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1 Permutation matrices

Definition
A permutation matrix is a square matrix that has exactly one 1 in
each row and each column, and has 0’s everywhere else.

Examples: 1 0 0
0 1 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 0 1
0 1 0
1 0 0


 0 1 0

1 0 0
0 0 1

  0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0


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Definition
A permutation matrix is a square matrix that has exactly one 1 in
each row and each column, and has 0’s everywhere else.

The 0’s and 1’s in permutation matrices may belong to any
field F of our choice.

In our study of permutation matrices, we will never need to
add two non-zero numbers, and whenever we multiply two
numbers, at least one of the two numbers will be 0 or 1.
So, it does not matter which particular field we are working in,
and therefore, we will not emphasize this.
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Definition
A permutation matrix is a square matrix that has exactly one 1 in
each row and each column, and has 0’s everywhere else.

Obviously, identity matrices are permutation matrices.

Moreover, n × n permutation matrices are precisely the
matrices that can be obtained from the identity matrix In by
reordering (i.e. permuting) rows, or alternatively, by reordering
(i.e. permuting) columns.
So, the columns of an n × n permutation matrix are the
standard basis vectors e1, . . . , en (appearing in some order in
that matrix), whereas the rows are eT

1 , . . . , eT
n (again,

appearing in some order in that matrix).
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Definition
For a positive integer n and a permutation π ∈ Sn, we define the
matrix of the permutation π, denoted by Pπ, to be the n × n
matrix that has 1 in the

(
i , π(i)

)
-th entry for each each index

i ∈ {1, . . . , n}, and has 0 in all other entries. In other words, for
each index i ∈ {1, . . . , n}, the i-th row of the matrix Pπ is eT

π(i).

For example, for the permutation

π =
(

1 2 3 4 5 6
2 4 1 6 5 3

)
,

in S6, we obtain the 6 × 6 permutation matrix

Pπ =


0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0

 .



Definition
For a positive integer n and a permutation π ∈ Sn, we define the
matrix of the permutation π, denoted by Pπ, to be the n × n
matrix that has 1 in the

(
i , π(i)

)
-th entry for each each index

i ∈ {1, . . . , n}, and has 0 in all other entries. In other words, for
each index i ∈ {1, . . . , n}, the i-th row of the matrix Pπ is eT

π(i).

Obviously, for a positive integer n, the matrix of the identity
permutation 1n in Sn is precisely the identity matrix In, i.e.
P1n = In.



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof.

Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s. Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i). So, Pπ has exactly one 1 in each row. Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column. Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1. Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position. So, no column of
Pπ has more than one 1, and we are done. □



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof. Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s.

Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i). So, Pπ has exactly one 1 in each row. Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column. Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1. Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position. So, no column of
Pπ has more than one 1, and we are done. □



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof. Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s. Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i).

So, Pπ has exactly one 1 in each row. Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column. Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1. Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position. So, no column of
Pπ has more than one 1, and we are done. □



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof. Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s. Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i). So, Pπ has exactly one 1 in each row.

Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column. Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1. Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position. So, no column of
Pπ has more than one 1, and we are done. □



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof. Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s. Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i). So, Pπ has exactly one 1 in each row. Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column. Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1. Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position. So, no column of
Pπ has more than one 1, and we are done. □



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof. Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s. Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i). So, Pπ has exactly one 1 in each row. Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column.

Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1. Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position. So, no column of
Pπ has more than one 1, and we are done. □



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof. Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s. Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i). So, Pπ has exactly one 1 in each row. Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column. Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1.

Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position. So, no column of
Pπ has more than one 1, and we are done. □



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof. Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s. Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i). So, Pπ has exactly one 1 in each row. Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column. Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1. Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position.

So, no column of
Pπ has more than one 1, and we are done. □



Proposition 2.3.10
Let n be a positive integer, and let π ∈ Sn. Then Pπ is a
permutation matrix.

Proof. Obviously, Pπ is an n × n matrix, all of whose entries are
0’s and 1’s. Moreover, by the definition of Pπ, we have that for
each index i ∈ {1, . . . , n}, the i-th row of Pπ is the row vector
eT

π(i). So, Pπ has exactly one 1 in each row. Note that this means
that the matrix Pπ has exactly n entries that are 1, whereas all the
other entries are 0’s.

It remains to show that the matrix Pπ has exactly one 1 in each
column. Since Pπ has exactly n many 1’s, it is enough to show
that no column has more than one 1. Since the rows of Pπ (from
top to bottom) are eT

π(1), . . . , eT
π(n), and since all those row vectors

are pairwise distinct (because π is a permutation), we see that no
two rows of Pπ have a 1 in the same position. So, no column of
Pπ has more than one 1, and we are done. □



By Proposition 2.3.10, the matrix of a permutation is a
permutation matrix.

