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1 Cramer’s rule

Before stating Cramer’s rule, we set up some notation.
For a matrix A ∈ Fn×n, a vector b ∈ Fn, and an index
j ∈ {1, . . . , n}, we denote by Aj(b) the matrix obtained from
A by replacing the j-th column of A with b.

For example, for

A =

 1 1 1
0 2 2
0 0 3

 and b =

 4
5
6

 ,

we have that

A1(b) =

[
4 1 1
5 2 2
6 0 3

]
, A2(b) =

[
1 4 1
0 5 2
0 6 3

]
, A3(b) =

[
1 1 4
0 2 5
0 0 6

]
.

In what follows, it will be convenient to use the fraction
notation in fields.
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Cramer’s rule
Let F be a field, and let A be an invertible matrix in Fn×n, and let
b ∈ Fn. Then the matrix-vector equation Ax = b has a unique
solution, namely

x =
[

det
(

A1(b)
)

det(A)
det

(
A2(b)

)
det(A) . . .

det
(

An(b)
)

det(A)

]T
.

First an example, then a proof.



Example 7.7.1
Let

A =

 2 1 0
0 2 2
1 1 1

 and b =

 1
1
0

 ,

with entries understood to be in Z3. Solve the matrix-vector
equation Ax = b.

Solution.

Note that det(A) = 2, and in particular, A is invertible
(by Theorem 7.4.1). So, Cramer’s rule applies. We compute:

det
(
A1(b)

)
=

∣∣∣∣∣∣
1 1 0
1 2 2
0 1 1

∣∣∣∣∣∣ = 2;

det
(
A2(b)

)
=

∣∣∣∣∣∣
2 1 0
0 1 2
1 0 1

∣∣∣∣∣∣ = 1;

det
(
A3(b)

)
=

∣∣∣∣∣∣
2 1 1
0 2 1
1 1 0

∣∣∣∣∣∣ = 0.
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Example 7.7.1
Let

A =

 2 1 0
0 2 2
1 1 1

 and b =

 1
1
0

 ,

with entries understood to be in Z3. Solve the matrix-vector
equation Ax = b.

Solution (continued). By Cramer’s rule, Ax = b has a unique
solution, namely

x =
[

det
(

A1(b)
)

det(A)
det

(
A2(b)

)
det(A)

det
(

A3(b)
)

det(A)

]T

=
[

2
2

1
2

0
2

]T

=
[

1 2 0
]T

.
□
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Let F be a field, and let A be an invertible matrix in Fn×n, and let
b ∈ Fn. Then the matrix-vector equation Ax = b has a unique
solution, namely

x =
[

det
(

A1(b)
)

det(A)
det

(
A2(b)

)
det(A) . . .

det
(

An(b)
)

det(A)

]T
.

Proof.

Since A is invertible, we know that the matrix-vector
equation Ax = b has a unique solution, namely, x = A−1b. Now,
for this solution x, we set x =

[
x1 . . . xn

]T . WTS

x =
[

det
(

A1(b)
)

det(A)
det

(
A2(b)

)
det(A) . . .

det
(

An(b)
)

det(A)

]T
.

Fix an index j ∈ {1, . . . , n}. WTS

xj = det
(

Aj (b)
)

det(A) .
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Proof (continued). Set A =
[

a1 . . . an
]
. Then:

det(Aj(b)) = det
( [

a1 . . . aj−1 b aj+1 . . . an
] )

= det
( [

a1 . . . aj−1 Ax aj+1 . . . an
] )

= det
( [

a1 . . . aj−1
n∑

i=1
xiai aj+1 . . . an

] )
(∗)=

n∑
i=1

xidet
( [

a1 . . . aj−1 ai aj+1 . . . an
] )

(∗∗)= xjdet
( [

a1 . . . aj−1 aj aj+1 . . . an
] )

= xjdet(A),

where (*) follows from Proposition 7.2.1(a), and (**) follows from
the fact that any matrix with two identical columns has
determinant zero (by Proposition 7.1.5).
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.

