Linear Algebra 2

Lecture #18

Permutation matrices. Orthogonal matrices

Irena Penev

March 26, 2024

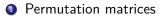
• This lecture has three parts:

- This lecture has three parts:
 - Permutation matrices

- This lecture has three parts:
 - Permutation matrices
 - Orthogonal matrices

- This lecture has three parts:
 - Permutation matrices
 - Orthogonal matrices
 - Scalar product, coordinate vectors, and matrices of linear functions





A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

• Examples:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

 $\bullet\,$ The 0's and 1's in permutation matrices may belong to any field ${\mathbb F}$ of our choice.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- The 0's and 1's in permutation matrices may belong to any field ${\mathbb F}$ of our choice.
 - In our study of permutation matrices, we will never need to add two non-zero numbers, and whenever we multiply two numbers, at least one of the two numbers will be 0 or 1.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- The 0's and 1's in permutation matrices may belong to any field ${\mathbb F}$ of our choice.
 - In our study of permutation matrices, we will never need to add two non-zero numbers, and whenever we multiply two numbers, at least one of the two numbers will be 0 or 1.
 - So, it does not matter which particular field we are working in, and therefore, we will not emphasize this.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

• Obviously, identity matrices are permutation matrices.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- Obviously, identity matrices are permutation matrices.
- Moreover, n × n permutation matrices are precisely the matrices that can be obtained from the identity matrix I_n by reordering (i.e. permuting) rows, or alternatively, by reordering (i.e. permuting) columns.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- Obviously, identity matrices are permutation matrices.
- Moreover, n × n permutation matrices are precisely the matrices that can be obtained from the identity matrix I_n by reordering (i.e. permuting) rows, or alternatively, by reordering (i.e. permuting) columns.
- So, the columns of an n × n permutation matrix are the standard basis vectors e₁,..., e_n (appearing in some order in that matrix), whereas the rows are e₁^T,..., e_n^T (again, appearing in some order in that matrix).

For a positive integer n and a permutation $\pi \in S_n$, we define the matrix of the permutation π , denoted by P_{π} , to be the $n \times n$ matrix that has 1 in the $(i, \pi(i))$ -th entry for each each index $i \in \{1, \ldots, n\}$, and has 0 in all other entries. In other words, for each index $i \in \{1, \ldots, n\}$, the *i*-th row of the matrix P_{π} is $\mathbf{e}_{\pi(i)}^{T}$.

• For example, for the permutation

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 6 & 5 & 3 \end{pmatrix},$$

in S_6 , we obtain the 6×6 permutation matrix

For a positive integer n and a permutation $\pi \in S_n$, we define the matrix of the permutation π , denoted by P_{π} , to be the $n \times n$ matrix that has 1 in the $(i, \pi(i))$ -th entry for each each index $i \in \{1, \ldots, n\}$, and has 0 in all other entries. In other words, for each index $i \in \{1, \ldots, n\}$, the *i*-th row of the matrix P_{π} is $\mathbf{e}_{\pi(i)}^T$.

• Obviously, for a positive integer n, the matrix of the identity permutation 1_n in S_n is precisely the identity matrix I_n , i.e. $P_{1_n} = I_n$.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0's and 1's.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0's and 1's. Moreover, by the definition of P_{π} , we have that for each index $i \in \{1, \ldots, n\}$, the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0's and 1's. Moreover, by the definition of P_{π} , we have that for each index $i \in \{1, \ldots, n\}$, the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{\mathsf{T}}$. So, P_{π} has exactly one 1 in each row.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0's and 1's. Moreover, by the definition of P_{π} , we have that for each index $i \in \{1, \ldots, n\}$, the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly *n* entries that are 1, whereas all the other entries are 0's.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0's and 1's. Moreover, by the definition of P_{π} , we have that for each index $i \in \{1, \ldots, n\}$, the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly *n* entries that are 1, whereas all the other entries are 0's.

It remains to show that the matrix P_{π} has exactly one 1 in each column.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0's and 1's. Moreover, by the definition of P_{π} , we have that for each index $i \in \{1, \ldots, n\}$, the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly *n* entries that are 1, whereas all the other entries are 0's.

It remains to show that the matrix P_{π} has exactly one 1 in each column. Since P_{π} has exactly *n* many 1's, it is enough to show that no column has more than one 1.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0's and 1's. Moreover, by the definition of P_{π} , we have that for each index $i \in \{1, \ldots, n\}$, the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly *n* entries that are 1, whereas all the other entries are 0's.

It remains to show that the matrix P_{π} has exactly one 1 in each column. Since P_{π} has exactly *n* many 1's, it is enough to show that no column has more than one 1. Since the rows of P_{π} (from top to bottom) are $\mathbf{e}_{\pi(1)}^T, \ldots, \mathbf{e}_{\pi(n)}^T$, and since all those row vectors are pairwise distinct (because π is a permutation), we see that no two rows of P_{π} have a 1 in the same position.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0's and 1's. Moreover, by the definition of P_{π} , we have that for each index $i \in \{1, \ldots, n\}$, the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly *n* entries that are 1, whereas all the other entries are 0's.

It remains to show that the matrix P_{π} has exactly one 1 in each column. Since P_{π} has exactly *n* many 1's, it is enough to show that no column has more than one 1. Since the rows of P_{π} (from top to bottom) are $\mathbf{e}_{\pi(1)}^T, \ldots, \mathbf{e}_{\pi(n)}^T$, and since all those row vectors are pairwise distinct (because π is a permutation), we see that no two rows of P_{π} have a 1 in the same position. So, no column of P_{π} has more than one 1, and we are done. \Box

• By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
 - The answer to this question is "yes," and it follows from a simple counting argument, as follows.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
 - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
 - Let *n* be a positive integer.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
 - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
 - Let *n* be a positive integer.
 - The n × n permutation matrices are precisely those n × n matrices whose columns are the standard basis vectors
 e₁,..., e_n, appearing in some order. There are n! many ways to order the vectors e₁,..., e_n, and consequently, there are n! many n × n permutation matrices.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
 - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
 - Let *n* be a positive integer.
 - The n × n permutation matrices are precisely those n × n matrices whose columns are the standard basis vectors
 e₁,..., e_n, appearing in some order. There are n! many ways to order the vectors e₁,..., e_n, and consequently, there are n! many n × n permutation matrices.
 - On the other hand, $|S_n| = n!$, and consequently, there are n! many matrices of permutations in S_n .