What about the converse: is every permutation matrix the
matrix of some permutation?

The answer to this question is “yes,” and it follows from a
simple counting argument, as follows.
Let n be a positive integer.
The n × n permutation matrices are precisely those n × n
matrices whose columns are the standard basis vectors
e1, . . . , en, appearing in some order. There are n! many ways
to order the vectors e1, . . . , en, and consequently, there are n!
many n × n permutation matrices.
On the other hand, |Sn| = n!, and consequently, there are n!
many matrices of permutations in Sn.

We are using the fact that different permutations have
different matrices.

So, the number of n × n permutation matrices is the same as
the number of matrices of permutations in Sn.
It now follows from Proposition 2.3.10 that n × n permutation
matrices are precisely the matrices of permutations in Sn.
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Reminder:

Proposition 1.4.5

Let F be a field, and let A =
[

a1 . . . am
]

be a matrix in
Fn×m. Then for all indices i ∈ {1, . . . , m}, we have that Aem

i = ai .

Proposition 1.8.2
Let F be a field, and let

A =

 r1
...
rn


be a matrix in Fn×m. Then for all i ∈ {1, . . . , n}, we have that

eT
i A = ri ,

where ei is the i-th standard basis vector of Fn.



Proposition 2.3.11
Let n be a positive integer, and let π ∈ Sn be a permutation. Then
both the following hold:

(a) ∀i ∈ {1, . . . , n}: eT
i Pπ = eπ(i), i.e. the i-th row of Pπ is eT

π(i);
(b) ∀j ∈ {1, . . . , n}: Pπej = eπ−1(j), i.e. the j-th column of Pπ is

eπ−1(j).
Consequently, in terms of its rows and columns, Pπ can be written
as follows:

Pπ =


eT

π(1)
...

eT
π(n)

 =
[

eπ−1(1) . . . eπ−1(n)
]

.

Proof. The last statement of the proposition follows immediately
from (a) and (b). So, it is enough to prove (a) and (b).



Proposition 2.3.11
(a) ∀i ∈ {1, . . . , n}: eT

i Pπ = eπ(i), i.e. the i-th row of Pπ is eT
π(i);

(b) ∀j ∈ {1, . . . , n}: Pπej = eπ−1(j), i.e. the j-th column of Pπ is
eπ−1(j).

Proof (continued). (a) Fix an index i ∈ {1, . . . , n}. By
Proposition 1.8.2, eT

i Pπ is precisely the i-th row of the matrix Pπ,
and by the definition of the matrix Pπ, its i-th row is precisely eπ(i).

(b) Fix an index j ∈ {1, . . . , n}. By Proposition 1.4.5, Pπej is
precisely the j-th column of the matrix Pπ. Set i := π−1(j), so that
j = π(i). By (a), the i-th row of Pπ is the row vector eT

π(i) = eT
j .

So, Pπ has 1 in its (i , j)-th entry. Since Pπ is a permutation matrix
(by Proposition 2.3.10), and therefore has exactly one 1 in each
column, it follows that the j-th column of Pπ is ei = eπ−1(j). □
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Theorem 2.3.14
Let n be a positive integer, and let π ∈ Sn. Then Pπ is invertible,
and moreover,

P−1
π = Pπ−1 = PT

π .

Proof.

The fact that Pπ−1 = PT
π follows immediately from

Proposition 2.3.12. It remains to show that Pπ is invertible, and
that its inverse is Pπ−1 .

We now compute:

PπPπ−1
(∗)= Pπ−1◦π = P1n = In,

where (*) follows immediately from Proposition 2.3.13.
Analogously, Pπ−1Pπ = In. So, Pπ and Pπ−1 are invertible and are
each other’s inverses. This completes the argument. □
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Theorem 2.3.14
Let n be a positive integer, and let π ∈ Sn. Then Pπ is invertible,
and moreover,

P−1
π = Pπ−1 = PT

π .

Remark: A matrix Q ∈ Rn×n is orthogonal if it satisfies
QT Q = In.

Theorem 2.3.14 guarantees that permutation matrices are
orthogonal (as long as we consider the 0’s and 1’s in those
matrices as belonging to R, rather than to some other field).



As our next theorem (Theorem 2.3.15, next slide) shows,
multiplying a matrix by a permutation matrix on the left
permutes the rows of the original matrix.

