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1 Volume via determinants
2 Eigenvalues and eigenvectors of linear functions and square
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3 The characteristic polynomial and spectrum
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1 Determinants and volume

In our study of determinants and volume, we assume
throughout that Rn is equipped with the standard scalar
product · and the induced norm || · ||.

For a parallelogram, we have the familiar formula(
area of

parallelogram

)
= (length of base) × (height).
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We have a similar formula for the volume of a parallelepiped:(
volume of

parallelepiped

)
= (area of base) × (height).
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We would now like to generalize this to arbitrary dimensions
(next slide).
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

For instance, given two vectors v1, v2 ∈ R2, neither of which
is a scalar multiple of the other, the 2-parallelepiped
determined by v1, v2 is just the usual parallelogram
determined by these two vectors.
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

For vectors v1, v2 ∈ Rn, neither of which is a scalar multiple
of each other, the 2-parallelepiped determined by v1, v2 is still
a parallelogram, but this parallelogram lies in the plane
(2-dimensional subspace) Span(v1, v2) of Rn.
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

What happens if one of v1, v2 ∈ Rn is a scalar multiple of the
other, say v2 = αv1 for some scalar α ∈ R?

Then the 2-parallelepiped determined by v1 and v2 is just set{
c1v1 + c2v2 | c1, c2 ∈ R, 0 ≤ c1, c2 ≤ 1

}
=

{
c1v1 + c2αv1 | c1, c2 ∈ R, 0 ≤ c1, c2 ≤ 1

}
=

{
(c1 + c2α)v1 | c1, c2 ∈ R, 0 ≤ c1, c2 ≤ 1

}
=

{
c(1 + α)v1 | c ∈ R, 0 ≤ c ≤ 1

}
,

which is 1-dimensional (a line segment) if v1 ̸= 0, and is
0-dimensional (containing only the zero vector) if v1 = 0.
We can think of these as “degenerate parallelograms.”
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

Similarly, for three linearly independent vectors
v1, v2, v3 ∈ Rn, the 3-parallelepiped defined by v1, v2, v3 is
just the usual parallelepiped whose edges are determined by
these three vectors (see the picture below).
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

If {v1, v2, v3} is not linearly independent, then the
3-parallelepiped determined by v1, v2, v3 is either a
parallelogram, or a line segment, or {0}, depending on the
dimension of Span(v1, v2, v3).

Once again, we can think of these as “degenerate
parallelepipeds.”

For more than three vectors, we get higher-dimensional
generalizations.
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.

We would now like to define the “volume” (more precisely, the
“m-volume”) of an m-parallelepiped in Rn.

We do this recursively, as follows (next slide).
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Definition
The 1-volume of the 1-parallelepiped determined by the vector
v1 ∈ Rn is defined to be V1(v1) := ||v1||.
For a positive integer m, the (m + 1)-volume of the
(m + 1)-parallelepiped determined by the vectors
v1, . . . , vm, vm+1 ∈ Rn is defined to be

Vm+1(v1, . . . , vm, vm+1) := Vm(v1, . . . , vm) ||v⊥
m+1||,

where v⊥
m+1 = projSpan(v1,...,vm)⊥(vm+1).a

aEquivalently (by Corollary 6.5.3): v⊥
m+1 = vm+1 − projSpan(v1,...,vm)(vm+1).

In this recursive formula, the m-parallelepiped determined by
the vectors v1, . . . , vm is our “base” and ||v⊥

m+1|| is our
“height.”
So, we get the formula(

(m + 1)-volume of
(m + 1)-parallelepiped

)
= (m-volume of base) × (height).
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Definition
The 1-volume of the 1-parallelepiped determined by the vector
v1 ∈ Rn is defined to be V1(v1) := ||v1||.
For a positive integer m, the (m + 1)-volume of the
(m + 1)-parallelepiped determined by the vectors
v1, . . . , vm, vm+1 ∈ Rn is defined to be

Vm+1(v1, . . . , vm, vm+1) := Vm(v1, . . . , vm) ||v⊥
m+1||,

where v⊥
m+1 = projSpan(v1,...,vm)⊥(vm+1).a

aEquivalently (by Corollary 6.5.3): v⊥
m+1 = vm+1 − projSpan(v1,...,vm)(vm+1).

Note that 1-volume represents (1-dimensional) length,
2-volume represents (2-dimensional) area, and 3-volume
represents (3-dimensional) volume.
For m ≥ 4, m-volume is an m-dimensional generalization of
these concepts.



Proposition 7.10.1
Let v1, . . . , vm ∈ Rn. Then Vm(v1, . . . , vm) ≥ 0, and equality holds
iff {v1, . . . , vm} is a linearly dependent set.

Proof: Lecture Notes.
The fact that Vm(v1, . . . , vm) ≥ 0 follows straight from the
definition of m-volume (we keep computing lengths of vectors).
The second statement essentially states that the volume of an
m-parallelepiped is zero iff that m-parallelepiped is
“degenerate.”



