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This lecture has six parts:

1 Determinants: definition, examples, and basic properties
2 The linearity of determinants in one row or one column
3 Computing determinants via elementary row and column

operations
4 Determinants and matrix invertibility
5 The multiplicative property of determinants
6 Laplace expansion
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1 Determinants: definition, examples, and basic properties

Definition
The determinant of a matrix A =

[
ai,j

]
n×n with entries in some

field F, denoted by det(A) or |A|, is defined by

det(A) :=
∑

σ∈Sn

sgn(σ)
n∏

i=1
ai ,σ(i)

=
∑

σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) . . . an,σ(n).

Remark: Only square matrices have determinants. Moreover,
the determinant of a matrix in Fn×n is always a scalar in F.
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Advertisement:

Theorem 7.4.1
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff
det(A) ̸= 0.

Proof: Later!



Reminder: det(A) :=
∑

σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) . . . an,σ(n).

Let us try to explain this definition.
Each permutation σ ∈ Sn gives us one way of selecting one
entry of A out of each row and each column: we select entries
a1,σ(1), . . . , an,σ(n), multiply them together, and then multiply
that product by sgn(σ), which yields the product
sgn(σ)a1,σ(1) . . . an,σ(n).

For example, for n = 4 and σ =
(

1 2 3 4
3 2 4 1

)
= (134)(2),

we obtain the product sgn(σ)a1,3a2,2a3,4a4,1 = a1,3a2,2a3,4a4,1,
since sgn(σ) = 1.

A =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 ,

We then sum up all products of this type (there are |Sn| = n!
many of them), and we obtain the determinant of our matrix.
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Reminder:

Definition
The characteristic of a field F is the smallest positive integer n (if
it exists) s.t. in the field F, we have that

1 + · · · + 1︸ ︷︷ ︸
n

= 0,

where the 1’s and the 0 are understood to be in the field F. If no
such n exists, then char(F) := 0.

Fields Q, R, and C all have characteristic 0.
For all prime numbers p, we have that char(Zp) = p.

Theorem 2.4.5
The characteristic of any field is either 0 or a prime number.
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ai ,σ(i)

=
∑

σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) . . . an,σ(n).

Note that if the entries of our square matrix belong to a field
of characteristic 2 (i.e. a field in which 1 + 1 = 0, such as the
field Z2), then 1 = −1, and so sgn(σ) can be ignored
(because it is always equal to 1).
However, if our field is of characteristic other than 2 (i.e. if
1 + 1 ̸= 0 in our field, and consequently, 1 ̸= −1), then we
must keep track of sgn(σ) in each summand from the
definition of a determinant.
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Notation: We typically write∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
... . . . ...

an,1 an,2 . . . an,n

∣∣∣∣∣∣∣∣∣∣
instead of

det
(


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
... . . . ...

an,1 an,2 . . . an,n


)
.

For 1 × 1 matrices, this can unfortunately lead to confusion
(because of absolute values).

To avoid this issue, we can always write det
( [

a1,1
] )

instead
of

∣∣ a1,1
∣∣.
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Proposition 7.1.1
Let n be a positive integer, and let π ∈ Sn, and consider the matrix
Pπ of the permutation π (where the 0’s and 1’s in Pπ can be
considered as belonging to an arbitrary field F). Then

det(Pπ) = sgn(π).

Proof.

Set Pπ =
[

pi,j
]

n×n, so that

pi,j =
{

1 if j = π(i)
0 if j ̸= π(i)

for all i , j ∈ {1, . . . , n}. By definition,
det(Pπ) =

∑
σ∈Sn

sgn(σ)p1,σ(1)p2,σ(2) . . . pn,σ(n).

The only permutation σ ∈ Sn for which none of
p1,σ(1), p2,σ(2), . . . , pn,σ(n) is 0 is the permutation σ = π. So,

det(Pπ) = sgn(π)p1,π(1)p2,π(2) . . . pn,π(n)
(∗)= sgn(π),

where (*) follows from the fact that pi ,π(i) = 1 for all
i ∈ {1, . . . , n}. □
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Pπ of the permutation π (where the 0’s and 1’s in Pπ can be
considered as belonging to an arbitrary field F). Then

det(Pπ) = sgn(π).

Note that the identity matrix In is the matrix of the identity
permutation 1 in Sn.
Since sgn(1) = 1, Proposition 7.1.1 guarantees that
det(In) = 1.
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Proposition 7.1.2
We have the following formulas for the determinants of 1 × 1,
2 × 2, and 3 × 3 matrices (with entries in some field F):

(a)
∣∣ a1,1

∣∣ = a1,1;a

(b)

∣∣∣∣∣ a1,1 a1,2
a2,1 a2,2

∣∣∣∣∣ = a1,1a2,2 − a1,2a2,1;

(c)

∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣ =
{

a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2
−a1,3a2,2a3,1 − a1,1a2,3a3,2 − a1,2a2,1a3,3.

aBe careful not to confuse this with the absolute value! (The notation is
admittedly somewhat unfortunate/ambiguous.) If there is any danger of
confusion, it is always possible to write det

( [
a1,1

] )
instead of

∣∣ a1,1
∣∣.

Proof (outline). This follows straight from the definition, where we
simply have to list all the permutations in Sn (for n = 1, 2, 3) and
keep track of their signs. (Details: Lecture Notes.) □



Determinants of 2 × 2 and 3 × 3 matrices can be represented
schematically, as shown below.

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

+ + + − − −

a1,1 a1,2

a2,1 a2,2

+ −

We multiply the entries along each of the red lines and add
them up, and then we multiply the entries along each of the
blue lines and subtract them.
In each case, the result we get is precisely the formula from
Proposition 7.1.2.
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For example, we can compute the determinant of the matrix

A =
[

1 2
3 4

]

in R2×2 by forming the diagram
1 2

3 4

+ −

and the computing

det(A) =
∣∣∣∣∣ 1 2

3 4

∣∣∣∣∣ = 1 · 4 − 2 · 3 = −2.



Similarly, we can compute the determinant of the matrix

B =

 1 2 3
4 5 6
7 8 9


in R3×3 by forming the diagram

1 2 3

4 5 6

7 8 9

1 2

4 5

7 8

+ + + − − −

and then computing

det(B) =

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
= 1 · 5 · 9 + 2 · 6 · 7 + 3 · 4 · 8 − 3 · 5 · 7 − 1 · 6 · 8 − 2 · 4 · 9

= 0.



a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

+ + + − − −

a1,1 a1,2

a2,1 a2,2

+ −

Warning: Do not try this with matrices of larger size!