On the other hand, multiplying a matrix by a permutation
matrix on the right permutes the columns of the original
matrix.
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Theorem 2.3.15

Let A =

 r1
...
rn

 =
[

a1 . . . am
]

be an n × m matrix with entries

in some field F. Then all the following hold:
(a) for all π ∈ Sn, we have that

PπA =

 rπ(1)
...

rπ(n)

 ;

(b) for all π ∈ Sm, we have that

APπ =
[

aπ−1(1) . . . aπ−1(m)
]

;

(c) for all π ∈ Sm, we have that

APT
π =

[
aπ(1) . . . aπ(m)

]
.

Proof.

We prove (b). Parts (a) and (c) are in the Lecture Notes.
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Proof of (b).

Fix any permutation π ∈ Sm. In what follows,
e1, . . . , em are the standard basis vectors of Fm. We compute:

APπ = A
[

eπ−1(1) . . . eπ−1(m)
]

by Proposition 2.3.11

=
[

Aeπ−1(1) . . . Aeπ−1(m)
] by the definition of

matrix multiplication

=
[

aπ−1(1) . . . aπ−1(m)
]

by Proposition 1.4.5.

This proves (b). □
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By Theorem 2.3.14, permutation matrices are orthogonal (as
long as we consider the 0’s and 1’s in those matrices as being
real numbers).
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and moreover,

P−1
π = Pπ−1 = PT
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The matrices mentioned so far all have entries only −1, 0, 1.
However, there are many other orthogonal matrices, and we
will see a couple of examples later.
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will see a couple of examples later.
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However, there are many other orthogonal matrices, and we
will see a couple of examples later.



Reminder:

Corollary 3.3.18
Let F be field, and let A, B ∈ Fn×n be such that AB = In or
BA = In. Then AB = BA = In, i.e. A and B are both invertible
and are each other’s inverses.



Theorem 6.8.1
Let Q ∈ Rn×n. Then the following are equivalent:

(a) Q is orthogonal (i.e. satisfies QT Q = In);
(b) Q is invertible and satisfies Q−1 = QT ;
(c) QQT = In;
(d) QT is orthogonal;
(e) Q is invertible and Q−1 is orthogonal;
(f) the columns of Q form an orthonormal basis of Rn;
(g) the columns of QT form an orthonormal basis of Rn.

Proof.

By Corollary 3.3.18, we have that (a), (b), and (c) are
equivalent. Moreover, since (QT )T = Q, we have that (c) and (d)
are equivalent. This proves that (a), (b), (c), and (d) are
equivalent.
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Proof (continued). Next, (b) and (d) together imply (e).

Suppose now that (e) holds. Then by applying “(a) =⇒ (b)” to
the matrix Q−1, we see that Q−1 is invertible and satisfies
(Q−1)−1 = (Q−1)T . Consequently, Q−1 = QT , and it follows
that (b) holds.
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Proof (continued). So far, we have established
that (a), (b), (c), (d), and (e) are equivalent.

Let us now show that (a) and (f) are equivalent.
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Theorem 6.8.1
(a) Q is orthogonal (i.e. satisfies QT Q = In);
(f) the columns of Q form an orthonormal basis of Rn;

Proof (continued).

Set Q =
[

q1 . . . qn
]
. Then

QT Q =


qT

1
qT

2
...

qT
n

 [
q1 q2 . . . qn

]

=


q1 · q1 q1 · q2 . . . q1 · qn
q2 · q1 q2 · q2 . . . q2 · qn

...
...

. . .
...

qn · q1 qn · q2 . . . qn · qn

 .

So, QT Q = In iff {q1, . . . , qn} is an orthonormal set. But by
Proposition 6.3.4(b), any orthonormal set of n vectors in Rn is in
fact an orthonormal basis of Rn. So, (a) and (f) are equivalent.
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Theorem 6.8.1
Let Q ∈ Rn×n. Then the following are equivalent:

(a) Q is orthogonal (i.e. satisfies QT Q = In);
(b) Q is invertible and satisfies Q−1 = QT ;
(c) QQT = In;
(d) QT is orthogonal;
(e) Q is invertible and Q−1 is orthogonal;
(f) the columns of Q form an orthonormal basis of Rn;
(g) the columns of QT form an orthonormal basis of Rn.