Definition
The 1-volume of the 1-parallelepiped determined by the vector
v1 ∈ Rn is defined to be V1(v1) := ||v1||.
For a positive integer m, the (m + 1)-volume of the
(m + 1)-parallelepiped determined by the vectors
v1, . . . , vm, vm+1 ∈ Rn is defined to be

Vm+1(v1, . . . , vm, vm+1) := Vm(v1, . . . , vm) ||v⊥
m+1||,

where v⊥
m+1 = projSpan(v1,...,vm)⊥(vm+1).a

aEquivalently (by Corollary 6.5.3): v⊥
m+1 = vm+1 − projSpan(v1,...,vm)(vm+1).

We will prove the following four results about m-volume (next
two slides):



Theorem 7.10.2
Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Note that A is an n × m matrix. It is possible that n ̸= m, and
so det(A) is not necessarily defined.
However, AT A is an m × m matrix, and so det(AT A) is
defined.

Corollary 7.10.3
Let a1, . . . , an ∈ Rn. Then Vn(a1, . . . , an) = |det(

[
a1 . . . an

]
)|.

Note that we have n vectors in Rn. So,
[

a1 . . . an
]

is an
n × n matrix, and therefore, it has a determinant.
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Corollary 7.10.4
Let a1, . . . , am ∈ Rn and σ ∈ Sm. Then
Vm(a1, . . . , am) = Vm(aσ(1), . . . , aσ(m)).

So, merely permuting the vectors that determine an
m-parallelepiped does not change the m-volume of that
m-parallelepiped.

Corollary 7.10.5
Let v1, . . . , vn ∈ Rn, and let A ∈ Rn×n. Then

Vn(Av1, . . . , Avn) = |det(A)| Vn(v1, . . . , vn).

Here, it is important that we have n vectors in Rn.
If we have m vectors in Rn, then this fails.

Counterexample: later!
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Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Proof.

∀i ∈ {1, . . . , m}: Ai :=
[

a1 . . . ai
]
. We will prove

inductively that ∀i ∈ {1, . . . , m}: Vi(a1, . . . , ai) =
√

det(AT
i Ai).

Obviously, this is enough, since Am = A.
For i = 1, we observe that AT

1 A1 =
[

a1
]T [ a1

]
=
[

a1 · a1
]
, and

consequently,√
det(AT

1 A1) = √a1 · a1 = ||a1|| = V1(a1).

We may now assume that m ≥ 2, for otherwise we are done by
what we just showed. Fix i ∈ {1, . . . , m − 1}, and assume
inductively that Vi(a1, . . . , ai) =

√
det(AT

i Ai). WTS
Vi+1(a1, . . . , ai , ai+1) =

√
det(AT

i+1Ai+1).
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Proof (continued). Reminder: Ai :=
[

a1 . . . ai
]
;

Ai+1 :=
[

a1 . . . ai ai+1
]
; Vi(a1, . . . , ai) =

√
det(AT

i Ai);
WTS Vi+1(a1, . . . , ai , ai+1) =

√
det(AT

i+1Ai+1).

a||
i+1 := projSpan(a1,...,ai )(ai+1);

a⊥
i+1 := projSpan(a1,...,ai )⊥(ai+1).

By Corollary 6.5.3, we have that ai+1 = a||
i+1 + a⊥

i+1.

Since a||
i+1 ∈ Span(a1, . . . , ai), ∃c1, . . . , ci ∈ R s.t.

a||
i+1 = c1a1 + · · · + ciai , and consequently,

a⊥
i+1 = ai+1 − a||

i = ai+1 − c1a1 − · · · − ciai .

Now, let Bi+1 be the matrix obtained from Ai+1 by replacing the
rightmost column of Ai+1 by a⊥

i+1, i.e.
Bi+1 :=

[
a1 . . . ai a⊥

i+1
]

.

WTS det(AT
i+1Ai+1) = det(BT

i+1Bi+1) (∗)= Vi+1(a1, . . . , ai , ai+1)2,
where for (*) we will use the ind. hyp. and the def. of volume.
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1
...
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i
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
aT

1
...

aT
i

aT
i+1 − c1aT

1 − · · · − ciaT
i

 .

So, BT
i+1 can be obtained from AT

i+1 via the following sequence of i
elementary row operations:

Ri+1 → Ri+1 − c1R1;
...
Ri+1 → Ri+1 − ciRi .