Theorem 7.1.3
Let F be a field. For all A ∈ Fn×n, we have that det(AT ) = det(A).

Proof.

We set A =
[

ai,j
]

n×n and AT =
[

aT
i,j

]
n×n. So, for all

i , j ∈ {1, . . . , n}, we have aT
i ,j = aj,i . Now, we compute:

det(AT ) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
aT

i,σ(i)

=
∑

σ∈Sn

sgn(σ)
n∏

i=1
aσ(i),i

=
∑

σ∈Sn

sgn(σ)
n∏

j=1
aj,σ−1(j)

(∗)=
∑

σ∈Sn

sgn(σ−1)
n∏

j=1
aj,σ−1(j)

=
∑

π∈Sn

sgn(π)
n∏

j=1
aj,π(j)

= det(A),

where (*) follows from Proposition 2.3.2. □
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Proposition 7.1.4
Let F be a field, and let A =

[
ai,j

]
n×n be a matrix in Fn×n. If A

has a zero row or a zero column,a then det(A) = 0.
aA zero row is a row in which all entries are zero. Similarly, a zero column is

a column in which all entries are zero.

Proof.

In view of Theorem 7.1.3, it suffices to consider the case
when A has a zero row.

Suppose that that the p-th row of A is a zero row. Then for all
σ ∈ Sn, we have that ap,σ(p) = 0. Consequently,

det(A) =
∑

σ∈Sn

sgn(σ)a1,σ(1) . . . ap,σ(p)︸ ︷︷ ︸
=0

. . . an,σ(n) = 0,

which is what we needed to show. □
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Proposition 7.1.5
Let F be a field, and let A =

[
ai,j

]
n×n be a matrix in Fn×n. If A

has two identical rows or two identical columns, then det(A) = 0.

Proof.

In view of Theorem 7.1.3, it suffices to consider the case
when A has two identical rows.

So, suppose that for some distinct p, q ∈ {1, . . . , n}, the p-th and
q-th row of A are the same. (In particular, n ≥ 2.)

Now, let An be the alternating group of degree n, i.e. the group of
all even permutations in Sn, and let On be the set of all odd
permutations in Sn. Obviously, Sn = An ∪ On and An ∩ On = ∅.

Next, consider the transposition τ = (pq). By Proposition 2.3.2,
for all σ ∈ Sn, we have that sgn(σ ◦ τ) = −sgn(σ); it then readily
follows that On = {σ ◦ τ | σ ∈ An}, and obviously, for all distinct
σ1, σ2 ∈ An, we have that σ1 ◦ τ ̸= σ2 ◦ τ .
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Proposition 7.1.5
Let F be a field, and let A =

[
ai,j

]
n×n be a matrix in Fn×n. If A

has two identical rows or two identical columns, then det(A) = 0.

Proof (continued). Reminder: τ = (pq).
Claim. ∀σ ∈ Sn:

∏n
i=1 ai ,σ(i) =

∏n
i=1 ai ,σ◦τ(i).

Proof of the Claim.

Fix σ ∈ Sn. First, note that

ap,σ(p) = ap,σ◦τ(q)
(∗)= aq,σ◦τ(q),

aq,σ(q) = aq,σ◦τ(p)
(∗)= ap,σ◦τ(p),

where both instances of (*) follow from the fact that the p-th and
q-th row of A are the same. So, ap,σ(p)aq,σ(q) = ap,σ◦τ(p)aq,σ◦τ(q).
On the other hand, it is clear that for all i ∈ {1, . . . , n} \ {p, q},
we have that ai ,σ(i) = ai ,σ◦τ(i). It follows that∏n

i=1 ai ,σ(i) =
∏n

i=1 ai ,σ◦τ(i), which is what we needed to show. ♦
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2 The linearity of determinants in one row or one column

In general, for matrices A, B ∈ Fn×n (where F is some field)
and a scalar α ∈ F, we have that

det(A + B) �Z= det(A) + det(B) and det(αA) �Z= αdet(A).

We do, however, have the following proposition (next slide).
We first state the proposition, then we give an examples to
illustrate how it can be used, and then we prove the
proposition.
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Proposition 7.2.1
Let F be a field, and let a1, . . . , ap−1, ap+1, . . . , an ∈ Fn. Then:

(a) the function fCp : Fn → F given by

fCp (x) = det
( [

a1 . . . ap−1 x ap+1 . . . an
] )

for all x ∈ Fn is linear;
(b) the function fRp : Fn → F given by

fRp (x) = det
(



aT
1
...

aT
p−1
xT

aT
p+1
...

aT
n


)

for all x ∈ Fn is linear.



Example 7.2.2
By Proposition 7.2.1, we have the following (entries are
understood to be in R, and the row/column being manipulated is
in red to facilitate reading):

∣∣∣∣∣∣∣
1 2 1
2 3 4
0 1 5

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 1 1
2 2 4
0 −2 5

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
1 1 1
2 1 4
0 3 5

∣∣∣∣∣∣∣;∣∣∣∣∣∣∣
3 2 4
6 −1 0

−3 0 5

∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣∣
1 2 4
2 −1 0

−1 0 5

∣∣∣∣∣∣∣;∣∣∣∣∣∣∣
1 2 3
2 2 3
7 3 −2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 2 3
2 2 3
4 4 −2

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
1 2 3
2 2 3
3 −1 0

∣∣∣∣∣∣∣;∣∣∣∣∣∣∣
2 −2 4
1 0 −2
2 1 4

∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣
1 −1 2
1 0 −2
2 1 4

∣∣∣∣∣∣∣.
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Proposition 7.2.1
Let F be a field, and let a1, . . . , ap−1, ap+1, . . . , an ∈ Fn. Then:

(a) the function fCp : Fn → F given by

fCp (x) = det
( [

a1 . . . ap−1 x ap+1 . . . an
] )

for all x ∈ Fn is linear;
(b) the function fRp : Fn → F given by

fRp (x) = det
(



aT
1
...

aT
p−1
xT

aT
p+1
...

aT
n


)

for all x ∈ Fn is linear.



Proof.

Clearly, (b) and Theorem 7.1.3 imply (a). So, it suffices to
prove (b).