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
 - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
 - Let *n* be a positive integer.
 - The n × n permutation matrices are precisely those n × n matrices whose columns are the standard basis vectors
 e₁,..., e_n, appearing in some order. There are n! many ways to order the vectors e₁,..., e_n, and consequently, there are n! many n × n permutation matrices.
 - On the other hand, $|S_n| = n!$, and consequently, there are n! many matrices of permutations in S_n .
 - We are using the fact that different permutations have different matrices.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
 - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
 - Let *n* be a positive integer.
 - The n × n permutation matrices are precisely those n × n matrices whose columns are the standard basis vectors
 e₁,..., e_n, appearing in some order. There are n! many ways to order the vectors e₁,..., e_n, and consequently, there are n! many n × n permutation matrices.
 - On the other hand, $|S_n| = n!$, and consequently, there are n! many matrices of permutations in S_n .
 - We are using the fact that different permutations have different matrices.
 - So, the number of $n \times n$ permutation matrices is the same as the number of matrices of permutations in S_n .

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
 - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
 - Let *n* be a positive integer.
 - The n × n permutation matrices are precisely those n × n matrices whose columns are the standard basis vectors
 e₁,..., e_n, appearing in some order. There are n! many ways to order the vectors e₁,..., e_n, and consequently, there are n! many n × n permutation matrices.
 - On the other hand, $|S_n| = n!$, and consequently, there are n! many matrices of permutations in S_n .
 - We are using the fact that different permutations have different matrices.
 - So, the number of $n \times n$ permutation matrices is the same as the number of matrices of permutations in S_n .
 - It now follows from Proposition 2.3.10 that $n \times n$ permutation matrices are precisely the matrices of permutations in S_n .

• Reminder:

Proposition 1.4.5

Let \mathbb{F} be a field, and let $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$ be a matrix in $\mathbb{F}^{n \times m}$. Then for all indices $i \in \{1, \dots, m\}$, we have that $A\mathbf{e}_i^m = \mathbf{a}_i$.

Proposition 1.8.2

Let ${\mathbb F}$ be a field, and let

$$\mathbf{A} = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix}$$

be a matrix in $\mathbb{F}^{n \times m}$. Then for all $i \in \{1, \ldots, n\}$, we have that

$$\mathbf{e}_i^T A = \mathbf{r}_i,$$

where \mathbf{e}_i is the *i*-th standard basis vector of \mathbb{F}^n .

Let *n* be a positive integer, and let $\pi \in S_n$ be a permutation. Then both the following hold:

Consequently, in terms of its rows and columns, P_{π} can be written as follows:

$$P_{\pi} = \begin{bmatrix} \mathbf{e}_{\pi(1)}^{T} \\ \vdots \\ \mathbf{e}_{\pi(n)}^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)} & \dots & \mathbf{e}_{\pi^{-1}(n)} \end{bmatrix}.$$

Proof. The last statement of the proposition follows immediately from (a) and (b). So, it is enough to prove (a) and (b).

Proof (continued). (a) Fix an index $i \in \{1, ..., n\}$. By Proposition 1.8.2, $\mathbf{e}_i^T P_{\pi}$ is precisely the *i*-th row of the matrix P_{π} , and by the definition of the matrix P_{π} , its *i*-th row is precisely $\mathbf{e}_{\pi(i)}$.

Proof (continued). (a) Fix an index $i \in \{1, ..., n\}$. By Proposition 1.8.2, $\mathbf{e}_i^T P_{\pi}$ is precisely the *i*-th row of the matrix P_{π} , and by the definition of the matrix P_{π} , its *i*-th row is precisely $\mathbf{e}_{\pi(i)}$.

(b) Fix an index $j \in \{1, \ldots, n\}$.

Proof (continued). (a) Fix an index $i \in \{1, ..., n\}$. By Proposition 1.8.2, $\mathbf{e}_i^T P_{\pi}$ is precisely the *i*-th row of the matrix P_{π} , and by the definition of the matrix P_{π} , its *i*-th row is precisely $\mathbf{e}_{\pi(i)}$.

(b) Fix an index $j \in \{1, ..., n\}$. By Proposition 1.4.5, $P_{\pi}\mathbf{e}_j$ is precisely the *j*-th column of the matrix P_{π} .

Proof (continued). (a) Fix an index $i \in \{1, ..., n\}$. By Proposition 1.8.2, $\mathbf{e}_i^T P_{\pi}$ is precisely the *i*-th row of the matrix P_{π} , and by the definition of the matrix P_{π} , its *i*-th row is precisely $\mathbf{e}_{\pi(i)}$.

(b) Fix an index $j \in \{1, ..., n\}$. By Proposition 1.4.5, $P_{\pi}\mathbf{e}_{j}$ is precisely the *j*-th column of the matrix P_{π} . Set $i := \pi^{-1}(j)$, so that $j = \pi(i)$.

Proof (continued). (a) Fix an index $i \in \{1, ..., n\}$. By Proposition 1.8.2, $\mathbf{e}_i^T P_{\pi}$ is precisely the *i*-th row of the matrix P_{π} , and by the definition of the matrix P_{π} , its *i*-th row is precisely $\mathbf{e}_{\pi(i)}$.

(b) Fix an index $j \in \{1, ..., n\}$. By Proposition 1.4.5, $P_{\pi}\mathbf{e}_j$ is precisely the *j*-th column of the matrix P_{π} . Set $i := \pi^{-1}(j)$, so that $j = \pi(i)$. By (a), the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^T = \mathbf{e}_j^T$.

Proof (continued). (a) Fix an index $i \in \{1, ..., n\}$. By Proposition 1.8.2, $\mathbf{e}_i^T P_{\pi}$ is precisely the *i*-th row of the matrix P_{π} , and by the definition of the matrix P_{π} , its *i*-th row is precisely $\mathbf{e}_{\pi(i)}$.