Let E1, . . . , Ei be the elementary matrices corresponding to these i
elementary row operations, so that BT

i+1 = Ei . . . E1AT
i+1, and

consequently, Bi+1 = Ai+1ET
1 . . . ET

i . By Theorem 7.3.2(c), we see
that det(E1) = · · · = det(Ei) = 1. We now compute (next slide):
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det(BT
i+1Bi+1) = det

(
(Ei . . . E1AT

i+1)(Ai+1ET
1 . . . ET

i )
)

(∗)= det(Ei) . . . det(E1)det(AT
i+1Ai+1)det(ET

1 ) . . . det(ET
i )

(∗∗)= det(Ei)︸ ︷︷ ︸
=1

. . . det(E1)︸ ︷︷ ︸
=1

det(AT
i+1Ai+1) det(E1)︸ ︷︷ ︸

=1

. . . det(Ei)︸ ︷︷ ︸
=1

= det(AT
i+1Ai+1),

where (*) follows from Theorem 7.5.2, and (**) follows from
Theorem 7.1.3.
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[
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i+1

]
, and so (next slide):
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BT
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i
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i+1)T
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i Ai AT
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i+1

(a⊥
i+1)T Ai (a⊥

i+1)T a⊥
i+1

]
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[
AT

i Ai 0
0T ||a⊥

i+1||2
]

,

where in (*), we used the fact that a⊥
i+1 is orthogonal to the

columns of A, and so AT a⊥
i+1 = 0, and we also used the fact that

(a⊥
i+1)T a⊥

i+1 = a⊥
i+1 · a⊥

i+1 = ||a⊥
i+1||2.

We now compute (next slide):
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Proof (continued). Reminder: Ai :=
[

a1 . . . ai
]
;

Ai+1 :=
[

a1 . . . ai ai+1
]
; Vi(a1, . . . , ai) =

√
det(AT

i Ai);
WTS Vi+1(a1, . . . , ai , ai+1) =

√
det(AT

i+1Ai+1).

det(AT
i+1Ai+1) = det(BT

i+1Bi+1)

=
∣∣∣∣ AT

i Ai 0
0T ||a⊥

i+1||2
∣∣∣∣

(∗)= (−1)(i+1)+(i+1) ||a⊥
i+1||2 det(AT

i Ai)

= det(AT
i Ai) ||a⊥

i+1||2

(∗∗)= Vi(a1, . . . , ai)2 ||a⊥
i+1||2

(∗∗∗)= Vi+1(a1, . . . , ai , ai+1)2,

where (*) follows by Laplace expansion along the rightmost
column, (**) follows from the induction hypothesis, and (***)
follows from the definition of Vi+1(a1, . . . , ai , ai+1).



Theorem 7.10.2
Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Proof (continued). Reminder: Vi(a1, . . . , ai) =
√

det(AT
i Ai);

WTS Vi+1(a1, . . . , ai , ai+1) =
√

det(AT
i+1Ai+1).

From the previous slide:

det(AT
i+1Ai+1) = Vi+1(a1, . . . , ai , ai+1)2.

Since Vi+1(a1, . . . , ai , ai+1) ≥ 0 (by Proposition 7.10.1), we may
now take the square root of both sides to obtain

Vi+1(a1, . . . , ai , ai+1) =
√

det(AT
i+1Ai+1).

This completes the induction. □
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Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Corollary 7.10.3
Let a1, . . . , an ∈ Rn. Then Vn(a1, . . . , an) = |det(

[
a1 . . . an

]
)|.

Proof.

First of all, we note that A :=
[

a1 . . . an
]

is an n × n
matrix (with entries in R), and so it has a determinant. We now
compute:

Vn(a1, . . . , an) =
√

det(AT A) by Theorem 7.10.2

=
√

det(AT )det(A) by Theorem 7.5.2

=
√

det(A)2 by Theorem 7.1.3

= |det(A)|.
□
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Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Corollary 7.10.4
Let a1, . . . , am ∈ Rn and σ ∈ Sm. Then
Vm(a1, . . . , am) = Vm(aσ(1), . . . , aσ(m)).

Proof.

Set A :=
[

a1 . . . am
]

and Aσ :=
[

aσ(1) . . . aσ(m)
]
,

and consider Pσ, the matrix of the permutation σ. By
Theorem 2.3.15(c), we have that Aσ = APT

σ , and by
Proposition 7.1.1, we have that det(Pσ) = sgn(σ). But now (next
slide):
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Proof (continued).

Vm(aσ(1), . . . , aσ(m))
(∗)=

√
det(AT

σ Aσ)

=
√

det
(
(APT

σ )T (APT
σ )
)

=
√

det(PσAT APT
σ )

(∗∗)=
√

det(Pσ)det(AT A)det(PT
σ )

(∗∗∗)=
√

det(Pσ)det(AT A) det(Pσ)

=
√

sgn(σ)2det(AT A)

=
√

det(AT A)
(∗)= Vm(a1, . . . , am),

where both instances of (*) follow from Theorem 7.10.2, (**)
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Corollary 7.10.5
Let v1, . . . , vn ∈ Rn, and let A ∈ Rn×n. Then

Vn(Av1, . . . , Avn) = |det(A)| Vn(v1, . . . , vn).