Proof (continued). We have now shown that

det
(
Aj(b)

)
= xjdet(A).

Since A is invertible, Theorem 7.4.1 guarantees that det(A) ̸= 0.
So, we can divide both sides of the equality above by det(A) to
obtain

xj = det
(

Aj (b)
)

det(A) .

This completes the argument. □
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2 The adjugate matrix

Definition
Given a field F and a matrix A ∈ Fn×n (n ≥ 2), with cofactors
Ci ,j = (−1)i+jdet(Ai ,j) (for i , j ∈ {1, . . . , n}), the cofactor matrix
of A is the matrix

[
Ci,j

]
n×n. The adjugate matrix (also called the

classical adjoint) of A, denoted by adj(A), is the transponse of the
cofactor matrix of A, i.e.

adj(A) :=
( [

Ci,j
]

n×n

)T
.

So, the i , j-th entry of adj(A) is the cofactor Cj,i (note the
swapping of the indices).



Example 7.8.1
Consider the matrix

A =

 1 1 1
0 2 2
0 0 3

 ,

with entries understood to be in R. Compute the cofactor and
adjugate matrices of the matrix A.

Solution.

For all i , j ∈ {1, 2, 3}, we let Ci ,j = (−1)i+jdet(Ai ,j). We
compute (next slide):
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Solution (continued). Reminder: A =

 1 1 1
0 2 2
0 0 3

.

C1,1 = (−1)1+1
∣∣∣ 2 2

0 3

∣∣∣ = 6;

C1,2 = (−1)1+2
∣∣∣ 0 2

0 3

∣∣∣ = 0;

C1,3 = (−1)1+3
∣∣∣ 0 2

0 0

∣∣∣ = 0;

C2,1 = (−1)2+1
∣∣∣ 1 1

0 3

∣∣∣ = −3;

C2,2 = (−1)2+2
∣∣∣ 1 1

0 3

∣∣∣ = 3;

C2,3 = (−1)2+3
∣∣∣ 1 1

0 0

∣∣∣ = 0;

C3,1 = (−1)3+1
∣∣∣ 1 1

2 2

∣∣∣ = 0;

C3,2 = (−1)3+2
∣∣∣ 1 1

0 2

∣∣∣ = −2;

C3,3 = (−1)3+3
∣∣∣ 1 1

0 2

∣∣∣ = 2.



Example 7.8.1
Consider the matrix

A =

 1 1 1
0 2 2
0 0 3

 ,

with entries understood to be in R. Compute the cofactor and
adjugate matrices of the matrix A.

Solution (continued). So, the cofactor matrix of A is C1,1 C1,2 C1,3
C2,1 C2,2 C2,3
C3,1 C3,2 C3,3

 =

 6 0 0
−3 3 0

0 −2 2

 .

The adjugate matrix of A is the transpose of the cofactor matrix,
i.e.

adj(A) =

 6 −3 0
0 3 −2
0 0 2

 .

□
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Theorem 7.8.2
Let F be a field, and let A ∈ Fn×n (n ≥ 2). Then

adj(A) A = A adj(A) = det(A)In.

Consequently, if A is invertible, then A−1 = 1
det(A)adj(A).

Proof.

Let us first show that the first statement implies the
second. Indeed, if A is invertible, then det(A) ̸= 0, and so if the
first statement holds, then we get that(

1
det(A)adj(A)

)
A = A

(
1

det(A)adj(A)
)

= In,

and consequently, A−1 = 1
det(A)adj(A).

It remains to prove the first statement, i.e. that
adj(A) A = A adj(A) = det(A)In. We will prove that
adj(A) A = det(A)In; the proof of A adj(A) = det(A)In is in the
Lecture Notes.
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Proof (continued). Reminder: WTS adj(A) A = det(A)In.

We will prove this by showing that the matrices adj(A) A and
det(A)In have the same corresponding entries. Fix indices
i , j ∈ {1, . . . , n}. The i , j-th entry of the matrix det(A)In is det(A)
if i = j , and is zero if i ̸= j . We must show this holds for the i , j-th
entry of the matrices adj(A) A as well.

