8.2.15
Let F be a field, let f : Fn → Fn be a linear function, and let A be
the standard matrix of f . Then f and A have the same
characteristic polynomial and the same spectrum. Moreover, for
each eigenvalue λ of f and A, all the following hold:

the algebraic multiplicity of λ as an eigenvalue of f is the
same as the algebraic multiplicity of λ as an eigenvalue of A;
the geometric multiplicity of λ as an eigenvalue of f is the
same as the geometric multiplicity of λ as an eigenvalue of A;
Eλ(f ) = Eλ(A).

Proof.

Since A is the standard matrix of f , we have that
A = En

[
f

]
En

, where En is the standard basis of Fn. The result now
follows immediately from Propositions 8.1.5 and 8.2.14. □
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3 The relationship between algebraic and geometric
multiplicities of eigenvalues

Let’s now prove Theorem 8.2.3!

Theorem 8.2.3
Let F be a field, and let A ∈ Fn×n. Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Schematically, Theorem 8.2.3 states that for an eigenvalue λ
of A:

geometric multiplicity of λ ≤ algebraic multiplicity of λ.

In fact, it will be a bit more convenient to prove this theorem
for linear functions first (see Theorem 8.2.17 below), and to
then derive Theorem 8.2.3 as in immediate corollary.
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Theorem 8.2.17
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V → V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Proof.

Suppose that λ0 is an eigenvalue of f of geometric
multiplicity k. We must show that the eigenvalue λ0 has algebraic
multiplicity at least k, that is, that (λ − λ0)k | pf (λ).

The goal is to find a basis B of V for which it can easily be shown
that (λ − λ0)k divides the polynomial pB(λ), where B = B

[
f

]
B;

this is enough because, by Proposition 8.2.12, pf (λ) = pB(λ).
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Proof (continued). Reminder: λ0 is an eigenvalue of f ; WTS there
exists a basis B of V s.t. (λ − λ0)k | pB(λ), where B = B

[
f

]
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Since the geometric multiplicity of the eigenvalue λ0 of f is k, we
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where (*) follows from Theorem 4.5.1, and (**) follows from the
fact that b1, . . . , bk ∈ Eλ0(f ).
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Thus, pB(λ) is of the form

pB(λ) =
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λ − λ0 0 . . . 0
0 λ − λ0 . . . 0
...

...
. . .

...
0 0 . . . λ − λ0
0 0 . . . 0
0 0 . . . 0
...

...
. . .
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0 0 . . . 0

∗ ∗ . . . ∗
∗ ∗ . . . ∗
...

...
. . .
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∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
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. . .
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∗ ∗ . . . ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the red submatrix in the upper-left corner (to the left of the
vertical dotted line, and above the horizontal dotted line) is of size
k × k. By iteratively performing Laplace expansion along the first
column, we see that pB(λ) has a factor (λ − λ0)k . □
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Theorem 8.2.17
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V → V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Theorem 8.2.3
Let F be a field, and let A ∈ Fn×n. Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Proof. Let fA : Fn → Fn be given by fA(x) = Ax for all x ∈ Fn.
Then fA is linear (by Prop. 1.10.4), and its standard matrix is A.

By Proposition 8.2.15, A and fA have exactly the same eigenvalues,
with the same corresponding geometric multiplicities, and the same
corresponding algebraic multiplicities. The result now follows from
Theorem 8.2.17 applied to the linear function fA. □
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4 The Cayley-Hamilton theorem

The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

The Cayley-Hamilton theorem essentially states that every
square matrix is a root of its own characteristic polynomial.

Here, we need to treat the free coefficient of the characteristic
polynomial as that coefficient times the identity matrix of the
appropriate size.
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For example, for the matrix

A =
[

1 2
3 4

]
,

with entries understood to be in R or C, we have that

pA(λ) = det(λI2 − A) =
∣∣∣∣ λ − 1 −2

−3 λ − 4

∣∣∣∣ = λ2 − 5λ − 2,

and we see that

A2 − 5A − 2I2 =
[

1 2
3 4

]2
− 5

[
1 2
3 4

]
− 2

[
1 0
0 1

]

=
[

7 10
15 22

]
−

[
5 10
15 20

]
−

[
2 0
0 2

]

=
[

0 0
0 0

]
.