Remark: For a1, . . . , am ∈ Rn (m ̸= n) and A ∈ Rn×n, the
formula from Corollary 7.10.5 fails, i.e.

Vm(Av1, . . . , Avm) ��ZZ= |det(A)| Vm(v1, . . . , vm).

For instance, for m = 1 and n = 2, we can take

v1 =
[

1
0

]
and A =

[
1 0
0 0

]
,

so that Av1 = v1.
Then

V1(Av1) = V1(v1) = ||v1|| = 1,
det(A) = 0,

and so V1(Av1) ̸= |det(A)| V1(v1).
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Suppose that Ω is any object in Rn for which n-volume Vn(Ω)
can be defined.

We will not go into the technical details of how this can be
done, but the idea is that we approximate Ω with ever smaller
n-dimensional hypercubes; the sum of n-volumes of those
n-hypercubes (which are simply n-parallelepipeds, and so we
know how to compute their n-volume) will give us an ever
better approximation of the n-volume of Ω that we wish to
define.

Ω

To obtain the actual n-volume of Ω, we take the limit of these
ever-finer approximations. If the limit exists, then Ω will have
an n-volume (defined to be this limit). If the limit does not
exist, then n-volume is undefined for Ω.
It is actually pretty difficult to construct Ω for which volume is
undefined! Any reasonably pretty object Ω will have a volume,
although that volume may possibly be zero.
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Now, suppose we are given a matrix A ∈ Rn×n.

We consider the linear function fA : Rn → Rn whose standard
matrix is A (i.e. for all x ∈ Rn, we have fA(x) = Ax).
Then each of the small n-hypercubes gets mapped onto a
small n-parallelepiped; if the small n-hypercubes each had
volume V , then by Corollary 7.10.5, the small
n-parallelepipeds that these n-hypercubes get mapped onto
via fA will have volume |det(A)| V .

fA(x) = Ax

Ω fA[Ω]

So, we get the following formula for the n-volume of the
image of Ω under fA:

Vn(fA[Ω]) = |det(A)| Vn(Ω).
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Example 7.10.6
Let a and b be positive real numbers. Compute the area (i.e.
2-volume) of the region bounded by the ellipse whose equation is

x2
1

a2 + x2
2

b2 = 1.

a−a

b

−b

x1

x2



Solution. We need compute the area of the region

E :=
{[ x1

x2

]
| x1, x2 ∈ R,

x2
1

a2 + x2
2

b2 ≤ 1
}

.

Consider the unit disk

D :=
{[ x1

x2

]
| x1, x2 ∈ R, x2

1 + x2
2 ≤ 1

}
and the matrix

A =
[

a 0
0 b

]
.

Let fA : R2 → R2 be the linear function whose standard matrix is
A, so that for all

[
x1 x2

]T ∈ R2, we have

fA
([ x1

x2

])
=

[
a 0
0 b

] [
x1
x2

]
=

[
ax1
bx2

]
.

WTA fA[D] = E .
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Solution (continued). We now see that

fA[D] =
{

fA
([ x1

x2

])
| x1, x2 ∈ R, x2

1 + x2
2 ≤ 1

}

=
{[ ax1

bx2

]
| x1, x2 ∈ R, x2

1 + x2
2 ≤ 1

}

=
{[ y1

y2

]
| y1, y2 ∈ R, ( y1

a )2 + ( y2
b )2 ≤ 1

}

=
{[ y1

y2

]
| y1, y2 ∈ R,

y2
1

a2 + y2
2

b2 ≤ 1
}

= E .

−1 1 a−a

−1

1
b

−b

D E = fA[D]

x1x1

x2x2

fA(x) = Ax

A =

 a 0

0 b


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Solution (continued). Reminder: fA[D] = E .

Therefore, the area of E is

area(E ) = |det(A)|︸ ︷︷ ︸
=ab

area(D)︸ ︷︷ ︸
=12π

= abπ.

□
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2 Eigenvalues and eigenvectors of linear functions and square
matrices

Definition
Suppose that V is a vector spaces over a field F, and that
f : V → V is a linear function. An eigenvector of f is a vector
v ∈ V \ {0} for which there exists a scalar λ ∈ F, called the
eigenvalue of f associated with the eigenvector v, s.t.

f (v) = λv.

Under these circumstances, we also say that v is an eigenvector of
f associated with the eigenvalue λ.

So, the eigenvectors of f are those non-zero vectors in V
that simply get scaled by f , and the eigenvalues are the
scalars that the eigenvectors get scaled by.
By definition, an eigenvector cannot be 0, but an eigenvalue
may possibly be 0.
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Definition
Suppose that V is a vector spaces over a field F, and that
f : V → V is a linear function. An eigenvector of f is a vector
v ∈ V \ {0} for which there exists a scalar λ ∈ F, called the
eigenvalue of f associated with the eigenvector v, s.t.

f (v) = λv.