The i-th row of adj(A) is
[

C1,i . . . Cn,i
]
, and the j-th column

of A is
[

a1,j . . . an,j
]T . So, the i , j-th entry of adj(A) A is∑n

k=1 ak,jCk,i . We need to show that this number is equal to
det(A) if i = j and is zero if i ̸= j .

Now, let B1 be the matrix obtained by replacing the i-th column of
A by the j-th column of A. Then det(B1) =

∑n
k=1 ak,jCk,i (via

Laplace expansion along the i-th column of B1). But if i = j , then
det(B1) = det(A) (because B1 = A), and if i ̸= j , then
det(B1) = 0 (because B1 has two identical columns, namely, the
i-th and j-th column). □
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Theorem 7.8.2
Let F be a field, and let A ∈ Fn×n (n ≥ 2). Then

adj(A) A = A adj(A) = det(A)In.

Consequently, if A is invertible, then A−1 = 1
det(A)adj(A).



Example 7.8.3
Show that the matrix

A =

 1 1 1
0 2 2
0 0 3

 ,

(with entries understood to be in R) is invertible, and using
Theorem 7.8.2, find its inverse A−1.

Solution.

The matrix A is upper triangular, and so its determinant
can be computed by multiplying the entries along the main
diagonal. So, det(A) = 1 · 2 · 3 = 6. Since det(A) ̸= 0,
Theorem 7.4.1 guarantees that A is invertible.
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Solution (continued). Reminder: det(A) = 6, A is invertible.

In Example 7.8.1, we compute the adjugate matrix of A:

adj(A) =

 6 −3 0
0 3 −2
0 0 2

 .

So, by Theorem 7.8.5, we have that

A−1 = 1
det(A) adj(A) = 1

6

 6 −3 0
0 3 −2
0 0 2



=

 1 −1/2 0
0 1/2 −1/3
0 0 1/3

 .

□
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Corollary 7.8.4
Let F be a field, and let a, b, c, d ∈ F. Then the matrix

A =
[

a b
c d

]
is invertible if and only if ad ̸= bc, and in this case, the inverse of

A is given by the formula

A−1 = 1
ad−bc

[
d −b

−c a

]
.
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3 Algebraically closed fields (subsec. 2.4.5 of the Lecture Notes)

Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

The Fundamental Theorem of Algebra
Any non-constant polynomial with complex coefficients has a
complex root.

By the Fundamental Theorem of Algebra, the field C is
algebraically closed.
On the other hand, R is not algebraically closed, and similarly,
neither is Q.

For example, the polynomial x2 + 1 has no roots in R (and in
particular, it has no roots in Q).
It does, however, have two complex roots, namely, i and −i .
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Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

No finite field is algebraically closed.

To see this, consider any finite field F = {f1, . . . , ft} (t ≥ 2),
and consider the polynomial

p(x) = (x − f1) . . . (x − ft) + 1,

which is a polynomial of degree t with coefficients in F.
Then for each i ∈ {1, . . . , t}, we have that p(fi) = 1, and
consequently, fi is not a root of p(x).
Since F = {f1, . . . , ft}, we see that p(x) has no roots in F.

Thus, of the fields that we have seen so far, namely, Q, R, C,
and Zp (where p is a prime number), only the field C is
algebraically closed.
Other algebraically closed fields do exist, but we will not study
them in this course.
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Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

It can be shown (though we will not give a formal proof) that
any non-constant polynomial with coefficients in an
algebraically closed field F can be factored into linear terms in
a unique way.



More precisely, if p(x) is a polynomial of degree n ≥ 1, and
with coefficients in an algebraically closed field F, then there
exist numbers a, α1, . . . , αℓ in F s.t. a ̸= 0 and s.t. α1, . . . , αℓ

are pairwise distinct, and positive integers n1, . . . , nℓ satisfying
n1 + · · · + nℓ = n, s.t.

p(x) = a(x − α1)n1 . . . (x − αℓ)nℓ .