Proof (continued). Analogously to “(a) ⇐⇒ (f),” we have that (d)
and (g) are equivalent. □



Theorem 6.8.1
Let Q ∈ Rn×n. Then the following are equivalent:

(a) Q is orthogonal (i.e. satisfies QT Q = In);
(b) Q is invertible and satisfies Q−1 = QT ;
(c) QQT = In;
(d) QT is orthogonal;
(e) Q is invertible and Q−1 is orthogonal;
(f) the columns of Q form an orthonormal basis of Rn;
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We can make new orthogonal matrices out of old ones, as
Propositions 6.8.2, 6.8.3, and 6.8.4 (below and next slide)
show.
The proofs of these propositions are easy and are in the
Lecture Notes (we omit them here).

Proposition 6.8.2
Let

Q =
[

q1 . . . qn
]

=

 rT
1
...

rT
n


be an orthogonal matrix in Rn. Then all the following hold:
(a) ∀α1, . . . , αn ∈ {−1, 1}:

[
α1q1 . . . αnqn

]
is orthogonal;

(b) ∀α1, . . . , αn ∈ {−1, 1}:

 α1rT
1

...
αnrT

n

 is orthogonal;

(c) the matrix −Q is orthogonal.



Proposition 6.8.3
If Q1, Q2 ∈ Rn×n are orthogonal, then so is their product Q1Q2.

Proposition 6.8.4
Let Q1 ∈ Rm×m and Q2 ∈ Rn×n be orthogonal matrices. Then the
(m + n) × (m + n) matrix

Q =
[

Q1 Om×n
On×m Q2

]

is an orthogonal matrix in R(m+n)×(m+n).



Next, we discuss two particularly significant orthogonal
matrices: the Householder matrix and the Givens matrix.

Reminder:

Corollary 6.6.4
Let a be a non-zero vector in Rn. Then the standard matrix of
orthogonal projection onto the line L := Span(a) is the matrix

a(aT a)−1aT = a(a · a)−1aT = 1
a·aaaT .

Consequently, for every vector x ∈ Rn, we have that
xL = projL(x) = 1

a·aaaT x.

L
x

projL(x)
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Definition
For a non-zero vector a in Rn, the Householder matrix is the n × n
matrix

H(a) := In − 2
aT aaaT = In − 2

a·aaaT .

To see that H(a) is an orthogonal matrix, we compute:

H(a)T H(a) = (In − 2
a·a aaT )T (In − 2

a·a aaT )

= (IT
n − 2

a·a (aaT )T ) (In − 2
a·a aaT )

= (In − 2
a·a aaT ) (In − 2

a·a aaT )

= In − 4
a·a aaT + 4

(a·a)2 a aT a︸︷︷︸
=a·a

aT

= In − 4
a·a aaT + 4

a·a aaT

= In.



Definition
For a non-zero vector a in Rn, the Householder matrix is the n × n
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Let us now discuss the geometric meaning of this matrix.

First of all, we observe that if U is a subspace of Rn, then for
any vector x ∈ Rn, the reflection of x about U is given by

refU(x) := x + 2(xU − x) = 2xU − x,

and the reflection of x about U⊥ is given by

refU⊥(x) := x + 2(xU⊥ − x) (∗)= x − 2xU = −refU(x),

where (*) follows from the fact that x = xU + xU⊥ (by
Corollary 6.5.3); so, either one of xU and xU⊥ can be obtained
from the other by reflecting about the origin.

U

x

xU

xU − x

refU(x)

refU⊥(x)

U⊥

xU⊥

xU⊥ − x



Let us now discuss the geometric meaning of this matrix.
First of all, we observe that if U is a subspace of Rn, then for
any vector x ∈ Rn, the reflection of x about U is given by

refU(x) := x + 2(xU − x) = 2xU − x,

and the reflection of x about U⊥ is given by

refU⊥(x) := x + 2(xU⊥ − x) (∗)= x − 2xU = −refU(x),

where (*) follows from the fact that x = xU + xU⊥ (by
Corollary 6.5.3); so, either one of xU and xU⊥ can be obtained
from the other by reflecting about the origin.

U

x

xU

xU − x

refU(x)

refU⊥(x)

U⊥

xU⊥

xU⊥ − x



Reminder: H(a) := In − 2
aT aaaT = In − 2

a·aaaT .