(b) Fix an index $j \in \{1, ..., n\}$. By Proposition 1.4.5, $P_{\pi}\mathbf{e}_j$ is precisely the *j*-th column of the matrix P_{π} . Set $i := \pi^{-1}(j)$, so that $j = \pi(i)$. By (a), the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^T = \mathbf{e}_j^T$. So, P_{π} has 1 in its (i, j)-th entry.

Proof (continued). (a) Fix an index $i \in \{1, ..., n\}$. By Proposition 1.8.2, $\mathbf{e}_i^T P_{\pi}$ is precisely the *i*-th row of the matrix P_{π} , and by the definition of the matrix P_{π} , its *i*-th row is precisely $\mathbf{e}_{\pi(i)}$.

(b) Fix an index $j \in \{1, ..., n\}$. By Proposition 1.4.5, $P_{\pi}\mathbf{e}_j$ is precisely the *j*-th column of the matrix P_{π} . Set $i := \pi^{-1}(j)$, so that $j = \pi(i)$. By (a), the *i*-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^T = \mathbf{e}_j^T$. So, P_{π} has 1 in its (i, j)-th entry. Since P_{π} is a permutation matrix (by Proposition 2.3.10), and therefore has exactly one 1 in each column, it follows that the *j*-th column of P_{π} is $\mathbf{e}_i = \mathbf{e}_{\pi^{-1}(i)}$. \Box

Let *n* be a positive integer, and let $\pi \in S_n$ be a permutation. Then both the following hold:

Consequently, in terms of its rows and columns, P_{π} can be written as follows:

$$P_{\pi} = \begin{bmatrix} \mathbf{e}_{\pi(1)}^{T} \\ \vdots \\ \mathbf{e}_{\pi(n)}^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)} & \dots & \mathbf{e}_{\pi^{-1}(n)} \end{bmatrix}.$$

Let *n* be a positive integer, and let $\pi \in S_n$. Then

$$P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof.

Let *n* be a positive integer, and let $\pi \in S_n$. Then

$$P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof. We have that

$$P_{\pi}^{\mathcal{T}} \stackrel{(*)}{=} \left(\begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)} & \dots & \mathbf{e}_{\pi^{-1}(n)} \end{bmatrix} \right)^{\mathcal{T}} = \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)}^{\mathcal{T}} \\ \vdots \\ \mathbf{e}_{\pi^{-1}(n)}^{\mathcal{T}} \end{bmatrix} \stackrel{(*)}{=} P_{\pi^{-1}},$$

where both instances of (*) follow from Proposition 2.3.11. \Box

(a)
$$\forall i \in \{1, \dots, n\}$$
: $\mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}$, i.e. the *i*-th row of P_{π} is $\mathbf{e}_{\pi(i)}^T$;

Proposition 2.3.13

Let *n* be a positive integer, and let σ and π be permutations in S_n . Then $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$.

Proof.

(a)
$$\forall i \in \{1, \dots, n\}$$
: $\mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}$, i.e. the *i*-th row of P_{π} is $\mathbf{e}_{\pi(i)}^T$;

Proposition 2.3.13

Let *n* be a positive integer, and let σ and π be permutations in S_n . Then $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi}P_{\sigma}$ have the same corresponding rows.

Proposition 2.3.13

Let *n* be a positive integer, and let σ and π be permutations in S_n . Then $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi}P_{\sigma}$ have the same corresponding rows. Fix an index $i \in \{1, \ldots, n\}$.

Proposition 2.3.13

Let *n* be a positive integer, and let σ and π be permutations in S_n . Then $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi}P_{\sigma}$ have the same corresponding rows. Fix an index $i \in \{1, \ldots, n\}$. By Proposition 1.8.2, the *i*-th row of the matrix $P_{\sigma \circ \pi}$ is $\mathbf{e}_i^T P_{\sigma \circ \pi}$, and the *i*-th row of the matrix $P_{\pi}P_{\sigma}$ is $\mathbf{e}_i^T (P_{\pi}P_{\sigma})$.

Proposition 2.3.13

Let *n* be a positive integer, and let σ and π be permutations in S_n . Then $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi}P_{\sigma}$ have the same corresponding rows. Fix an index $i \in \{1, \ldots, n\}$. By Proposition 1.8.2, the *i*-th row of the matrix $P_{\sigma \circ \pi}$ is $\mathbf{e}_i^T P_{\sigma \circ \pi}$, and the *i*-th row of the matrix $P_{\pi}P_{\sigma}$ is $\mathbf{e}_i^T(P_{\pi}P_{\sigma})$. So, we just need to show that $\mathbf{e}_i^T P_{\sigma \circ \pi} = \mathbf{e}_i^T(P_{\pi}P_{\sigma})$.

(a)
$$\forall i \in \{1, \dots, n\}$$
: $\mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}$, i.e. the *i*-th row of P_{π} is $\mathbf{e}_{\pi(i)}^T$;

Proposition 2.3.13

Let *n* be a positive integer, and let σ and π be permutations in S_n . Then $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \sigma \pi}$ and $P_{\pi}P_{\sigma}$ have the same corresponding rows. Fix an index $i \in \{1, \ldots, n\}$. By Proposition 1.8.2, the *i*-th row of the matrix $P_{\sigma \sigma \pi}$ is $\mathbf{e}_i^T P_{\sigma \sigma \pi}$, and the *i*-th row of the matrix $P_{\pi}P_{\sigma}$ is $\mathbf{e}_i^T(P_{\pi}P_{\sigma})$. So, we just need to show that $\mathbf{e}_i^T P_{\sigma \sigma \pi} = \mathbf{e}_i^T(P_{\pi}P_{\sigma})$. But follows easily via repeated application of Proposition 2.3.11(a).