Moreover, a, α1, . . . , αℓ, n1, . . . , nℓ are uniquely determined by
the polynomial p(x), up to a permutation of the αi ’s and the
corresponding ni ’s.

Here, a is the leading coefficient of p(x), i.e. the coefficient in
front of xn. Numbers α1, . . . , αℓ are the roots of p(x) with
multiplicities n1, . . . , nℓ, respectively.
If we think of each αi as being a root “ni times” (due to its
multiplicity), then we see that the n-th degree polynomial
p(x) has exactly n roots in F.
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Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

The discussion from the previous slide is often summarized as
follows:

Every n-th degree polynomial (with n ≥ 1) with coefficients in
an algebraically closed field has exactly n roots in that field,
when multiplicities are taken into account.



4 Common roots of polynomials via determinants

Any non-constant polynomial with coefficients in an
algebraically closed field F has a root in F. However, there is
no general formula for computing such a root.
So, it may be surprising that, given arbitrary polynomials p(x)
and q(x) with coefficients in an algebraically closed field F,
we can use determinants to determine whether p(x) and q(x)
have a common root, i.e. whether there exists a number
x0 ∈ F for which we have p(x0) = 0 and q(x0) = 0 (next
slide).
However, the determinant in question will only tell us whether
such a common root exists; it provides no information on how
one might actually compute such a root.
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we can use determinants to determine whether p(x) and q(x)
have a common root, i.e. whether there exists a number
x0 ∈ F for which we have p(x0) = 0 and q(x0) = 0 (next
slide).
However, the determinant in question will only tell us whether
such a common root exists; it provides no information on how
one might actually compute such a root.



Theorem 7.11.1
Let F be an algebraically closed field. Let m and n be positive
integers, and let p(x) =

∑m
i=0 aix i (am ̸= 0) and q(x) =

∑n
i=0 bix i

(bn ̸= 0) be polynomials with coefficients in F. Let P be the
n × (n + m) matrix whose j-th row (for j ∈ {1, . . . , n}) is[

0 . . . 0︸ ︷︷ ︸
j−1

am am−1 . . . a0 0 . . . 0︸ ︷︷ ︸
n−j

]
,

and let Q be the m × (n + m) matrix whose j-th row (for
j ∈ {1, . . . , m}) is[

0 . . . 0︸ ︷︷ ︸
j−1

bn bn−1 . . . b0 0 . . . 0︸ ︷︷ ︸
m−j

]
.

Then p(x) and q(x) have a common root in F iff

det
( [

P
Q

] )
= 0.

First a more detailed explanation of how out matrix is formed,
then an example, then a proof.



For example, if m = 3 and n = 5, so that
p(x) = a3x3 + a2x2 + a1x + a0,
q(x) = b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,

then we have

[
P
Q

]
=



a3 a2 a1 a0 0 0 0 0
0 a3 a2 a1 a0 0 0 0
0 0 a3 a2 a1 a0 0 0
0 0 0 a3 a2 a1 a0 0
0 0 0 0 a3 a2 a1 a0
b5 b4 b3 b2 b1 b0 0 0
0 b5 b4 b3 b2 b1 b0 0
0 0 b5 b4 b3 b2 b1 b0


8×8

.



Example 7.11.2
Determine whether the polynomials p(x) = 5x3 − 2x2 + x − 4 and
q(x) = 7x2 − 6x − 1 have a common complex root.

Proof.

In this case, it is easy to see that p(1) = 0 and q(1) = 0,
and so 1 is a common root of p(x) and q(x). However, let us use
Theorem 7.11.1, in order to illustrate how this theorem can be
applied.

Using the notation of Theorem 7.11.1, we have that m = 3, n = 2,
and the matrices P and Q are given by

P =
[

5 −2 1 −4 0
0 5 −2 1 −4

]
;

Q =

 7 −6 −1 0 0
0 7 −6 −1 0
0 0 7 −6 −1

.
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Example 7.11.2
Determine whether the polynomials p(x) = 5x3 − 2x2 + x − 4 and
q(x) = 7x2 − 6x − 1 have a common complex root.