The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

The proof of the Cayley-Hamilton theorem relies on the
adjugate matrix and a theorem that we proved about it
(namely, Theorem 7.8.2).

Reminder: Next slide.



Definition
Given a field F and a matrix A ∈ Fn×n (n ≥ 2), with cofactors
Ci ,j = (−1)i+jdet(Ai ,j) (for i , j ∈ {1, . . . , n}), the cofactor matrix
of A is the matrix

[
Ci,j

]
n×n. The adjugate matrix (also called the

classical adjoint) of A, denoted by adj(A), is the transponse of the
cofactor matrix of A, i.e.

adj(A) :=
( [

Ci,j
]

n×n

)T
.

So, the i , j-th entry of adj(A) is the cofactor Cj,i (note the
swapping of the indices).

Theorem 7.8.2
Let F be a field, and let A ∈ Fn×n (n ≥ 2). Then

adj(A) A = A adj(A) = det(A)In.

Consequently, if A is invertible, then A−1 = 1
det(A)adj(A).
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The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

Proof.

If n = 1, then the result is immediate.
Indeed, suppose that n = 1, and consider any matrix
A =

[
a1,1

]
in F1×1.

Then pA(λ) = det(λI1 − A) = det(
[

λ − a1,1
]
) = λ − a1,1, and

we see that A − a1,1I1 = O1×1.
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Proof (continued). From now on, we assume that n ≥ 2.

By
Theorem 7.8.2 applied to the matrix λIn − A (where λ is a
variable), we get that

(λIn − A) adj(λIn − A) = det(λIn − A)In.

Now, note that each cofactor of the matrix λIn − A is a
polynomial (in variable λ) of degree at most λn−1. Since the
entries of adj(λIn − A) are precisely the cofactors of λIn − A, it
follows that each entry of adj(λIn − A) is a polynomial (in the
variable λ) of degree at most n − 1. So, the matrix adj(λIn − A)
can be expressed in the form

adj(λIn − A) = λn−1Bn−1 + λn−2Bn−2 + · · · + λB1 + B0,

for some matrices B0, B1, . . . , Bn−1 ∈ Fn×n. Consequently,

(λIn − A)(λn−1Bn−1 + λn−2Bn−2 + · · · + λB1 + B0︸ ︷︷ ︸
=adj(λIn−A)

)

︸ ︷︷ ︸
:=LHS

= det(λIn − A)In︸ ︷︷ ︸
:=RHS

.
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Proof (continued). Reminder: n ≥ 2,

(λIn − A)(λn−1Bn−1 + λn−2Bn−2 + · · · + λB1 + B0︸ ︷︷ ︸
=adj(λIn−A)

)

︸ ︷︷ ︸
:=LHS

= det(λIn − A)In︸ ︷︷ ︸
:=RHS

.

For the left-hand-side, we have
LHS = (λIn − A)(λn−1Bn−1 + · · · + λB1 + B0)

= λnBn−1 + λn−1(Bn−2 − ABn−1) + λn−2(Bn−3 − ABn−2)+
+ · · · + λ(B0 − AB1) − AB0.

For the right-hand-side, we have
RHS = det(λIn − A)In = pA(λ)In

= (λn + an−1λn−1 + an−2λn−1 + · · · + a1λ + a0)In
= λnIn + λn−1an−1In + λn−2an−2In + · · · + λa1In + a0In.

The corresponding coefficients in front of λi (for i ∈ {0, 1, . . . , n})
must be equal on the left-hand-side (LHS) and the right-hand-side
(RHS). This yields the following n + 1 equations (next slide).
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Proof (continued).

Bn−1 = In
Bn−2 − ABn−1 = an−1In
Bn−3 − ABn−2 = an−2In

...
B0 − AB1 = a1In

−AB0 = a0In

We now multiply the first (top) equation by An on the left, the
second equation by An−1 on the left, the third equation by An−2

on the left, and so on. This yields the following.