So, for any x ∈ Rn, then the projection of x onto L is given by
xL = 1

a·aaaT x,

the reflection of x about the line L is given by

refL(x) = 2xL − x = 2
a·a aaT x − Inx

=
( 2

a·a aaT − In
)
x = − H(a)x,

and the reflection of x about L⊥ is given by
refL⊥(x) = −refL(x) = H(a)x.

x

xL xL − x

a
−H(a)x

H(a)x

x1

x2

L

L⊥
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Reminder: H(a) := In − 2
aT aaaT = In − 2

a·aaaT .

x

xL xL − x

a
−H(a)x

H(a)x

x1

x2

L

L⊥

Thus, −H(a) is the standard matrix of reflection about the
line L = Span(a), whereas the Householder matrix H(a) itself
is the standard matrix of reflection about L⊥.Thus, −H(a) is
the standard matrix of reflection about the Span(a) line.



Reminder: H(a) := In − 2
aT aaaT = In − 2

a·aaaT .

x

xL xL − x

a
−H(a)x

H(a)x

x1

x2

L

L⊥

Remark: Suppose that a is a non-zero vector in Rn.
Then the standard matrix of reflection about the line
L := Span(a) in Rn is an orthogonal matrix.
Indeed, as we saw, the Householder matrix H(a) is an
orthogonal matrix.
By Proposition 6.8.2(c), it follows that −H(a) is also an
orthogonal matrix, and as we saw above, −H(a) is the
standard matrix of reflection about the line L = Span(a) in Rn.



Given an integer n ≥ 2, indices i , j ∈ {1, . . . , n} such that
i < j , and real numbers c and s such that c2 + s2 = 1, we
define the Givens matrix Gi ,j(c, s) as follows:
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c00 0

00 0

. . .
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. . .
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1
. . .
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i

j

i j

Gi,j(c, s) =

It is not hard to check that the columns of Gi ,j(c, s) form an
orthonormal set of vectors in Rn, and therefore (by
Proposition 6.3.4) an orthonormal basis of Rn.
So, by Theorem 6.8.1, Gi ,j(c, s) is orthogonal.
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It is not hard to check that the columns of Gi ,j(c, s) form an
orthonormal set of vectors in Rn, and therefore (by
Proposition 6.3.4) an orthonormal basis of Rn.
So, by Theorem 6.8.1, Gi ,j(c, s) is orthogonal.



Let us now give a geometric interpretation of this matrix.

Since c2 + s2 = 1, we see that there exists a real number
(angle in radians) θ such that c = cos θ and s = sin θ.
With this set-up, we see that Gi ,j(c, s) represents rotation
about the origin by angle θ in the xixj -plane.
This is particularly easy to see in the case when n = 2. In that
case, we have that

G1,2(c, s) =
[

c −s
s c

]
=

[
cos θ − sin θ
sin θ cos θ

]
,

which is precisely the standard matrix of counterclockwise
rotation about the origin by angle θ.

θ
u

G1,2(c, s)u

x1

x2

c = cos θ
s = sin θ
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Theorem 6.8.5

Let Q =
[

qi ,j
]

n×n
be an orthogonal matrix in Rn×n. Then:

(a) for all x, y ∈ Rn, (Qx) · (Qy) = x · y;
(b) for all x ∈ Rn, ||Qx|| = ||x||;
(c) for all i , j ∈ {1, . . . , n}, |qi ,j | ≤ 1.

Proof: next slide.

Remark: By Theorem 6.8.5(b), multiplication by an
orthogonal matrix (on the left) preserves vector length.

On the other hand, recall that for non-zero vectors x, y ∈ Rn,
we have that x · y = ||x|| ||y|| cos θ, where θ is the angle
between x and y.
So, Theorem 6.8.5(a-b) implies that multiplication (on the
left) by an orthogonal matrix preserves angles between
non-zero vectors.
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Let Q =
[

qi ,j
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be an orthogonal matrix in Rn×n. Then:

(a) for all x, y ∈ Rn, (Qx) · (Qy) = x · y;
(b) for all x ∈ Rn, ||Qx|| = ||x||;
(c) for all i , j ∈ {1, . . . , n}, |qi ,j | ≤ 1.

Proof.

(a) For x, y ∈ Rn, we have the following:

(Qx) · (Qy) = (Qx)T (Qx) = xT QT Q︸ ︷︷ ︸
=In

y = xT y = x · y.

(b) For x ∈ Rn, we have the following:

||Qx|| =
√

(Qx) · (Qx) (a)=
√

x · x = ||x||.