Proof (continued). We now have that

det
( [

P
Q

] )
=

∣∣∣∣∣∣∣∣∣∣∣

5 −2 1 −4 0
0 5 −2 1 −4
7 −6 −1 0 0
0 7 −6 −1 0
0 0 7 −6 −1

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Theorem 7.11.2 now guarantees that p(x) and q(x) have a
common complex root. □



Theorem 7.11.1
Let F be an algebraically closed field. Let m and n be positive
integers, and let p(x) =

∑m
i=0 aix i (am ̸= 0) and q(x) =

∑n
i=0 bix i

(bn ̸= 0) be polynomials with coefficients in F. Let P be the
n × (n + m) matrix whose j-th row (for j ∈ {1, . . . , n}) is[

0 . . . 0︸ ︷︷ ︸
j−1

am am−1 . . . a0 0 . . . 0︸ ︷︷ ︸
n−j

]
,

and let Q be the m × (n + m) matrix whose j-th row (for
j ∈ {1, . . . , m}) is[

0 . . . 0︸ ︷︷ ︸
j−1

bn bn−1 . . . b0 0 . . . 0︸ ︷︷ ︸
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]
.

Then p(x) and q(x) have a common root in F iff

det
( [

P
Q

] )
= 0.

Let’s prove the theorem!



Proof.
Claim. Polynomials p(x) and q(x) have a common root in
F iff there exist non-zero polynomials r(x) and s(x) with
coefficients in F that satisfy the following:

deg
(
r(x)

)
≤ n − 1;

deg
(
s(x)

)
≤ m − 1;

r(x)p(x) + s(x)q(x) = 0.

Proof of the Claim.

Suppose first that p(x) and q(x) have a
common root in F, say α. Then we set

r(x) := q(x)
x−α and s(x) := − p(x)

x−α ,

and we observe that deg
(
r(x)

)
= deg

(
q(x)

)
− 1 = n − 1,

deg
(
s(x)

)
= deg

(
p(x)

)
− 1 = m − 1, and

r(x)p(x) + s(x)q(x) = q(x)p(x)
x−α − p(x)q(x)

x−α = 0.
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Proof of the Claim (continued). Suppose conversely there exist
non-zero polynomials r(x) and s(x) with coefficients in F s.t.

deg
(
r(x)

)
≤ n − 1;

deg
(
s(x)

)
≤ m − 1;

r(x)p(x) + s(x)q(x) = 0.
WTS p(x) and q(x) have a common root in F.

Then r(x)p(x) and s(x)q(x) are non-constant polynomials with
coefficients in F, and they have exactly the same roots with the
same corresponding multiplicities.

Since deg
(
p(x)

)
= m, we know that p(x) has exactly m roots in F

(when multiplicities are taken into account).
Here, we are using the fact that F is algebraically closed.

But deg
(
s(x)

)
≤ m − 1, and so at least one of the roots of p(x)

either fails to be a root of s(x), or is a root of s(x) but has smaller
multiplicity in s(x) than in p(x). This root of p(x) must therefore
be a root of q(x). ♦
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Proof (continued). We have now proven the Claim below:
Claim. Polynomials p(x) and q(x) have a common root in
F iff there exist non-zero polynomials r(x) and s(x) with
coefficients in F that satisfy the following:

deg
(
r(x)

)
≤ n − 1;

deg
(
s(x)

)
≤ m − 1;

r(x)p(x) + s(x)q(x) = 0.



Proof (continued). In view of the Claim, it now suffices to
determine if there exist non-zero polynomials r(x) =

∑n−1
i=0 cix i

and s(x) =
∑m−1

i=0 dix i s.t. r(x)p(x) + s(x)q(x) = 0.

So, we need to determine if there exist
c0, . . . , cn−1, d0, . . . , dm−1 ∈ F s.t. at least one of c0, . . . , cn−1 is
non-zero and at least one of d0, . . . , dm−1 is non-zero, and s.t.