Proposition 2.3.13

Let *n* be a positive integer, and let σ and π be permutations in S_n . Then $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma\sigma\pi}$ and $P_{\pi}P_{\sigma}$ have the same corresponding rows. Fix an index $i \in \{1, \ldots, n\}$. By Proposition 1.8.2, the *i*-th row of the matrix $P_{\sigma\sigma\pi}$ is $\mathbf{e}_i^T P_{\sigma\sigma\pi}$, and the *i*-th row of the matrix $P_{\pi}P_{\sigma}$ is $\mathbf{e}_i^T(P_{\pi}P_{\sigma})$. So, we just need to show that $\mathbf{e}_i^T P_{\sigma\sigma\pi} = \mathbf{e}_i^T(P_{\pi}P_{\sigma})$. But follows easily via repeated application of Proposition 2.3.11(a). Indeed, we have that

$$\mathbf{e}_{i}^{T}(P_{\pi}P_{\sigma}) = (\mathbf{e}_{i}^{T}P_{\pi})P_{\sigma} \stackrel{(*)}{=} \mathbf{e}_{\pi(i)}^{T}P_{\sigma} \stackrel{(*)}{=} \mathbf{e}_{\sigma(\pi(i))}$$
$$= \mathbf{e}_{(\sigma\circ\pi)(i)}^{T} \stackrel{(*)}{=} \mathbf{e}_{i}^{T}P_{\sigma\circ\pi},$$

where all three instances of (*) follow from Prop. 2.3.11(a). \Box

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof. The fact that $P_{\pi^{-1}} = P_{\pi}^{T}$ follows immediately from Proposition 2.3.12.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof. The fact that $P_{\pi^{-1}} = P_{\pi}^{T}$ follows immediately from Proposition 2.3.12. It remains to show that P_{π} is invertible, and that its inverse is $P_{\pi^{-1}}$.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof. The fact that $P_{\pi^{-1}} = P_{\pi}^{T}$ follows immediately from Proposition 2.3.12. It remains to show that P_{π} is invertible, and that its inverse is $P_{\pi^{-1}}$.

We now compute:

$$P_{\pi}P_{\pi^{-1}} \stackrel{(*)}{=} P_{\pi^{-1}\circ\pi} = P_{1_n} = I_n,$$

where (*) follows immediately from Proposition 2.3.13.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof. The fact that $P_{\pi^{-1}} = P_{\pi}^{T}$ follows immediately from Proposition 2.3.12. It remains to show that P_{π} is invertible, and that its inverse is $P_{\pi^{-1}}$.

We now compute:

$$P_{\pi}P_{\pi^{-1}} \stackrel{(*)}{=} P_{\pi^{-1}\circ\pi} = P_{1_n} = I_n,$$

where (*) follows immediately from Proposition 2.3.13. Analogously, $P_{\pi^{-1}}P_{\pi} = I_n$.

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof. The fact that $P_{\pi^{-1}} = P_{\pi}^{T}$ follows immediately from Proposition 2.3.12. It remains to show that P_{π} is invertible, and that its inverse is $P_{\pi^{-1}}$.

We now compute:

$$P_{\pi}P_{\pi^{-1}} \stackrel{(*)}{=} P_{\pi^{-1}\circ\pi} = P_{1_n} = I_n,$$

where (*) follows immediately from Proposition 2.3.13. Analogously, $P_{\pi^{-1}}P_{\pi} = I_n$. So, P_{π} and $P_{\pi^{-1}}$ are invertible and are each other's inverses. This completes the argument. \Box

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

- **Remark:** A matrix $Q \in \mathbb{R}^{n \times n}$ is *orthogonal* if it satisfies $Q^T Q = I_n$.
 - Theorem 2.3.14 guarantees that permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as belonging to ℝ, rather than to some other field).

• As our next theorem (Theorem 2.3.15, next slide) shows, multiplying a matrix by a permutation matrix on the left permutes the rows of the original matrix.

- As our next theorem (Theorem 2.3.15, next slide) shows, multiplying a matrix by a permutation matrix on the left permutes the rows of the original matrix.
- On the other hand, multiplying a matrix by a permutation matrix on the right permutes the columns of the original matrix.

Let $A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$ be an $n \times m$ matrix with entries in some field \mathbb{F} . Then all the following hold:

(a) for all $\pi \in S_n$, we have that

$$P_{\pi}A = \begin{bmatrix} \mathbf{r}_{\pi(1)} \\ \vdots \\ \mathbf{r}_{\pi(n)} \end{bmatrix};$$

() for all $\pi \in S_m$, we have that

$$AP_{\pi} = \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix};$$

• for all $\pi \in S_m$, we have that

$$AP_{\pi}^{T} = \begin{bmatrix} \mathbf{a}_{\pi(1)} & \dots & \mathbf{a}_{\pi(m)} \end{bmatrix}.$$

Proof.

Let $A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$ be an $n \times m$ matrix with entries in some field \mathbb{F} . Then all the following hold:

(a) for all $\pi \in S_n$, we have that

$$P_{\pi}A = \begin{bmatrix} \mathbf{r}_{\pi(1)} \\ \vdots \\ \mathbf{r}_{\pi(n)} \end{bmatrix};$$

() for all $\pi \in S_m$, we have that

$$AP_{\pi} = \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix};$$

• for all $\pi \in S_m$, we have that

$$AP_{\pi}^{T} = \begin{bmatrix} \mathbf{a}_{\pi(1)} & \dots & \mathbf{a}_{\pi(m)} \end{bmatrix}.$$

Proof. We prove (b). Parts (a) and (c) are in the Lecture Notes.

Let
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$$
 be an $n \times m$ matrix with entries
in some field \mathbb{F} . Then all the following hold:
(a) for all $\pi \in S_m$, we have that
 $AP_{\pi} = \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix}$;

Proof of (b).