AnBn−1 = An

An−1Bn−2 − AnBn−1 = an−1An−1

An−2Bn−3 − An−1Bn−2 = an−2An−2

...
AB0 − A2B1 = a1A

−AB0 = a0In
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Proof (continued). Reminder:
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An−2Bn−3 − An−1Bn−2 = an−2An−2

...
AB0 − A2B1 = a1A

−AB0 = a0In

We now add up the equations that we obtained.

On the left-hand-side, the sum is obviously On×n.

So, the right-hand-side must also sum up to On×n, i.e.

An + an−1An−1 + an−2An−2 + · · · + a1A + a0In = On×n.

But this is precisely what we needed to show. □
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The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

Corollary 8.3.1
Let F be a field. For all matrices A ∈ Fn×n:

(a) An ∈ Span(In, A, A2, . . . , An−1), i.e. An is a linear combination
of In, A, A2, . . . , An−1;

(b) if A is invertible, then A−1 ∈ Span(In, A, A2, . . . , An−1), i.e.
A−1 is a linear combination of In, A, A2, . . . , An−1.

Proof. Fix a matrix A ∈ Fn×n, and consider its characteristic
polynomial pA(λ) = λn + an−1λn−1 + an−2λn−2 + · · · + a1λ + a0.



The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

Corollary 8.3.1
Let F be a field. For all matrices A ∈ Fn×n:

(a) An ∈ Span(In, A, A2, . . . , An−1), i.e. An is a linear combination
of In, A, A2, . . . , An−1;

(b) if A is invertible, then A−1 ∈ Span(In, A, A2, . . . , An−1), i.e.
A−1 is a linear combination of In, A, A2, . . . , An−1.

Proof.

Fix a matrix A ∈ Fn×n, and consider its characteristic
polynomial pA(λ) = λn + an−1λn−1 + an−2λn−2 + · · · + a1λ + a0.



The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

Corollary 8.3.1
Let F be a field. For all matrices A ∈ Fn×n:

(a) An ∈ Span(In, A, A2, . . . , An−1), i.e. An is a linear combination
of In, A, A2, . . . , An−1;

(b) if A is invertible, then A−1 ∈ Span(In, A, A2, . . . , An−1), i.e.
A−1 is a linear combination of In, A, A2, . . . , An−1.

Proof. Fix a matrix A ∈ Fn×n, and consider its characteristic
polynomial pA(λ) = λn + an−1λn−1 + an−2λn−2 + · · · + a1λ + a0.



Corollary 8.3.1
(a) An ∈ Span(In, A, A2, . . . , An−1), i.e. An is a linear combination

of In, A, A2, . . . , An−1;

Reminder:
pA(λ) = λn + an−1λn−1 + an−2λn−2 + · · · + a1λ + a0.

Proof of (a).

By the Cayley-Hamilton theorem, we have that

An + an−1An−1 + · · · + aaA2 + a1A + a0In = On×n.

Consequently,

An = −a0In − a1A − a2A2 − · · · − an−1An−1.

Thus, An is a linear combination of the matrices
In, A, A2, . . . , An−1.
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Corollary 8.3.1
(b) if A is invertible, then A−1 ∈ Span(In, A, A2, . . . , An−1), i.e.

A−1 is a linear combination of In, A, A2, . . . , An−1.

Reminder:
pA(λ) = λn + an−1λn−1 + an−2λn−2 + · · · + a1λ + a0.

Proof of (b). Assume that A is invertible.

Proposition 8.2.11 then
guarantees that 0 is not an eigenvalue of A. Since the eigenvalues
of A are precisely the roots of the characteristic polynomial of A,
we have that pA(0) ̸= 0; since pA(0) = a0, it follows that a0 ̸= 0.

Now, by the Cayley-Hamilton theorem, we have that

An + an−1An−1 + · · · + a2A2 + a1A + a0In = On×n.
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An−2 − 1
a0

An−1.

So, A−1 is a linear combination of In, A, A2, . . . , An−1. □
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The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then
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