Under these circumstances, we also say that v is an eigenvector of
f associated with the eigenvalue λ.

Remark: Note that eigenvectors and eigenvalues are only
defined for those linear functions whose domain is the same as
the codomain.



Example 8.1.1
Consider the linear function f : R2 → R2 given by

f
([ x1

x2

])
=

[
−1 0

0 1

] [
x1
x2

]
=

[
−x1

x2

]
for all x1, x2 ∈ R. So, f is the reflection about the x2-axis (see the

picture below), and its standard matrix is
[

−1 0
0 1

]
.

x1

x2

vf (v)

As usual, e1 and e2 are the standard basis vectors of R2. Then
(next slide)



Example 8.1.1

x1

x2

vf (v)

e1 is an eigenvector of f associated with the eigenvalue
λ1 := −1, since f (e1) = −e1 = λ1e1;
e2 is an eigenvector of f associated with the eigenvalue
λ2 := 1, since f (e2) = e2 = λ2e2.

e1f (e1) = −e1

f (e2) = e2

x1

x2



Example 8.1.2
Consider the linear function f : R2 → R2 given by

f
([ x1

x2

])
=

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2

x1

]
for all x1, x2 ∈ R. So, f is the counterclockwise rotation by 90◦

about the origin (see the picture below), and its standard matrix is[
0 −1
1 0

]
. This function has no eigenvectors (and consequently, it

has no eigenvalues), since it does not simply scale any non-zero
vector in R2.

x1

x2

v

f (v)

90◦



Example 8.1.3
Consider the linear function f : C2 → C2 given by

f
([ x1

x2

])
=

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2

x1

]
for all x1, x2 ∈ C. (This is the same formula as the one from

Example 8.1.2, except that we are now working over C, rather than
over R.) Then

v1 :=
[

i
1

]
is an eigenvector of f associated with the

eigenvalue λ1 := i , since f (v1) =
[

−1
i

]
= i
[

i
1

]
= λ1v1;

v2 :=
[

−i
1

]
is an eigenvector of f associated with the

eigenvalue λ2 := −i , since
f (v2) =

[
−1
−i

]
= (−i)

[
−i

1

]
= λ2v2.
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Remark: It may be somewhat surprising that the linear
function f from Example 8.1.2 has no eigenvectors and no
eigenvalues, whereas the one from Example 8.1.3 has them.
As we shall see once we learn how to actually compute
eigenvalues and eigenvectors (this will involve finding roots of
polynomials), the essential difference is that C is an
algebraically closed field, whereas R is not.
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Reminder:

Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

If F is an algebraically closed field, and p(x) is non-constant
polynomial with coefficients in F, then p(x) can be factored
into linear terms.
C is algebraically closed.
Q, R, and Zp (where p is a prime number) are not
algebraically closed.
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For a linear function f : V → V , where V is a vector space
over a field F, and for a scalar λ ∈ F, we define

Eλ(f ) := {v ∈ V | f (v) = λv}.

Note that 0 ∈ Eλ(f ), since f (0) (∗)= 0 = λ0, where (*) follows
from Proposition 6.1.4 (since f is linear).
The set Eλ(f ) can be defined for any scalar λ, but it is only
interesting in the case when λ is an eigenvalue of V , in which
case Eλ(f ) is called the eigenspace of f associated with the
eigenvalue λ.
Note that, for an eigenvalue λ of f , the elements of the
eigenspace Eλ(f ) are precisely the zero vector and the
eigenvectors of f associated with λ.

By definition, 0 cannot be an eigenvector.

On the other hand, if λ is not an eigenvalue of f , then we
simply have that Eλ(f ) = {0}, and we do not refer to Eλ(f )
as an eigenspace.
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Proposition 8.1.4
Let V be a vector space over a field F, and let f : V → V be a
linear function. Then both the following hold:

(a) for all scalars λ ∈ F, Eλ(f ) is a subspace of V , and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff λ is an eigenvalue of f ;

(b) for all distinct scalars λ1, λ2 ∈ F, we have that
Eλ1(f ) ∩ Eλ2(f ) = {0}.

Proof (outline). (a) For λ ∈ F:

we check that Eλ(f ) contains 0 and is closed under vector
addition and scalar multiplication, and we deduce (by
Theorem 3.1.7) that Eλ(f ) is a subspace of V ;
any non-zero vector in Eλ(f ) is an eigenvector of f associated
with λ, and so Eλ(f ) is non-trivial iff λ is an eigenvalue of f .
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So, Eλ1(f ) ∩ Eλ2(f ) = {0}. □
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Terminology: Suppose that V is a vector space over a field F,
and that λ is an eigenvalue of a linear function f : V → V .

The geometric multiplicity of the eigenvalue λ is defined to be
dim
(
Eλ(f )

)
.