Let
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$$
 be an $n \times m$ matrix with entries
in some field \mathbb{F} . Then all the following hold:
(a) for all $\pi \in S_m$, we have that
 $AP_{\pi} = \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix}$;

Proof of (b). Fix any permutation $\pi \in S_m$. In what follows, $\mathbf{e}_1, \ldots, \mathbf{e}_m$ are the standard basis vectors of \mathbb{F}^m . We compute:

$$\begin{array}{rcl} AP_{\pi} &=& A \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)} & \dots & \mathbf{e}_{\pi^{-1}(m)} \end{bmatrix} & & \text{by Proposition 2.3.1:} \\ &=& \begin{bmatrix} A\mathbf{e}_{\pi^{-1}(1)} & \dots & A\mathbf{e}_{\pi^{-1}(m)} \end{bmatrix} & & \text{by the definition of matrix multiplication} \\ &=& \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix} & & \text{by Proposition 1.4.5.} \end{array}$$
This proves (b). \Box

Let
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$$
 be an $n \times m$ matrix with entries
in some field \mathbb{F} . Then all the following hold:
o for all $\pi \in S_n$, we have that

$$P_{\pi}A = \begin{bmatrix} \mathbf{r}_{\pi(1)} \\ \vdots \\ \mathbf{r}_{\pi(n)} \end{bmatrix};$$

(b) for all $\pi \in S_m$, we have that

$$AP_{\pi} = \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix};$$

(c) for all $\pi \in S_m$, we have that

$$AP_{\pi}^{T} = \begin{bmatrix} \mathbf{a}_{\pi(1)} & \dots & \mathbf{a}_{\pi(m)} \end{bmatrix}.$$

Orthogonal matrices

- Orthogonal matrices
 - In our study of orthogonal matrices, we assume that ℝⁿ is equipped with the standard scalar product • and the induced norm || • ||.

- Orthogonal matrices
 - In our study of orthogonal matrices, we assume that ℝⁿ is equipped with the standard scalar product • and the induced norm || • ||.

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^T Q = I_n$.

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^T Q = I_n$.

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^T Q = I_n$.

• Obviously, matrices I_n and $-I_n$ are orthogonal.

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^T Q = I_n$.

- Obviously, matrices I_n and $-I_n$ are orthogonal.
- By Theorem 2.3.14, permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as being real numbers).

Theorem 2.3.14

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

Definition

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^T Q = I_n$.

- Obviously, matrices I_n and $-I_n$ are orthogonal.
- By Theorem 2.3.14, permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as being real numbers).

Theorem 2.3.14

Let *n* be a positive integer, and let $\pi \in S_n$. Then P_{π} is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

 The matrices mentioned so far all have entries only -1,0,1. However, there are many other orthogonal matrices, and we will see a couple of examples later.

• Reminder:

Corollary 3.3.18

Let \mathbb{F} be field, and let $A, B \in \mathbb{F}^{n \times n}$ be such that $AB = I_n$ or $BA = I_n$. Then $AB = BA = I_n$, i.e. A and B are both invertible and are each other's inverses.

- Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- Q is invertible and satisfies $Q^{-1} = Q^T$;

$$QQ^{T} = I_{n};$$

- $Q^T is orthogonal;$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- (a) the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof.

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- Q is invertible and satisfies $Q^{-1} = Q^T$;

$$QQ^T = I_n;$$

- $Q^T is orthogonal;$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- (a) the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof. By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent.

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- Q is invertible and satisfies $Q^{-1} = Q^T$;

$$QQ^{T} = I_{n};$$

- $Q^T is orthogonal;$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- (a) the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof. By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent. Moreover, since $(Q^T)^T = Q$, we have that (c) and (d) are equivalent.

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- Q is invertible and satisfies $Q^{-1} = Q^T$;

$$QQ^{T} = I_{n};$$

- $Q^T is orthogonal;$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- (a) the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof. By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent. Moreover, since $(Q^T)^T = Q$, we have that (c) and (d) are equivalent. This proves that (a), (b), (c), and (d) are equivalent.

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- **(a)** Q is invertible and satisfies $Q^{-1} = Q^T$;
- $QQ^{T} = I_{n};$
- $Q^{T} is orthogonal;$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- (a) the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof (continued). Next, (b) and (d) together imply (e).

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- **(a)** Q is invertible and satisfies $Q^{-1} = Q^T$;
- $QQ^T = I_n;$
- $Q^{T} is orthogonal;$
- Q is invertible and Q^{-1} is orthogonal;
- () the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- If the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof (continued). Next, (b) and (d) together imply (e).

Suppose now that (e) holds. Then by applying "(a) \implies (b)" to the matrix Q^{-1} , we see that Q^{-1} is invertible and satisfies $(Q^{-1})^{-1} = (Q^{-1})^T$. Consequently, $Q^{-1} = Q^T$, and it follows that (b) holds.

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- Q is invertible and satisfies $Q^{-1} = Q^T$;

$$QQ^{T} = I_n;$$

- $Q^T \text{ is orthogonal};$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- (d) the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof (continued). So far, we have established that (a), (b), (c), (d), and (e) are equivalent.

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- Q is invertible and satisfies $Q^{-1} = Q^T$;

$$QQ^{T} = I_n;$$

- $Q^T \text{ is orthogonal};$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- (a) the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof (continued). So far, we have established that (a), (b), (c), (d), and (e) are equivalent.

Let us now show that (a) and (f) are equivalent.

- Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;

Proof (continued).

(

$$Q^{T}Q = \begin{bmatrix} \mathbf{q}_{1}^{T} \\ \mathbf{q}_{2}^{T} \\ \vdots \\ \mathbf{q}_{n}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{q}_{1} & \mathbf{q}_{2} & \dots & \mathbf{q}_{n} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{q}_{1} \cdot \mathbf{q}_{1} & \mathbf{q}_{1} \cdot \mathbf{q}_{2} & \dots & \mathbf{q}_{1} \cdot \mathbf{q}_{n} \\ \mathbf{q}_{2} \cdot \mathbf{q}_{1} & \mathbf{q}_{2} \cdot \mathbf{q}_{2} & \dots & \mathbf{q}_{2} \cdot \mathbf{q}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_{n} \cdot \mathbf{q}_{1} & \mathbf{q}_{n} \cdot \mathbf{q}_{2} & \dots & \mathbf{q}_{n} \cdot \mathbf{q}_{n} \end{bmatrix}$$

Q is orthogonal (i.e. satisfies
$$Q^T Q = I_n$$
);
The columns of Q form an orthonormal basis of \mathbb{R}^n ;
Proof (continued). Set $Q = \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix}$. Then
 $Q^T Q = \begin{bmatrix} \mathbf{q}_1^T \\ \mathbf{q}_2^T \\ \vdots \\ \mathbf{q}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix}$
 $= \begin{bmatrix} \mathbf{q}_1 \cdot \mathbf{q}_1 & \mathbf{q}_1 \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ \mathbf{q}_2 \cdot \mathbf{q}_1 & \mathbf{q}_2 \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_1 \cdot \mathbf{q}_n \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_n \cdot \mathbf{q}_1 & \mathbf{q}_n \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_n \cdot \mathbf{q}_n \end{bmatrix}$
So, $Q^T Q = I_n$ iff $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ is an orthonormal set.