We first set up some notation. For each index i ∈ {1, . . . , n} \ {p},
we set ai =

[
ai,1 . . . ai,n

]T , so that aT
i =

[
ai,1 . . . ai,n

]
.

Now, let us prove that fRp is linear.

1. Fix x, y ∈ Fn, and set x =
[

x1 . . . xn
]T and

y =
[

y1 . . . yn
]T . We compute (next slide):



Proof. Clearly, (b) and Theorem 7.1.3 imply (a). So, it suffices to
prove (b).

We first set up some notation. For each index i ∈ {1, . . . , n} \ {p},
we set ai =

[
ai,1 . . . ai,n

]T , so that aT
i =

[
ai,1 . . . ai,n

]
.

Now, let us prove that fRp is linear.

1. Fix x, y ∈ Fn, and set x =
[

x1 . . . xn
]T and

y =
[

y1 . . . yn
]T . We compute (next slide):



Proof. Clearly, (b) and Theorem 7.1.3 imply (a). So, it suffices to
prove (b).

We first set up some notation. For each index i ∈ {1, . . . , n} \ {p},
we set ai =

[
ai,1 . . . ai,n

]T , so that aT
i =

[
ai,1 . . . ai,n

]
.

Now, let us prove that fRp is linear.

1. Fix x, y ∈ Fn, and set x =
[

x1 . . . xn
]T and

y =
[

y1 . . . yn
]T . We compute (next slide):



Proof. Clearly, (b) and Theorem 7.1.3 imply (a). So, it suffices to
prove (b).

We first set up some notation. For each index i ∈ {1, . . . , n} \ {p},
we set ai =

[
ai,1 . . . ai,n

]T , so that aT
i =

[
ai,1 . . . ai,n

]
.

Now, let us prove that fRp is linear.

1. Fix x, y ∈ Fn, and set x =
[

x1 . . . xn
]T and

y =
[

y1 . . . yn
]T . We compute (next slide):



Proof. Clearly, (b) and Theorem 7.1.3 imply (a). So, it suffices to
prove (b).

We first set up some notation. For each index i ∈ {1, . . . , n} \ {p},
we set ai =

[
ai,1 . . . ai,n

]T , so that aT
i =

[
ai,1 . . . ai,n

]
.

Now, let us prove that fRp is linear.

1. Fix x, y ∈ Fn, and set x =
[

x1 . . . xn
]T and
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]T . We compute (next slide):



Proof (continued).

fRp (x + y) = det
(



aT
1
...

aT
p−1

(x + y)T

aT
p+1
...

aT
n


)

=

∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

ap−1,1 . . . ap−1,n
x1 + y1 . . . xn + yn
ap+1,1 . . . ap+1,n

...
. . .

...
an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
=

∑
σ∈Sn

sgn(σ)a1,σ(1) . . . ap−1,σ(p−1)

(
xσ(p) + yσ(p)

)
ap+1,σ(p+1) . . . an,σ(n)

=
∑

σ∈Sn

sgn(σ)a1,σ(1) . . . ap−1,σ(p−1)xσ(p)ap+1,σ(p+1) . . . an,σ(n)

+
∑

σ∈Sn

sgn(σ)a1,σ(1) . . . ap−1,σ(p−1)yσ(p)ap+1,σ(p+1) . . . an,σ(n)

=

∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

ap−1,1 . . . ap−1,n
x1 . . . xn

ap+1,1 . . . ap+1,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

ap−1,1 . . . ap−1,n
y1 . . . yn

ap+1,1 . . . ap+1,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
= fRp (x) + fRp (y).



Proof (continued). 2. Fix x ∈ Fn and α ∈ F, and set
x =

[
x1 . . . xn

]T . We compute:

fRp (αx) = det
(



aT
1
...

aT
p−1

αxT

aT
p+1
...

aT
n


)

=

∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

ap−1,1 . . . ap−1,n
αx1 . . . αxn

ap+1,1 . . . ap+1,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
=

∑
σ∈Sn

sgn(σ)a1,σ(1) . . . ap−1,σ(p−1)

(
αxσ(p)

)
ap+1,σ(p+1) . . . an,σ(n)

= α
∑

σ∈Sn

sgn(σ)a1,σ(1) . . . ap−1,σ(p−1)xσ(p)ap+1,σ(p+1) . . . an,σ(n)

= α

∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

ap−1,1 . . . ap−1,n
x1 . . . xn

ap+1,1 . . . ap+1,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
= α det

(


aT
1
...

aT
p−1
xT

aT
p+1
...

aT
n


)

= αfRp (x).

□



Proposition 7.2.1
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aT
1
...

aT
p−1
xT

aT
p+1
...

aT
n


)

for all x ∈ Fn is linear.



Proposition 7.2.3
Let F be a field, let A ∈ Fn×n, and let α ∈ F. Then

det
(
αA

)
= αn det(A).

Proof.

We apply Proposition 7.2.1 n times, once to each row (or
alternatively, once to each column) of αA, and the result follows. □



Proposition 7.2.3
Let F be a field, let A ∈ Fn×n, and let α ∈ F. Then

det
(
αA

)
= αn det(A).

Proof. We apply Proposition 7.2.1 n times, once to each row (or
alternatively, once to each column) of αA, and the result follows. □



3 Computing determinants via elementary row and column
operations

Our goal is to examine how performing elementary row and
column operations affects the value of the determinant, and
how we can use these operations to compute the determinant
of a square matrix.

We studied elementary row operations last semester (see
chapter 1 of the Lecture Notes).
Elementary column operations are defined completely
analogously, only for columns instead of rows.

Elementary column operations should not be used for solving
linear systems.
However, it turns out that both elementary row operations
and elementary column operations behave well with respect to
determinants, i.e. they change the value of the determinant in
a way that we can describe precisely, as we shall see.
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Definition
Given a square matrix A =

[
ai,j

]
n×n in Fn×n (where F is some

field), we say that
A is upper triangular if all entries of A below the main
diagonal are zero, i.e. if ∀i , j ∈ {1, . . . , n} s.t. i > j , we have
that ai ,j = 0;
A is lower triangular if all entries of A above the main
diagonal are zero, i.e. if ∀i , j ∈ {1, . . . , n} s.t. i < j , we have
that ai ,j = 0;
A is triangular if it is upper triangular or lower triangular.