So, the geometric multiplicity of an eigenvalue is the
dimension of the associated eigenspace.



Definition
Let F be a field, and let A ∈ Fn×n be a square matrix. An
eigenvector of A is a vector v ∈ Fn \ {0} for which there exists a
scalar λ ∈ F, called the eigenvalue of A associated with the
eigenvector v, s.t.

Av = λv.

Under these circumstances, we also say that v is an eigenvector of
A associated with the eigenvalue λ.

Eigenvectors are, by definition, non-zero, whereas eigenvalues
may possibly be zero.



For a square matrix A ∈ Fn×n (where F is some field), and for
a scalar λ ∈ F, we define

Eλ(A) := {v ∈ Fn | Av = λv}.

If λ is an eigenvalue of A, then Eλ(A) is called the eigenspace
of A associated with the eigenvalue λ.

Note that, for an eigenvalue λ of A, the elements of the
eigenspace Eλ(A) are precisely the zero vector and the
eigenvectors of A associated with λ.
On the other hand, if λ is not an eigenvalue of A, then we
simply have that Eλ(A) = {0}, and we do not refer to Eλ(A)
as an eigenspace.
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Proposition 8.1.5
Let F be a field, let f : Fn → Fn be a linear function, and let A be
the standard matrix of f . Then f and A have exactly the same
eigenvalues and the associated eigenectors. Moreover, for all
eigenvalues λ of f and A, we have that Eλ(f ) = Eλ(A).

Proof. This follows immediately from the appropriate definitions. □



Reminder:

Proposition 8.1.4
Let V be a vector space over a field F, and let f : V → V be a
linear function. Then both the following hold:

(a) for all scalars λ ∈ F, Eλ(f ) is a subspace of V , and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff λ is an eigenvalue of f ;

(b) for all distinct scalars λ1, λ2 ∈ F, we have that
Eλ1(f ) ∩ Eλ2(f ) = {0}.

For square matrices, we have the following analog of
Proposition 8.1.4.
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Proposition 8.1.6
Let F be a field, and let A ∈ Fn×n be a square matrix. Then all the
following hold:

(a) for all scalars λ ∈ F, Eλ(A) is a subspace of Fn, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff λ is an eigenvalue of A;

(b) for all distinct scalars λ1, λ2 ∈ F, we have that
Eλ1(A) ∩ Eλ2(A) = {0}.

Proof.

Consider the function fA : Fn → Fn, given by fA(v) = Av
for all vectors v ∈ Fn. Then fA is linear (by Proposition 1.10.4),
and moreover, A is the standard matrix of fA.

So, by Proposition 8.1.5, we have that for all λ ∈ F,
Eλ(A) = Eλ(fA).

The result now follows immediately from Proposition 8.1.4. □
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Proposition 8.1.7
Let V be a non-trivial, finite-dimensional vector space over a field
F, let B = {b1, . . . , bn} be a basis of V , and let f : V → V be a
linear function. Then for all λ ∈ F, we have that

Eλ

(
B

[
f
]

B

)
=

{ [
v
]

B
| v ∈ Eλ(f )

}
.

Consequently, the linear function f and the matrix
B

[
f
]

B
have

exactly the same eigenvalues, with exactly the same corresponding
geometric multiplicities.

Proof: Lecture Notes.
Proposition 8.1.7 states that Eλ

(
B

[
f
]

B

)
is the image of

Eλ(f ) under the coordinate transformation
[

·
]

B
.



In view of Propositions 8.1.5 (“linear functions and their
standard matrices have the same eigenvalues, eigenvectors,
and eigenspaces”) and 8.1.7 (previous slide), we see that the
study of eigenvalues and eigenvectors of linear functions from
a non-trivial, finite-dimensional vector space to itself is
essentially equivalent to the study of eigenvalues and
eigenvectors of square matrices.

The computational tools that we develop for finding
eigenvectors and eigenvalues will primarily be for square
matrices.
On the other hand, some of the theoretical results that we
prove will be for linear functions instead, and we will obtain
corresponding results for matrices as more or less immediate
corollaries.



3 The characteristic polynomial and spectrum

Definition
Given a field F and a matrix A ∈ Fn×n, the characteristic
polynomial of A is defined to be

pA(λ) := det
(
λIn − A

)
.

The characteristic equation of A is the equation
det
(
λIn − A

)
= 0.

So, the roots of the characteristic polynomial of A are precisely the
solutions of the characteristic equation of A.



Example 8.2.1
Compute the characteristic polynomial of the following matrix in
C3×3:

A =

 1 −2 3
−1 0 2

2 −1 −3

 .

Solution.

The characteristic polynomial of A is:

pA(λ) = det(λI3 − A) =

∣∣∣∣∣∣
λ − 1 2 −3

1 λ −2
−2 1 λ + 3

∣∣∣∣∣∣
= λ3 + 2λ2 − 9λ − 3.