٢

Pro

$$Q \text{ is orthogonal (i.e. satisfies } Q^T Q = I_n);$$

the columns of Q form an orthonormal basis of \mathbb{R}^n ;
of (continued). Set $Q = \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix}$. Then
$$Q^T Q = \begin{bmatrix} \mathbf{q}_1^T \\ \mathbf{q}_2^T \\ \vdots \\ \mathbf{q}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{q}_1 \cdot \mathbf{q}_1 & \mathbf{q}_1 \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ \mathbf{q}_2 \cdot \mathbf{q}_1 & \mathbf{q}_2 \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_2 \cdot \mathbf{q}_n \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_n \cdot \mathbf{q}_1 & \mathbf{q}_n \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_n \cdot \mathbf{q}_n \end{bmatrix}.$$

1)

So, $Q^T Q = I_n$ iff $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ is an orthonormal set. But by Proposition 6.3.4(b), any orthonormal set of *n* vectors in \mathbb{R}^n is in fact an orthonormal basis of \mathbb{R}^n . So, (a) and (f) are equivalent.

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:

- (a) Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- Q is invertible and satisfies $Q^{-1} = Q^T$;

$$QQ^T = I_n;$$

- $Q^T is orthogonal;$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- **(a)** the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

Proof (continued). Analogously to "(a) \iff (f)," we have that (d) and (g) are equivalent. \Box

- Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
- (a) Q is orthogonal (i.e. satisfies $Q^T Q = I_n$);
- Q is invertible and satisfies $Q^{-1} = Q^T$;
- $QQ^{T} = I_{n};$
- $Q^{T} is orthogonal;$
- Q is invertible and Q^{-1} is orthogonal;
- **(**) the columns of Q form an orthonormal basis of \mathbb{R}^n ;
- (a) the columns of Q^T form an orthonormal basis of \mathbb{R}^n .

- We can make new orthogonal matrices out of old ones, as Propositions 6.8.2, 6.8.3, and 6.8.4 (below and next slide) show.
- The proofs of these propositions are easy and are in the Lecture Notes (we omit them here).

Proposition 6.8.2

Let

$$Q = \begin{bmatrix} \mathbf{q}_1 & \dots & \mathbf{q}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \\ \vdots \\ \mathbf{r}_n^T \end{bmatrix}$$

be an orthogonal matrix in \mathbb{R}^n . Then all the following hold:

•
$$\forall \alpha_1, \ldots, \alpha_n \in \{-1, 1\}$$
: $\begin{bmatrix} \alpha_1 \mathbf{q}_1 & \ldots & \alpha_n \mathbf{q}_n \end{bmatrix}$ is orthogonal;
• $\forall \alpha_1, \ldots, \alpha_n \in \{-1, 1\}$: $\begin{bmatrix} \alpha_1 \mathbf{r}_1^T \\ \vdots \\ \alpha_n \mathbf{r}_n^T \end{bmatrix}$ is orthogonal;

• the matrix -Q is orthogonal.

Proposition 6.8.3

If $Q_1, Q_2 \in \mathbb{R}^{n \times n}$ are orthogonal, then so is their product $Q_1 Q_2$.

Proposition 6.8.4

Let $Q_1 \in \mathbb{R}^{m imes m}$ and $Q_2 \in \mathbb{R}^{n imes n}$ be orthogonal matrices. Then the (m+n) imes (m+n) matrix

$$Q = \left[\begin{array}{c} Q_1 & O_{m \times n} \\ \overline{O_{n \times m}} & \overline{Q_2} \end{array} \right]$$

is an orthogonal matrix in $\mathbb{R}^{(m+n)\times(m+n)}$.

• Next, we discuss two particularly significant orthogonal matrices: the Householder matrix and the Givens matrix.

- Next, we discuss two particularly significant orthogonal matrices: the Householder matrix and the Givens matrix.
- Reminder:

Corollary 6.6.4

Let **a** be a non-zero vector in \mathbb{R}^n . Then the standard matrix of orthogonal projection onto the line $L := \text{Span}(\mathbf{a})$ is the matrix

$$\mathbf{a}(\mathbf{a}^{T}\mathbf{a})^{-1}\mathbf{a}^{T} = \mathbf{a}(\mathbf{a}\cdot\mathbf{a})^{-1}\mathbf{a}^{T} = \frac{1}{\mathbf{a}\cdot\mathbf{a}}\mathbf{a}\mathbf{a}^{T}.$$

Consequently, for every vector $\mathbf{x} \in \mathbb{R}^n$, we have that

$$\mathbf{x}_{L} = \operatorname{proj}_{L}(\mathbf{x}) = \frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} \mathbf{x}$$

Definition

For a non-zero vector **a** in \mathbb{R}^n , the *Householder matrix* is the $n \times n$ matrix

$$H(\mathbf{a}) := I_n - rac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n - rac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T.$$

Definition

For a non-zero vector **a** in \mathbb{R}^n , the *Householder matrix* is the $n \times n$ matrix

$$H(\mathbf{a}) := I_n - rac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n - rac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T.$$

• To see that $H(\mathbf{a})$ is an orthogonal matrix, we compute:

$$H(\mathbf{a})^T H(\mathbf{a}) = (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T)^T (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T)$$
$$= (I_n^T - \frac{2}{\mathbf{a} \cdot \mathbf{a}} (\mathbf{a} \mathbf{a}^T)^T) (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T)$$
$$= (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T) (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T)$$
$$= I_n - \frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T + \frac{4}{(\mathbf{a} \cdot \mathbf{a})^2} \mathbf{a} \underbrace{\mathbf{a}}_{=\mathbf{a} \cdot \mathbf{a}}^T \mathbf{a}^T$$
$$= I_n - \frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T + \frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$$
$$= I_n - \frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T + \frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$$

• Let us now discuss the geometric meaning of this matrix.