∗ ∗ ∗ . . . ∗ ∗
0 ∗ ∗ . . . ∗ ∗
0 0 ∗ . . . ∗ ∗
...

...
...

. . .
...

...
0 0 0 . . . ∗ ∗
0 0 0 . . . 0 ∗




∗ 0 0 . . . 0 0
∗ ∗ 0 . . . 0 0
∗ ∗ ∗ . . . 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ . . . ∗ 0
∗ ∗ ∗ . . . ∗ ∗


upper triangular matrix lower triangular matrix
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. . .
...

...
0 0 0 . . . ∗ ∗
0 0 0 . . . 0 ∗
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
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∗ ∗ 0 . . . 0 0
∗ ∗ ∗ . . . 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ . . . ∗ 0
∗ ∗ ∗ . . . ∗ ∗


upper triangular matrix lower triangular matrix

Note that any square matrix in row echelon form is in fact an
upper triangular matrix.

However, not all upper triangular matrices are in row echelon
form.

So, the row reduction algorithm performed on a square matrix
will, in particular, yield an upper triangular matrix.
It turns out that the determinant of any triangular matrix is
particularly easy to compute, as we now show (next slide).
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Proposition 7.3.1
Let F be a field, and let A =

[
ai,j

]
n×n be a triangular matrix in

Fn×n. Then

det(A) =
n∏

i=1
ai ,i = a1,1a2,2 . . . an,n,

that is, det(A) is equal to the product of entries on the main
diagonal of A.

For example, we can compute the determinants of the
following matrices in R3×3 as follows:∣∣∣∣∣∣

1 2 3
0 4 5
0 0 6

∣∣∣∣∣∣ = 1 ·4 ·6 = 24;

∣∣∣∣∣∣
1 0 0
2 3 0
4 5 6

∣∣∣∣∣∣ = 1 ·3 ·6 = 18.
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i=1
ai ,i = a1,1a2,2 . . . an,n,

that is, det(A) is equal to the product of entries on the main
diagonal of A.

Proof.

Note that the transpose of an upper triangular matrix is a
lower triangular matrix, and moreover, the main diagonal remains
unchanged when we take the transpose of a square matrix. So, in
view of Theorem 7.1.3, it suffices to prove the result for the case
when A is lower triangular.
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
upper triangular matrix lower triangular matrix

Proof (continued). Reminder: A is lower triangular; WTS
det(A) = a1,1a2,2 . . . an,n.
Now, note that for all σ ∈ Sn \ {1}, there exists some index
i ∈ {1, . . . , n} s.t. i < σ(i),

and consequently, ai ,σ(i) = 0 (since A
is lower triangular).
It follows that for all σ ∈ Sn \ {1}, we have that
a1,σ(1)a2,σ(2) . . . an,σ(n) = 0, and consequently,

det(A) =
∑

σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) . . . an,σ(n)

= sgn(1)a1,1a2,2 . . . an,n

= a1,1a2,2 . . . an,n. □
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Proposition 7.3.1
Let F be a field, and let A =

[
ai,j

]
n×n be a triangular matrix in

Fn×n. Then

det(A) =
n∏

i=1
ai ,i = a1,1a2,2 . . . an,n,

that is, det(A) is equal to the product of entries on the main
diagonal of A.


∗ ∗ ∗ . . . ∗ ∗
0 ∗ ∗ . . . ∗ ∗
0 0 ∗ . . . ∗ ∗
...

...
...

. . .
...

...
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...

...
...

. . .
...

...
∗ ∗ ∗ . . . ∗ 0
∗ ∗ ∗ . . . ∗ ∗


upper triangular matrix lower triangular matrix



Theorem 7.3.2
Let F be a field, and let A =

[
ai,j

]
n×n be a matrix in Fn×n. Then

all the following hold:
(a) if a matrix B is obtained by swapping two rows or swapping

two columns of A, then
det(B) = −det(A);

(b) if a matrix B is obtained by multiplying some row or some
column of A by a scalar α ∈ F \ {0}, then

det(B) = αdet(A) and det(A) = α−1det(B);

(c) if a matrix B is obtained from A by adding a scalar multiple of
one row (resp. column) of A to another row (resp. column) of
A, then

det(B) = det(A).

First an example, then a proof.



Example 7.3.3
Compute the determinant of the matrix below (with entries
understood to be in R).

A =

 2 4 6
2 4 4
3 3 7


Solution.

We perform elementary row operations on A (keeping
track of the way that this changes the value of the determinant, as
per Theorem 7.3.2) until we transform A into a matrix in row
echelon form. Square matrices in row echelon form are upper
triangular, and so by Proposition 7.3.1, we can obtain their
determinant by multiplying the entries on the main diagonal. We
now compute (next slide):
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track of the way that this changes the value of the determinant, as
per Theorem 7.3.2) until we transform A into a matrix in row
echelon form. Square matrices in row echelon form are upper
triangular, and so by Proposition 7.3.1, we can obtain their
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We
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Proof (continued).

det(A) =

∣∣∣∣∣∣
2 4 6
2 4 4
3 3 7

∣∣∣∣∣∣ R2→R2−R1=

∣∣∣∣∣∣
2 4 6
0 0 −2
3 3 7

∣∣∣∣∣∣
R2↔R3= −

∣∣∣∣∣∣
2 4 6
3 3 7
0 0 −2

∣∣∣∣∣∣ R1→ 1
2 R1= −2

∣∣∣∣∣∣
1 2 3
3 3 7
0 0 −2

∣∣∣∣∣∣
R2→R1−3R1= −2

∣∣∣∣∣∣
1 2 3
0 −3 −2
0 0 −2

∣∣∣∣∣∣
(∗)= (−2)1(−3)(−2) = −12,

where (*) follows by taking the determinant of an upper triangular
matrix. □



Theorem 7.3.2
Let F be a field, and let A =

[
ai,j

]
n×n be a matrix in Fn×n. Then

all the following hold:
(a) if a matrix B is obtained by swapping two rows or swapping

two columns of A, then
det(B) = −det(A);

(b) if a matrix B is obtained by multiplying some row or some
column of A by a scalar α ∈ F \ {0}, then

det(B) = αdet(A) and det(A) = α−1det(B);

(c) if a matrix B is obtained from A by adding a scalar multiple of
one row (resp. column) of A to another row (resp. column) of
A, then

det(B) = det(A).

Proof.