□
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Remark: For a field F and a matrix A ∈ Fn×n, the
characteristic polynomial pA(λ) = det(λIn − A) is a
polynomial of degree n, with leading coefficient 1, i.e. the
coefficient in front of λn in pA(λ) is 1.

In some texts, the characteristic polynomial is defined to be
det(A − λIn).
By Proposition 7.2.3, we have that
det(A − λIn) = (−1)ndet(λIn − A), and so the polynomials
det(λIn − A) and det(A − λIn) have exactly the same roots,
with the same corresponding multiplicities, which is what we
will actually care about when it comes to the characteristic
polynomial.
The main advantage of using det(λIn − A) rather than
det(A − λIn) is that the former polynomial has leading
coefficient 1, whereas the latter has leading coefficient (−1)n,
which is −1 if n is odd.
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Theorem 8.2.2
Let F be a field, let A ∈ Fn×n, and let λ0 ∈ F. Then

Eλ0(A) = Nul
(
λ0In − A

)
= Nul

(
A − λ0In

)
.

Moreover, the following are equivalent:
(1) λ0 is an eigenvalue of A;
(2) λ0 is a root of the characteristic polynomial of A, i.e.

pA(λ0) = 0;
(3) λ0 is a solution of the characteristic equation of A, i.e.

det
(
λ0In − A

)
= 0.

Proof.

Obviously, for all v ∈ Fn, we have that
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λ0In − A

)
v = 0 iff(

A − λ0In
)
v = 0. So, Nul

(
λ0In − A

)
= Nul

(
A − λ0In

)
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.

It remains to show that (1), (2), and (3) are equivalent. The fact
that (2) and (3) are equivalent follows immediately from the
appropriate definitions. It remains to prove that (1) and (3) are
equivalent.
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By Theorem 8.2.2, the eigenvalues of a square matrix are
precisely the roots of its characteristic polynomial.

For a field F, a matrix A ∈ Fn×n, and an eigenvalue λ0 of A,
the algebraic multiplicity of the eigenvalue λ0 is its multiplicity
as a root of the characteristic polynomial of A, or in other
words, it is the largest integer k such that (λ − λ0)k | pA(λ),
i.e. such that (λ − λ0)k divides the polynomial pA(λ).
Since deg

(
pA(λ)

)
= n, the sum of algebraic multiplicities of

the eigenvalues of the matrix A ∈ Fn×n is at most n; if the
field F is algebraically closed, then the sum of algebraic
multiplicities of the eigenvalues of A is exactly n.

Indeed, if F is algebraically closed, then the characteristic
polynomial pA(λ) can be written as a product of linear factors,
and there are n of those factors.
If F is not algebraically closed, we might or might not be able
to factor pA(λ) in this way, which is why the sum of algebraic
multiplicities of the eigenvalues of A is at most n (possibly
strictly smaller than n).
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Theorem 8.2.3
Let F be a field, and let A ∈ Fn×n. Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Proof: Later!
Schematically, Theorem 8.2.3 states that for an eigenvalue λ
of A:

geometric multiplicity of λ ≤ algebraic multiplicity of λ.

For now, we have only stated Theorem 8.2.3. We will not use
this theorem before proving it.
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The spectrum of a square matrix A ∈ Fn×n is the multiset of
all eigenvalues of A, with algebraic multiplicities taken into
account.

This means that the number of times that an eigenvalue
appears in the spectrum is equal to the algebraic multiplicity of
that eigenvalue. The order in which we list the eigenvalues in
the spectrum does not matter, but repetitions do matter.

For example, if a matrix A ∈ C5×5 has eigenvalues 1 (with
algeraic multiplicity 1), 1 + i (with algebraic multiplicity 2),
and 1 − i (with algebraic multiplicity 2), then the spectrum of
A is {1, 1 + i , 1 + i , 1 − i , 1 − i}.
In general, the spectrum of a matrix A ∈ Fn×n (where F is a
field) has at most n elements; if the field F is algebraically
closed, then the spectrum of A has exactly n elements.
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Example 8.2.4
Consider the following matrix in C3×3:

A =

 4 0 −2
2 5 4
0 0 5

 .

(a) Compute the characteristic polynomial pA(λ) of the matrix A.
(b) Compute all the eigenvalues of A and their algebraic

multiplicities, and compute the spectrum of A.
(c) For each eigenvalue λ of A, compute a basis of the eigenspace

Eλ(A) and specify the geometric multiplicity of the eigenvalue
λ.



Reminder: A =
[

4 0 −2
2 5 4
0 0 5

]
.

Solution. (a) The characteristic polynomial of A is:
pA(λ) = det(λI3 − A)

=

∣∣∣∣∣∣
λ − 4 0 2
−2 λ − 5 −4

0 0 λ − 5

∣∣∣∣∣∣
= (λ − 4)(λ − 5)2 via Laplace expansion

along 2nd column
= λ3 − 14λ2 + 65λ − 100.