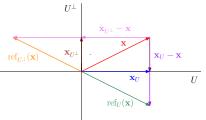
- Let us now discuss the geometric meaning of this matrix.
- First of all, we observe that if U is a subspace of ℝⁿ, then for any vector x ∈ ℝⁿ, the reflection of x about U is given by

$$\operatorname{ref}_U(\mathbf{x}) := \mathbf{x} + 2(\mathbf{x}_U - \mathbf{x}) = 2\mathbf{x}_U - \mathbf{x},$$

and the reflection of **x** about U^{\perp} is given by

$$\mathsf{ref}_{m{U}^{\perp}}(\mathbf{x}) \hspace{.1cm} := \hspace{.1cm} \mathbf{x} + 2(\mathbf{x}_{U^{\perp}} - \mathbf{x}) \hspace{.1cm} \stackrel{(*)}{=} \hspace{.1cm} \mathbf{x} - 2\mathbf{x}_{m{U}} \hspace{.1cm} = \hspace{.1cm} -\mathsf{ref}_U(\mathbf{x}),$$

where (*) follows from the fact that $\mathbf{x} = \mathbf{x}_U + \mathbf{x}_{U^{\perp}}$ (by Corollary 6.5.3); so, either one of \mathbf{x}_U and $\mathbf{x}_{U^{\perp}}$ can be obtained from the other by reflecting about the origin.



• Reminder:
$$H(\mathbf{a}) := I_n - \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$$
.

- Reminder: $H(\mathbf{a}) := I_n \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$.
- So, for any $\mathbf{x} \in \mathbb{R}^n$, then the projection of \mathbf{x} onto L is given by $\mathbf{x}_L = \frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T \mathbf{x}$,

- Reminder: $H(\mathbf{a}) := I_n \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$.
- So, for any $\mathbf{x} \in \mathbb{R}^n$, then the projection of \mathbf{x} onto L is given by $\mathbf{x}_L = \frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T \mathbf{x}$, the reflection of \mathbf{x} about the line L is given by

$$\operatorname{ref}_{L}(\mathbf{x}) = 2\mathbf{x}_{L} - \mathbf{x} = \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} \mathbf{x} - I_{n} \mathbf{x}$$
$$= \left(\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} - I_{n}\right) \mathbf{x} = -H(\mathbf{a}) \mathbf{x},$$

- Reminder: $H(\mathbf{a}) := I_n \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$.
- So, for any $\mathbf{x} \in \mathbb{R}^n$, then the projection of \mathbf{x} onto L is given by $\mathbf{x}_L = \frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T \mathbf{x}$, the reflection of \mathbf{x} about the line L is given by

$$\operatorname{ref}_{L}(\mathbf{x}) = 2\mathbf{x}_{L} - \mathbf{x} = \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} \mathbf{x} - I_{n} \mathbf{x}$$
$$= \left(\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} - I_{n}\right) \mathbf{x} = -H(\mathbf{a}) \mathbf{x},$$

and the reflection of **x** about L^{\perp} is given by

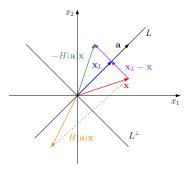
$$\operatorname{ref}_{L^{\perp}}(\mathbf{x}) = -\operatorname{ref}_{L}(\mathbf{x}) = H(\mathbf{a})\mathbf{x}.$$

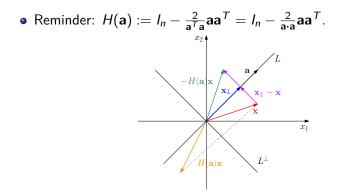
- Reminder: $H(\mathbf{a}) := I_n \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$.
- So, for any $\mathbf{x} \in \mathbb{R}^n$, then the projection of \mathbf{x} onto L is given by $\mathbf{x}_L = \frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T \mathbf{x}$, the reflection of \mathbf{x} about the line L is given by

$$\operatorname{ref}_{L}(\mathbf{x}) = 2\mathbf{x}_{L} - \mathbf{x} = \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} \mathbf{x} - I_{n} \mathbf{x}$$
$$= \left(\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} - I_{n}\right) \mathbf{x} = -H(\mathbf{a}) \mathbf{x},$$

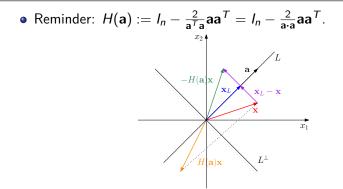
and the reflection of **x** about L^{\perp} is given by

$$\operatorname{ref}_{L^{\perp}}(\mathbf{x}) = -\operatorname{ref}_{L}(\mathbf{x}) = H(\mathbf{a})\mathbf{x}.$$





• Thus, $-H(\mathbf{a})$ is the standard matrix of reflection about the line $L = \text{Span}(\mathbf{a})$, whereas the Householder matrix $H(\mathbf{a})$ itself is the standard matrix of reflection about L^{\perp} . Thus, $-H(\mathbf{a})$ is the standard matrix of reflection about the Span(\mathbf{a}) line.



- **Remark:** Suppose that **a** is a non-zero vector in \mathbb{R}^n .
 - Then the standard matrix of reflection about the line
 L := Span(a) in ℝⁿ is an orthogonal matrix.
 - Indeed, as we saw, the Householder matrix *H*(**a**) is an orthogonal matrix.
 - By Proposition 6.8.2(c), it follows that −H(a) is also an orthogonal matrix, and as we saw above, −H(a) is the standard matrix of reflection about the line L = Span(a) in ℝⁿ.

• Given an integer $n \ge 2$, indices $i, j \in \{1, ..., n\}$ such that i < j, and real numbers c and s such that $c^2 + s^2 = 1$, we define the *Givens matrix* $G_{i,j}(c, s)$ as follows:

• Given an integer $n \ge 2$, indices $i, j \in \{1, ..., n\}$ such that i < j, and real numbers c and s such that $c^2 + s^2 = 1$, we define the *Givens matrix* $G_{i,j}(c, s)$ as follows:

- It is not hard to check that the columns of G_{i,j}(c, s) form an orthonormal set of vectors in ℝⁿ, and therefore (by Proposition 6.3.4) an orthonormal basis of ℝⁿ.
- So, by Theorem 6.8.1, $G_{i,j}(c,s)$ is orthogonal.