( n−1∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( m∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+

( m−1∑
i=0

dix i

︸ ︷︷ ︸
=s(x)

)( n∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0.

But obviously, if c0, . . . , cn−1 are all zero, then d0, . . . , dm−1 are
all zero, and vice versa. So, we in fact need to determine if the
above equality holds for some numbers
c0, . . . , cn−1, d0, . . . , dm−1 ∈ F, at least one of which is non-zero.
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Proof (continued). Reminder:

( n−1∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( m∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+

( m−1∑
i=0

dix i

︸ ︷︷ ︸
=s(x)

)( n∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0.

We now write the polynomial on the left-hand-side in the standard
form, and we set all the coefficients that we obtain equal to zero.

We can do this since our polynomial is identically zero, i.e. it
is zero as a polynomial. This means precisely that all its
coefficients are zero.



Proof (continued). Reminder:

( n−1∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( m∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+

( m−1∑
i=0

dix i

︸ ︷︷ ︸
=s(x)

)( n∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0.

This yields a system of n + m linear equations in the variables
cn−1, . . . , c0, dm−1, . . . , d0 (we treat am, . . . , a0, bn, . . . , b0 as
constants).

In each equation, we arrange the variables
cn−1, . . . , c0, dm−1, . . . , d0 in this order from left to right. We
arrange the equations for the coefficients in front of
xn+m−1, . . . , x1, x0 from top to bottom. We then rewrite this
linear system as a matrix-vector equation

A
[

cn−1 . . . c0 dm−1 . . . d0
]T = 0,

and we observe that the coefficient matrix A satisfies AT =
[

P
Q

]
.

Intermission: Let’s look at an example with m = 3 and n = 5.
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Intermission: Example with m = 3 and n = 5. Then
p(x) = a3x3 + a2x2 + a1x + a0,
q(x) = b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,
r(x) = c4x4 + c3x3 + c2x2 + c1x + c0,
s(t) = d2x2 + d1x + d0,

then our equation becomes

( 4∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( 3∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+

( 2∑
i=0

dix i

︸ ︷︷ ︸
=s(x)

)( 5∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0

which yields the system of linear equations on the next slide (we
consider the coefficients in front of x7, x6, x5, x4, x3, x2, x1, x0

from top to bottom, and we arrange the variables
c4, c3, c2, c1, c0, d2, d1, d0 from left to right).



Intermission (continued): Example with m = 3 and n = 5.
Reminder: our equation was

( 4∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( 3∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+

( 2∑
i=0

dix i

︸ ︷︷ ︸
=s(x)

)( 5∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0

c4 c3 c2 c1 c0 d2 d1 d0

x7 a3c4 + b5d2 = 0
x6 a2c4 + a3c3 + b4d2 + b5d1 = 0
x5 a1c4 + a2c3 + a3c2 + b3d2 + b4d1 + b5d0 = 0
x4 a0c4 + a1c3 + a2c2 + a3c1 + b2d2 + b3d1 + b4d0 = 0
x3 a0c3 + a1c2 + a2c1 + a3c0 + b1d2 + b2d1 + b3d0 = 0
x2 a0c2 + a1c1 + a2c0 + b0d2 + b1d1 + b2d0 = 0
x1 a0c1 + a1c0 + b0d1 + b1d0 = 0
x0 a0c0 + b0d0 = 0

This linear system, in turn, translates into the following
matrix-vector equation (next slide):



Intermission (continued): Example with m = 3 and n = 5.
Reminder: our equation was

( 4∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( 3∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+

( 2∑
i=0

dix i

︸ ︷︷ ︸
=s(x)

)( 5∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0

c4 c3 c2 c1 c0 d2 d1 d0

x7 a3c4 + b5d2 = 0
x6 a2c4 + a3c3 + b4d2 + b5d1 = 0
x5 a1c4 + a2c3 + a3c2 + b3d2 + b4d1 + b5d0 = 0
x4 a0c4 + a1c3 + a2c2 + a3c1 + b2d2 + b3d1 + b4d0 = 0
x3 a0c3 + a1c2 + a2c1 + a3c0 + b1d2 + b2d1 + b3d0 = 0
x2 a0c2 + a1c1 + a2c0 + b0d2 + b1d1 + b2d0 = 0
x1 a0c1 + a1c0 + b0d1 + b1d0 = 0
x0 a0c0 + b0d0 = 0