Remark: We did not really need to expand in the last line.
We only really care about the roots of the characteristic
polynomial, and it is more convenient to have a form that is
already factored.
So, pA(λ) = (λ − 4)(λ − 5)2 is a “better” answer than
pA(λ) = λ3 − 14λ2 + 65λ − 100, although they are both
correct.
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Eλ(A) and specify the geometric multiplicity of the eigenvalue
λ.

Solution (continued). Reminder: (a) pA(λ) = (λ − 4)(λ − 5)2.

(b) From part (a), we see that A has two eigenvalues, namely, the
eigenvalue λ1 = 4 (with algebraic multiplicity 1), and the
eigenvalue λ2 = 5 (with algebraic multiplicity 2). So, the spectrum
of A is {4, 5, 5}.
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Solution (continued). Reminder: the eigenvalues of A are λ1 = 4
and λ2 = 5.

(c) For each i ∈ {1, 2}, we have that

Eλi (A) = Nul
(
λi I3 − A

)
,

which is precisely the set of all solutions of the characteristic
equation

(λi I3 − A)x = 0.

Let us now compute a basis of each of the two eigenspaces.
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0 0 1
0 0 0

 .

Consequently, the general solution of the equation
(λ1I3 − A)x = 0 is

x =

 −t/2
t
0

 = t

 −1/2
1
0

 = t
2

 −1
2
0

 , with t ∈ C.

So,
{ [

−1 2 0
]T } is a basis of the eigespace

Eλ1(A) = Nul
(
A − λ1In

)
, and we see that the eigenvalue λ1 = 4

has geometric multiplicity 1.
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]T } is a basis of the eigespace

Eλ1(A) = Nul
(
A − λ1In

)
, and we see that the eigenvalue λ1 = 4

has geometric multiplicity 1.



Example 8.2.4
Consider the following matrix in C3×3:

A =

 4 0 −2
2 5 4
0 0 5

 .

(a) Compute the characteristic polynomial pA(λ) of the matrix A.
(b) Compute all the eigenvalues of A and their algebraic

multiplicities, and compute the spectrum of A.
(c) For each eigenvalue λ of A, compute a basis of the eigenspace

Eλ(A) and specify the geometric multiplicity of the eigenvalue
λ.

Solution (continued). (c) Similarly, for λ2 = 5, we get that{ 0
1
0

 ,

 −2
0
1

} is a basis of the eigenspace

Eλ2(A) = Nul
(
A − λ2In

)
, and we see that the eigenvalue λ2 = 5

has geometric multiplicity 2 (details: Lecture Notes). □



Reminder:

Proposition 7.3.1
Let F be a field, and let A =

[
ai,j

]
n×n be a triangular matrix in

Fn×n. Then

det(A) =
n∏

i=1
ai ,i = a1,1a2,2 . . . an,n,

that is, det(A) is equal to the product of entries on the main
diagonal of A.


∗ ∗ ∗ . . . ∗ ∗
0 ∗ ∗ . . . ∗ ∗
0 0 ∗ . . . ∗ ∗
...

...
...

. . .
...

...
0 0 0 . . . ∗ ∗
0 0 0 . . . 0 ∗




∗ 0 0 . . . 0 0
∗ ∗ 0 . . . 0 0
∗ ∗ ∗ . . . 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ . . . ∗ 0
∗ ∗ ∗ . . . ∗ ∗


upper triangular matrix lower triangular matrix



Proposition 8.2.7

Let F be a field, and let A =
[

ai ,j
]

n×n
be a triangular matrix in

Fn×n. Then the characteristic polynomial of A is

pA(λ) =
n∏

i=1
(λ − ai ,i) = (λ − a1,1)(λ − a2,2) . . . (λ − an,n),

the eigenvalues of A are precisely the entries of A on its main
diagonal, and moreover, the algebraic multiplicity of each
eigenvalue is precisely the number of times that it appears on the
main diagonal of A.a Consequently, the spectrum of A is
{a1,1, a2,2, . . . , an,n}, i.e. the multiset formed precisely by the main
diagonal entries of A, with each number appearing in the spectrum
of A the same number of times as on the main diagonal of A.

aHowever, the geometric multiplicity may possibly be smaller.



For example, for the matrix

A =


1 2 0 0 0
0 2 0 0 0
0 0 1 1 3
0 0 0 3 3
0 0 0 0 3


in C5×5, we have the following:

the characteristic polynomial of A is:

pA(λ) = (λ − 1)(λ − 2)(λ − 1)(λ − 3)(λ − 3)

= (λ − 1)2(λ − 2)(λ − 3)2;

the spectrum of A is {1, 1, 2, 3, 3}.