(c) By Theorem 6.8.1, the columns of Q form an orthonormal
basis. In particular, all columns of Q are unit vectors, and it
follows that all entries of Q have absolute value at most 1. □
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3 Scalar product, coordinate vectors, and matrices of linear
functions

Proposition 6.9.1
Let V be a real or complex vector space, equipped with the scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let B = {u1, . . . , un}
be an orthonormal basis of V . Let · be the standard scalar
product in Rn or Cn (depending on whether the vector space V is
real or complex). Then for all x, y ∈ V , we have that

⟨x, y⟩ =
[

x
]

B
·

[
y

]
B

.

Proof: Lecture Notes.
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Theorem 6.9.2
Let U and V be non-trivial, finite-dimensional real vector spaces.
Assume that U is equipped with a scalar product ⟨·, ·⟩U and the
induced norm || · ||U , and that V is equipped with a scalar product
⟨·, ·⟩V and the induced norm || · ||V . Let BU = {u1, . . . , um} and
BV = {v1, . . . , vn} be orthonormal bases of U and V ,
respectively, and let f : U → V be a linear function. Then the
following two statements are equivalent:

(i) the columns of the n × m matrix BV

[
f

]
BU

form an
orthonormal set of vectors in Rn (with respect to the standard
scalar product · and the induced norm || · ||);a

(ii) f preserves the scalar product, that is, for all vectors x, y ∈ U,
we have that

〈
f (x), f (y)

〉
V = ⟨x, y⟩U .

aHowever, despite Theorem 6.8.1, this does not necessarily mean that the
matrix BV

[
f

]
BU

is orthogonal. This is because BV

[
f

]
BU

is an n × m
matrix, and it is possible that m ̸= n, in which case BV

[
f

]
BU

is not a square
matrix. Only square matrices can be orthogonal!



Proof. Set BV

[
f

]
BU

=
[

c1 . . . cm
]
.

We observe that

(BV

[
f

]
BU

)T
BV

[
f

]
BU

=


cT

1
cT

2
...

cT
m

 [
c1 c2 . . . cm

]

=


c1 · c1 c1 · c2 . . . c1 · cm
c2 · c1 c2 · c2 . . . c2 · cm

...
...

. . .
...

cm · c1 cm · c2 . . . cm · cm

 .

So, we see that (i) holds iff (BV

[
f

]
BU

)T
BV

[
f

]
BU

= Im.
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Proof (cont.). Reminder: (i) holds iff (BV

[
f

]
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)T
BV

[
f

]
BU

= Im.

Next, by Proposition 6.9.1, the following hold for all x, y ∈ U:
(1) ⟨x, y⟩U =

[
x

]
BU

·
[

y
]

BU
;

(2)
〈
f (x), f (y)

〉
V =

[
f (x)

]
BV

·
[

f (y)
]

BV
.

Now, for all x, y ∈ U, we have that〈
f (x), f (y)

〉
V

(2)=
[

f (x)
]

BV
·
[

f (y)
]

BV

=
( [

f (x)
]

BV

)T [
f (y)

]
BV

=
(

BV

[
f

]
BU

[
x

]
BU

)T (
BV

[
f

]
BU

[
y

]
BU

)
=

( [
x

]
BU

)T (
BV

[
f

]
BU

)T
BV

[
f

]
BU

[
y

]
BU

.
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Proof (continued). Suppose first that (i) holds. Then
(BV

[
f

]
BU

)T
BV

[
f

]
BU

= Im, and consequently, for all x, y ∈ U,
we have that〈

f (x), f (y)
〉

V =
( [

x
]

BU

)T (BV

[
f

]
BU

)T
BV

[
f

]
BU︸ ︷︷ ︸

=Im

[
y

]
BU

=
( [

x
]

BU

)T [
y

]
BU

=
[

x
]

BU
·
[

y
]

BU

(1)= ⟨x, y⟩U .

Thus, (ii) holds.



Proof (continued). Reminder: BV

[
f

]
BU

=
[

c1 . . . cm
]

Suppose now that (ii) holds. Then for all i , j ∈ {1, . . . , m}, we
have that

em
i · em

j =
[

ui
]

BU
·
[

uj
]

BU

(1)= ⟨ui , uj⟩U

(ii)=
〈
f (ui), f (uj)

〉
V

(2)=
[

f (ui)
]

BV
·
[

f (uj)
]

BV

=
(

BV

[
f

]
BU

[
ui

]
BU

)
·
(

BV

[
f

]
BU

[
uj

]
BU

)
=

(
BV

[
f

]
BU

em
i

)
·
(

BV

[
f

]
BU

em
j

)
= ci · cj .

So, {c1, . . . , cn} is an orthonormal set of vectors in Rn, that is,
(i) holds. □
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