This linear system, in turn, translates into the following
matrix-vector equation (next slide):



Intermission (continued): Example with m = 3 and n = 5.

a3 0 0 0 0 b5 0 0
a2 a3 0 0 0 b4 b5 0
a1 a2 a3 0 0 b3 b4 b5
a0 a1 a2 a3 0 b2 b3 b4
0 a0 a1 a2 a3 b1 b2 b3
0 0 a0 a1 a2 b0 b1 b2
0 0 0 a0 a1 0 b0 b1
0 0 0 0 a0 0 0 b0





c4
c3
c2
c1
c0
d2
d1
d0


= 0.

The transpose of the coefficient matrix that we obtained is
precisely the matrix

[
P
Q

]
=



a3 a2 a1 a0 0 0 0 0
0 a3 a2 a1 a0 0 0 0
0 0 a3 a2 a1 a0 0 0
0 0 0 a3 a2 a1 a0 0
0 0 0 0 a3 a2 a1 a0
b5 b4 b3 b2 b1 b0 0 0
0 b5 b4 b3 b2 b1 b0 0
0 0 b5 b4 b3 b2 b1 b0


8×8

.



Intermission (continued): Example with m = 3 and n = 5.

a3 0 0 0 0 b5 0 0
a2 a3 0 0 0 b4 b5 0
a1 a2 a3 0 0 b3 b4 b5
a0 a1 a2 a3 0 b2 b3 b4
0 a0 a1 a2 a3 b1 b2 b3
0 0 a0 a1 a2 b0 b1 b2
0 0 0 a0 a1 0 b0 b1
0 0 0 0 a0 0 0 b0





c4
c3
c2
c1
c0
d2
d1
d0


= 0.

The transpose of the coefficient matrix that we obtained is
precisely the matrix

[
P
Q

]
=



a3 a2 a1 a0 0 0 0 0
0 a3 a2 a1 a0 0 0 0
0 0 a3 a2 a1 a0 0 0
0 0 0 a3 a2 a1 a0 0
0 0 0 0 a3 a2 a1 a0
b5 b4 b3 b2 b1 b0 0 0
0 b5 b4 b3 b2 b1 b0 0
0 0 b5 b4 b3 b2 b1 b0


8×8

.



Proof (continued). We now have the following sequence of
equivalent statements:

p(x) and q(x) have
a common root in F ⇐⇒ A

[
cn−1 . . . c0 dm−1 . . . d0

]T = 0
has a non-zero solution

(∗)⇐⇒ A is non-invertible

(∗)⇐⇒ AT =
[

P
Q

]
is non-invertible

(∗)⇐⇒ det
( [

P
Q

] )
= 0,

where all three instances of (*) follow from the Invertible Matrix
Theorem. □



Theorem 7.11.1
Let F be an algebraically closed field. Let m and n be positive
integers, and let p(x) =

∑m
i=0 aix i (am ̸= 0) and q(x) =

∑n
i=0 bix i

(bn ̸= 0) be polynomials with coefficients in F. Let P be the
n × (n + m) matrix whose j-th row (for j ∈ {1, . . . , n}) is[

0 . . . 0︸ ︷︷ ︸
j−1

am am−1 . . . a0 0 . . . 0︸ ︷︷ ︸
n−j

]
,

and let Q be the m × (n + m) matrix whose j-th row (for
j ∈ {1, . . . , m}) is[

0 . . . 0︸ ︷︷ ︸
j−1

bn bn−1 . . . b0 0 . . . 0︸ ︷︷ ︸
m−j

]
.

Then p(x) and q(x) have a common root in F iff

det
( [

P
Q

] )
= 0.