In view of Theorem 7.1.3, it suffices to prove the result for
row operations only.
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Proof (continued). (a) Fix distinct indices p, q ∈ {1, . . . , n}, and
suppose that B is obtained by swapping rows p and q of A
(“Rp ↔ Rq”).

Set B =
[

bi,j
]

n×n, so that
for all j ∈ {1, . . . , n}, we have that bp,j = aq,j and bq,j = ap,j ;
for all i ∈ {1, . . . , n} \ {p, q} and j ∈ {1, . . . , n}, we have that
bi ,j = ai ,j .

Next, consider the transposition τ = (pq) in Sn.

Claim. ∀σ ∈ Sn:
n∏

i=1
bi ,σ(i) =

n∏
i=1

ai ,σ◦τ(i).

Proof of the Claim. First, we note that
bp,σ(p) = aq,σ(p) = aq,σ◦τ(q);
bq,σ(q) = ap,σ(q) = ap,σ◦τ(p).

So, bp,σ(p)bq,σ(q) = ap,σ◦τ(p)aq,σ◦τ(q). On the other hand, for all
i ∈ {1, . . . , n} \ {p, q}, we have that bi ,σ(i) = ai ,σ◦τ(i). It follows

that
n∏

i=1
bi ,σ(i) =

n∏
i=1

ai ,σ◦τ(i), which is what we needed to show. ♦
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Proof (continued). Reminder: τ = (pq).

Claim. ∀σ ∈ Sn:
n∏

i=1
bi ,σ(i) =

n∏
i=1

ai ,σ◦τ(i).

We now compute:

det(B) =
∑

σ∈Sn

sgn(σ)
∏n

i=1 bi,σ(i)

(∗)=
∑

σ∈Sn

sgn(σ)
∏n

i=1 ai,σ◦τ(i)

(∗∗)=
∑

σ∈Sn

(
− sgn(σ ◦ τ)

) ∏n
i=1 ai,σ◦τ(i)

= −
∑

σ∈Sn

sgn(σ ◦ τ)
∏n

i=1 ai,σ◦τ(i)

= −
∑

π∈Sn

sgn(π)
∏n

i=1 ai,π(i)

= −det(A),

where (*) follows from the Claim, and (**) follows from
Proposition 2.3.2. This proves (a).



Proof (continued). Reminder: τ = (pq).
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Proof (continued). (b) Fix an index p ∈ {1, . . . , n} and a scalar
α ∈ F \ {0}, and suppose that B is obtained by multiplying the
p-th row of A by α (“Rp → αRp”).

By Proposition 7.2.1(b), the
determinant is linear in the p-th row, and we deduce that
det(B) = αdet(A). Since α ̸= 0, we deduce that
det(A) = α−1det(B). This proves (b).
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Proof (continued). (b) Fix an index p ∈ {1, . . . , n} and a scalar
α ∈ F \ {0}, and suppose that B is obtained by multiplying the
p-th row of A by α (“Rp → αRp”). By Proposition 7.2.1(b), the
determinant is linear in the p-th row, and we deduce that
det(B) = αdet(A). Since α ̸= 0, we deduce that
det(A) = α−1det(B). This proves (b).



Proof (continued). (c) Fix distinct indices p, q ∈ {1, . . . , n} and a
scalar α ∈ F, and suppose that B is obtained by adding α times
row p to row q (“Rq → Rq + αRp”). Set B =

[
bi,j

]
n×n, so that

∀j ∈ {1, . . . , n}: bq,j = aq,j + αap,j ;
∀i ∈ {1, . . . , n} \ {q}, j ∈ {1, . . . , n}: bi ,j = ai ,j .

We now compute (the q-th row is in red for emphasis):



Proof (continued).

det(B) =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

aq−1,1 . . . aq−1,n
aq,1 + αap,1 . . . aq,n + αap,n

aq+1,1 . . . aq+1,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣
(∗)
=

∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

aq−1,1 . . . aq−1,n
aq,1 . . . aq,n

aq+1,1 . . . aq+1,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=det(A)

+α

∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

aq−1,1 . . . aq−1,n
ap,1 . . . ap,n

aq+1,1 . . . aq+1,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(∗∗)

= 0

= det(A),

where (*) follows from the fact that the determinant is linear in
the q-th row (by Proposition 7.2.1), and (**) follows from the fact
that a matrix with two identical rows (in this case, the p-th and
q-th row) has determinant zero (by Proposition 7.1.5). □



Theorem 7.3.2
Let F be a field, and let A =

[
ai,j

]
n×n be a matrix in Fn×n. Then

all the following hold:
(a) if a matrix B is obtained by swapping two rows or swapping

two columns of A, then
det(B) = −det(A);
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4 Determinants and matrix invertibility

Theorem 7.4.1
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff
det(A) ̸= 0.

Proof. We can transform A into a matrix in reduced row echelon
form via a sequence of elementary row operations. By
Theorem 7.3.2, each elementary row operation has the effect of
multiplying the value of the determinant by some non-zero scalar.
So, there exists some scalar α ∈ F \ {0} s.t.
det(A) = αdet

(
RREF(A)

)
. Therefore, det(A) = 0 iff

det
(
RREF(A)

)
= 0. Moreover, RREF(A) is an upper triangular

matrix, and so (by Proposition 7.3.1) its determinant is zero iff at
least one entry on its main diagonal is zero. We now have the
following sequence of equivalent statements (next slide):
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Theorem 7.4.1
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff
det(A) ̸= 0.

Proof (continued).

det(A) = 0 ⇐⇒ det
(
RREF(A)

)
= 0

⇐⇒ at least one entry on the main
diagonal of RREF(A) is 0

(∗)⇐⇒ RREF(A) ̸= In

(∗∗)⇐⇒ A is not invertible,

where (*) follows from the fact that RREF(A) is a square matrix in
reduced row echelon form, and (**) follows from the Invertible
Matrix Theorem (version 1 or version 2).

It now obviously follows
that A is invertible iff det(A) ̸= 0, and we are done. □
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Theorem 7.4.1
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff
det(A) ̸= 0.

We can now expand the previous version of the Invertible
Matrix Theorem to include Theorem 7.4.1.



The Invertible Matrix Theorem (version 3)
Let F be a field, and let A ∈ Fn×n be a square matrix. Further, let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn.a Then the
following are equivalent:

(a) A is invertible (i.e. A has an inverse);
(b) AT is invertible;
(c) RREF(A) = In;
(d) RREF

( [
A In

] )
=

[
In B

]
for some matrix B ∈ Fn×n;

(e) rank(A) = n;
(f) rank(AT ) = n;
(g) A is a product of elementary matrices;

aSince f is a matrix transformation, Proposition 1.10.4 guarantees that f is
linear. Moreover, A is the standard matrix of f .



The Invertible Matrix Theorem (version 3, continued)

(h) the homogeneous matrix-vector equation Ax = 0 has only the
trivial solution (i.e. the solution x = 0);

(i) there exists some vector b ∈ Fn such that the matrix-vector
equation Ax = b has a unique solution;

(j) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has
a unique solution;

(k) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has
at most one solution;

(l) for all vectors b ∈ Fn, the matrix-vector equation Ax = b is
consistent;

(m) f is one-to-one;
(n) f is onto;
(o) f is an isomorphism;



The Invertible Matrix Theorem (version 3, continued)

(p) there exists a matrix B ∈ Fn×n such that BA = In (i.e. A has
a left inverse);

(q) there exists a matrix C ∈ Fn×n such that AC = In (i.e. A has
a right inverse);

(r) the columns of A are linearly independent;
(s) the columns of A span Fn (i.e. Col(A) = Fn);
(t) the columns of A form a basis of Fn;
(u) the rows of A are linearly independent;
(v) the rows of A span F1×n (i.e. Row(A) = F1×n);
(w) the rows of A form a basis of F1×n;
(x) Nul(A) = {0} (i.e. dim

(
Nul(A)

)
= 0);

(y) det(A) ̸= 0.



6 The multiplicative property of determinants

In general, for a field F, matrices A, B ∈ Fn×n, and a scalar
α ∈ F, we have that

det(A + B) �Z= det(A) + det(B);

det(αA) �Z= αdet(A).

Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

To prove Theorem 7.5.2, we first need a technical proposition
(next slide).
Recall that an elementary matrix is any matrix obtained by
performing one elementary row operation on an identity
matrix In.

Here, it is possible that E = In. In this case, we can take R to
be the multiplication of the first row by the scalar 1.
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Proposition 7.5.1
Let F be a field, let A, E ∈ Fn×n, and assume that E is an
elementary matrix. Then det(EA) = det(E )det(A).

Proof.

Let R be an elementary row operation that corresponds to
the elementary matrix E , i.e. E is the matrix obtained by
performing R on In.

By Proposition 1.11.11(a), EA is the matrix obtained by
performing R on A.

Now, by Theorem 7.3.2, there exists some scalar α ∈ F \ {0} s.t.
for any matrix M ∈ Fn×n, if MR is the matrix obtained by
performing R on M, then det(MR) = αdet(M). So,

det(E ) = αdet(In) = α; det(EA) = αdet(A).

It follows that
det(EA) = αdet(A) = det(E )det(A). □
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Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

Proof.

Suppose first that at least one of A, B is non-invertible.
Then by Corollary 3.3.18, AB is also non-invertible. But by
Theorem 7.4.1, non-invertible matrices have determinant zero, and
so det(AB) = 0 = det(A)det(B).

If A is non-invertible, then det(A) = 0.
If B is non-invertible, then det(B) = 0.
In either case, det(A)det(B) = 0.
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Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

Proof (continued). From now on, we assume that A and B are
both invertible.

Therefore, by the Invertible Matrix Theorem, each
of them can be written as a product of elementary matrices, say
A = EA

1 . . . EA
p and B = EB

1 . . . EB
q , where EA

1 , . . . , EA
p , EB

1 , . . . , EB
q

are elementary matrices. So, AB = EA
1 . . . EA

p EB
1 . . . EB

q . By
repeatedly applying Proposition 7.5.1, we get that

det(A) = det(EA
1 ) . . . det(EA

p );
det(B) = det(EB

1 ) . . . det(EB
q );

det(AB) = det(EA
1 ) . . . det(EA

p )det(EB
1 ) . . . det(EB

q ).
But now
det(AB) = det(EA

1 ) . . . det(EA
p )︸ ︷︷ ︸

=det(A)

det(EB
1 ) . . . det(EB

q )︸ ︷︷ ︸
=det(B)

= det(A)det(B),

which is what we needed to show. □
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1 . . . EA

p EB
1 . . . EB

q . By
repeatedly applying Proposition 7.5.1, we get that

det(A) = det(EA
1 ) . . . det(EA

p );
det(B) = det(EB

1 ) . . . det(EB
q );

det(AB) = det(EA
1 ) . . . det(EA

p )det(EB
1 ) . . . det(EB

q ).
But now
det(AB) = det(EA

1 ) . . . det(EA
p )︸ ︷︷ ︸

=det(A)

det(EB
1 ) . . . det(EB

q )︸ ︷︷ ︸
=det(B)

= det(A)det(B),

which is what we needed to show. □



Intermission (reminder): Fraction notation in fields
(subsection 2.4.3 of the Lecture Notes)

Let F be a field. For a ∈ F \ {0}, we sometimes use the
notation 1

a instead of a−1 (the multiplicative inverse of a in
the field F).

For instance, in Z3, we have 1
1 = 1−1 = 1 and 1

2 = 2−1 = 2
(because in Z3, we have that 2 · 2 = 1).

In a similar vein, for scalars a, b ∈ F s.t. b ̸= 0, we sometimes
write a

b instead of b−1a.

For example, in Z5, we have that 3−1 = 2 (because 3 · 2 = 1),
and so 4

3 = 3−1 · 4 = 2 · 4 = 3.

It is sometimes more convenient to use the notation 1
a instead

of a−1, and a
b instead of b−1a.

However, when working over a finite field such as Zp (for a
prime number p), we never leave a fraction as a final answer,
and instead, we always simplify.
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Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

Corollary 7.5.3
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then

det(A−1) = 1
det(A) .

Proof. Since AA−1 = In, we see that

det(A)det(A−1) Thm. 7.5.2= det(AA−1) = det(In) = 1.

We now see that det(A−1) = 1
det(A) , which is what we needed to

show. □
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Reminder:
Definition
Matrices A, B ∈ Fn×n (where F is a field) are said to be similar if
there exists an invertible matrix P ∈ Fn×n s.t. B = P−1AP.

Corollary 7.5.4
Let F be a field, and let A and B be similar matrices in Fn×n.
Then det(A) = det(B).

Proof. Since A and B are similar, there exists an invertible matrix
P ∈ Fn×n s.t. B = P−1AP. We then have that

det(B) = det(P−1AP)

= det(P−1)det(A)det(P) by Theorem 7.5.2

= 1
det(P) det(A)det(P) by Corollary 7.5.3

= det(A). □
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Reminder:

Theorem 4.5.16
Let F be a field, let B, C ∈ Fn×n be matrices, and let V be an
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) B and C are similar;
(b) for all bases B of V and linear functions f : V → V s.t.

B = B

[
f

]
B, there exists a basis C of V s.t. C = C

[
f

]
C;

(c) for all bases C of V and linear functions f : V → V s.t.
C = C

[
f

]
C, there exists a basis B of V s.t. B = B

[
f

]
B;

(d) there exist bases B and C of V and a linear function
f : V → V s.t. B = B

[
f

]
B and C = C

[
f

]
C.



Definition
Suppose that V is a non-trivial, finite-dimensional vector space
over a field F, and that f : V → V is a linear function. Then we
define the determinant of f to be

det(f ) := det
(

B

[
f

]
B

)
,

where B is any basis of V .

Let us explain why this is well-defined, that is, why the value
of det(f ) that we get depends only on f , and not on the
particular choice of the basis B.
Suppose that C is any basis of V .
Then by Theorem 4.5.16, matrices B

[
f

]
B and C

[
f

]
C are

similar, and consequently (by Corollary 7.5.4), they have the
same determinant.
So, det(f ) is well-defined.
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Definition
Suppose that V is a non-trivial, finite-dimensional vector space
over a field F, and that f : V → V is a linear function. Then we
define the determinant of f to be

det(f ) := det
(

B

[
f

]
B

)
,

where B is any basis of V .

Remark: Note that we defined determinants only for linear
functions whose domain and codomain are one and the same,
and moreover, are finite-dimensional and non-null.



Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

Corollary 7.5.5
Let A be an orthogonal matrix in Rn×n. Then det(A) = ±1 (i.e.
det(A) is either +1 or −1).

Proof.

Since A is orthogonal, it satisfies AT A = In (by definition).
Therefore,

1 = det(In) = det(AT A) (∗)= det(AT )det(A) (∗∗)= det(A)2,

where (*) follows from Theorem 7.5.2, and (**) follows from
Theorem 7.1.3. But now we see that det(A) = ±1, which is what
we needed to show. □
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Corollary 7.5.5
Let A be an orthogonal matrix in Rn×n. Then det(A) = ±1 (i.e.
det(A) is either +1 or −1).

Warning: The converse of Corollary 7.5.5 is false, i.e.
matrices whose determinant is ±1 need not be orthogonal.

For example, the matrix

A =
[

1 1
2 3

]
satisfies det(A) = 1, but A is not orthogonal.
More generally, suppose that A is any invertible matrix in
Rn×n.
Then by Theorem 7.4.1, we have that det(A) ̸= 0.
We now form the matrix B by multiplying one row or one
column of A by 1

det(A) , and we see that det(B) = 1.
However, B need not be orthogonal.
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6 Laplace expansion

Definition
For a matrix A =

[
ai,j

]
n×n (where n ≥ 2) with entries in some

field F, and for indices p, q ∈ {1, . . . , n}, Ap,q is the
(n − 1) × (n − 1) matrix obtained from A by deleting the p-th row
and q-th column.



a1,1 . . . a1,q−1 a1,q a1,q+1 . . . a1,n
...

. . .
...

...
...

. . .
...

ap−1,1 . . . ap−1,q−1 ap−1,q ap−1,q+1 . . . ap−1,n

ap,1 . . . ap,q−1 ap,q ap,q+1 . . . ap,n
ap+1,1 . . . ap+1,q−1 ap+1,q ap+1,q+1 . . . ap+1,n

...
. . .

...
...

...
. . .

...
an,1 . . . an,q−1 an,q an,q+1 . . . an,n





Definition
For a matrix A =

[
ai,j

]
n×n (where n ≥ 2) with entries in some

field F, and for indices p, q ∈ {1, . . . , n}, Ap,q is the
(n − 1) × (n − 1) matrix obtained from A by deleting the p-th row
and q-th column.

Terminology: The determinants

det(Ai ,j), with i , j ∈ {1, . . . , n}

are referred to as the first minors of A, whereas numbers

Ci ,j := (−1)i+j det(Ai ,j) with i , j ∈ {1, . . . , n}

are referred to as the cofactors of A.



Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

Remark: If we write Ci ,j := (−1)i+jdet(Ai ,j) for all
i , j ∈ {1, . . . , n} (so, the Ci ,j ’s are the cofactors of A), then
the formula from (a) becomes det(A) =

∑n
j=1 ai ,jCi ,j , and the

formula from (b) becomes det(A) =
∑n

i=1 ai ,jCi ,j .
This is why Laplace expansion is also referred to as “cofactor
expansion.”



Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

First an example, then a proof.



Example 7.6.3
Consider the matrix

A =

 2 0 1
3 4 5
7 0 8

 ,

with entries understood to be in R. Compute det(A) in two ways:
(a) via Laplace expansion along the third row;
(b) via Laplace expansion along the second column.



Solution. (a) Laplace expansion along the third row:

det(A) =

∣∣∣∣∣∣
2 0 1
3 4 5
7 0 8

∣∣∣∣∣∣
= (−1)3+1 7

∣∣∣∣ 0 1
4 5

∣∣∣∣ + (−1)3+2 0
∣∣∣∣ 2 1

3 5

∣∣∣∣ + (−1)3+3 8
∣∣∣∣ 2 0

3 4

∣∣∣∣
= 7

∣∣∣∣ 0 1
4 5

∣∣∣∣︸ ︷︷ ︸
=−4

+8
∣∣∣∣ 2 0

3 4

∣∣∣∣︸ ︷︷ ︸
=8

= 36.



Solution (continued). (b) Laplace expansion along the second
column:

det(A) =

∣∣∣∣∣∣
2 0 1
3 4 5
7 0 8

∣∣∣∣∣∣
= (−1)1+2 0

∣∣∣∣ 3 5
7 8

∣∣∣∣ + (−1)2+2 4
∣∣∣∣ 2 1

7 8

∣∣∣∣ + (−1)3+2 0
∣∣∣∣ 2 1

3 5

∣∣∣∣
= 4

∣∣∣∣ 2 1
7 8

∣∣∣∣︸ ︷︷ ︸
=9

= 36.

□
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Consider the matrix

A =

 2 0 1
3 4 5
7 0 8

 ,

with entries understood to be in R. Compute det(A) in two ways:
(a) via Laplace expansion along the third row;
(b) via Laplace expansion along the second column.

As a general rule, it is best to expand along a row or column
that has a lot of zeros (if such a row or column exists), since
that reduces the amount of calculation that we need to
perform.

So, in Example 7.6.3, it was easier to expand along the second
column.

See the Lecture Notes for another example (with a larger
matrix).
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Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

Let’s prove this!
We begin with a technical proposition.



Proposition 7.6.1
Let F be a field, and let A ∈ F(n−1)×(n−1) (where n ≥ 2) and
a ∈ Fn−1. Then

det
( [

A 0
aT 1

]
n×n

)
= det(A).

Proof.

First, set
[

A 0
aT 1

]
n×n

=
[

ai ,j
]

n×n
, so that all the

following hold:
A =

[
ai ,j

]
(n−1)×(n−1)

;

an,n = 1;
for all i ∈ {1, . . . , n − 1}, ai ,n = 0 ;
for all j ∈ {1, . . . , n − 1}, an,j is the j-th entry of the vector a.
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Let F be a field, and let A ∈ F(n−1)×(n−1) (where n ≥ 2) and
a ∈ Fn−1. Then

det
( [

A 0
aT 1

]
n×n

)
= det(A).

Proof (continued). Next, for all σ ∈ Sn−1, let σ∗ ∈ Sn be given by
σ∗(i) = σ(i) for all i ∈ {1, . . . , n − 1},
σ∗(n) = n.

So, for any σ ∈ Sn−1, the disjoint cycle decomposition of σ∗ is
obtained by adding the one-element cycle (n) to the disjoint cycle
decomposition of σ, and consequently, sgn(σ) = sgn(σ∗).
Set

S∗
n := {σ∗ | σ ∈ Sn−1} = {π ∈ Sn | π(n) = n}.

We then have the following (next slide):
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Proof (continued).
det(A) =

∑
σ∈Sn−1

sgn(σ)a1,σ(1) . . . an−1,σ(n−1)

=
∑

σ∈Sn−1

sgn(σ∗)a1,σ∗(1) . . . an−1,σ∗(n−1) an,σ∗(n)︸ ︷︷ ︸
=1

=
∑

π∈S∗
n

sgn(π)a1,π(1) . . . an−1,π(n−1)an,π(n)

(∗)=
∑

π∈Sn

sgn(π)a1,π(1) . . . an−1,π(n−1)an,π(n)

= det
( [

A 0
aT 1

]
n×n

)
,

where (*) follows from the fact that for all π ∈ Sn \ S∗
n , we have

that i := π−1(n) ̸= n (because π(n) ̸= n), and so
ai ,π(i) = ai ,n = 0. □



Proposition 7.6.1
Let F be a field, and let A ∈ F(n−1)×(n−1) (where n ≥ 2) and
a ∈ Fn−1. Then

det
( [

A 0
aT 1

]
n×n

)
= det(A).

Reminder:

Theorem 7.1.3
Let F be a field. For all A ∈ Fn×n, we have that det(AT ) = det(A).
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Laplace expansion
Let F be a field, and let A =

[
ai,j

]
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(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:
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(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

Proof.

In view of Theorem 7.1.3, it is enough to prove (b).

Fix j ∈ {1, . . . , n}. We must show that

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).
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Proof (cont.). Reminder: WTS det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

First, set A =
[

a1 . . . an
]
. Then aj =

n∑
i=1

ai ,jei , and so

det(A) = det
( [

a1 . . . aj−1 aj aj+1 . . . an
] )

= det
( [

a1 . . . aj−1
n∑

i=1
ai,jei aj+1 . . . an

] )
(∗)=

n∑
i=1

ai,jdet
( [

a1 . . . aj−1 ei aj+1 . . . an
] )

,

where (*) follows from Proposition 7.2.1(a).
Fix an arbitrary index i ∈ {1, . . . , n}. To complete the proof, it
now suffices to show that

det
( [

a1 . . . aj−1 ei aj+1 . . . an
] )

= (−1)i+j det(Ai,j).
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Proof (continued). Reminder: WTS
det

( [
a1 . . . aj−1 ei aj+1 . . . an

] )
= (−1)i+j det(Ai,j).

By iteratively performing n − j column swaps on the matrix

Bi :=
[

a1 . . . aj−1 ei aj+1 . . . an
]

,

we can obtain the matrix

Ci :=
[

a1 . . . aj−1 aj+1 . . . an ei
]

.

By iteratively performing n − i row swaps on the matrix Ci , we
can obtain the matrix [

Ai,j 0
aT 1

]
,

where aT is the row vector of length n − 1 obtained from the i-th
row of A by deleting its j-th entry.
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Proof (continued). Since swapping two rows or two columns has
the effect of changing the sign of the determinant, we see that

det(Bi) = (−1)n−jdet(Ci)

= (−1)n−j(−1)n−idet
( [

Ai ,j 0
aT 1

] )
(∗)= (−1)2n−i−jdet(Ai ,j)

= (−1)i+jdet(Ai ,j),

where (*) follows from Proposition 7.6.1. This completes the
argument. □



Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:
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Theorem 7.6.6
Let F be a field, and let A ∈ Fn×n and B ∈ Fm×m be square
matrices. Then

det
( [

A On×m
Om×n B

] )
= det(A) det(B).

Proof (outline).

This can be proven (for example) by induction on
n, via Laplace expansion along the leftmost column. The details
are left as an exercise. □
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matrices. Then

det
( [

A On×m
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= det(A) det(B).

Corollary 7.6.7
Let F be a field, and let A1 ∈ Fn1×n1 , A2 ∈ Fn2×n2 , . . . , Ak ∈ Fnk×nk

be square matrices. Then

det
(


A1 On1×n2 . . . On1×nk

On2×n1 A2 . . . On2×nk
...

... . . . ...
Onk×n1 Onk×n2 . . . Ak


)

=
k∏

i=1
det(Ai).

Proof. This follows from Theorem 7.6.6 via an easy induction on
k. □