• Let us now give a geometric interpretation of this matrix.

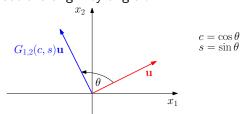
- Let us now give a geometric interpretation of this matrix.
- Since c² + s² = 1, we see that there exists a real number (angle in radians) θ such that c = cos θ and s = sin θ.

- Let us now give a geometric interpretation of this matrix.
- Since $c^2 + s^2 = 1$, we see that there exists a real number (angle in radians) θ such that $c = \cos \theta$ and $s = \sin \theta$.
- With this set-up, we see that $G_{i,j}(c,s)$ represents rotation about the origin by angle θ in the $x_i x_j$ -plane.

- Let us now give a geometric interpretation of this matrix.
- Since $c^2 + s^2 = 1$, we see that there exists a real number (angle in radians) θ such that $c = \cos \theta$ and $s = \sin \theta$.
- With this set-up, we see that $G_{i,j}(c, s)$ represents rotation about the origin by angle θ in the $x_i x_j$ -plane.
- This is particularly easy to see in the case when n = 2. In that case, we have that

$$G_{1,2}(c,s) = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

which is precisely the standard matrix of counterclockwise rotation about the origin by angle θ .



_

Let
$$Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$$
 be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(a) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$;
(b) for all $\mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$;
(c) for all $i, j \in \{1, ..., n\}$, $|q_{i,j}| \le 1$.

• Proof: next slide.

Let
$$Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$$
 be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(a) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$;
(b) for all $\mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$;
(c) for all $i, j \in \{1, ..., n\}$, $|q_{i,j}| \le 1$.

- Proof: next slide.
- Remark: By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.

Let
$$Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$$
 be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(a) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$;
(b) for all $\mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$;
(c) for all $i, j \in \{1, ..., n\}$, $|q_{i,j}| \le 1$.

- Proof: next slide.
- Remark: By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.
 - On the other hand, recall that for non-zero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have that $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$, where θ is the angle between \mathbf{x} and \mathbf{y} .

Let
$$Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$$
 be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(a) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$;
(b) for all $\mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$;
(c) for all $i, j \in \{1, ..., n\}$, $|q_{i,j}| \le 1$.

- Proof: next slide.
- Remark: By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.
 - On the other hand, recall that for non-zero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have that $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$, where θ is the angle between \mathbf{x} and \mathbf{y} .
 - So, Theorem 6.8.5(a-b) implies that multiplication (on the left) by an orthogonal matrix preserves angles between non-zero vectors.

Let $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then: o for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$; o for all $\mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$; o for all $i, j \in \{1, ..., n\}$, $|q_{i,j}| \le 1$.

Proof.

Let $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then: o for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$; o for all $\mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$; o for all $i, j \in \{1, ..., n\}$, $|q_{i,j}| \le 1$.

Proof. (a) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have the following:

$$(Q\mathbf{x}) \cdot (Q\mathbf{y}) = (Q\mathbf{x})^T (Q\mathbf{x}) = \mathbf{x}^T \underbrace{Q^T Q}_{=I_n} \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y}.$$

Let $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then: (a) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$; (b) for all $\mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$; (c) for all $i, j \in \{1, ..., n\}$, $|q_{i,j}| \le 1$.

Proof. (a) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have the following:

$$(Q\mathbf{x}) \cdot (Q\mathbf{y}) = (Q\mathbf{x})^T (Q\mathbf{x}) = \mathbf{x}^T \underbrace{Q^T Q}_{=l_n} \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y}.$$

(b) For $\mathbf{x} \in \mathbb{R}^n$, we have the following:

$$||Q\mathbf{x}|| = \sqrt{(Q\mathbf{x}) \cdot (Q\mathbf{x})} \stackrel{(a)}{=} \sqrt{\mathbf{x} \cdot \mathbf{x}} = ||\mathbf{x}||.$$

Let $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then: (a) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$; (b) for all $\mathbf{x} \in \mathbb{R}^n$, $||Q\mathbf{x}|| = ||\mathbf{x}||$; (c) for all $i, j \in \{1, ..., n\}$, $|q_{i,j}| \le 1$.

Proof. (a) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have the following:

$$(Q\mathbf{x}) \cdot (Q\mathbf{y}) = (Q\mathbf{x})^T (Q\mathbf{x}) = \mathbf{x}^T \underbrace{Q^T Q}_{=l_n} \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y}.$$

(b) For $\mathbf{x} \in \mathbb{R}^n$, we have the following:

$$||Q\mathbf{x}|| = \sqrt{(Q\mathbf{x}) \cdot (Q\mathbf{x})} \stackrel{(a)}{=} \sqrt{\mathbf{x} \cdot \mathbf{x}} = ||\mathbf{x}||.$$

(c) By Theorem 6.8.1, the columns of Q form an orthonormal basis. In particular, all columns of Q are unit vectors, and it follows that all entries of Q have absolute value at most 1. \Box

Scalar product, coordinate vectors, and matrices of linear functions

Scalar product, coordinate vectors, and matrices of linear functions

Proposition 6.9.1

Let V be a real or complex vector space, equipped with the scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an **orthonormal** basis of V. Let \cdot be the standard scalar product in \mathbb{R}^n or \mathbb{C}^n (depending on whether the vector space V is real or complex). Then for all $\mathbf{x}, \mathbf{y} \in V$, we have that

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} \cdot \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$$

• Proof: Lecture Notes.

Let U and V be non-trivial, finite-dimensional **real** vector spaces. Assume that U is equipped with a scalar product $\langle \cdot, \cdot \rangle_U$ and the induced norm $|| \cdot ||_U$, and that V is equipped with a scalar product $\langle \cdot, \cdot \rangle_V$ and the induced norm $|| \cdot ||_V$. Let $\mathcal{B}_U = \{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ and $\mathcal{B}_V = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be **orthonormal** bases of U and V, respectively, and let $f : U \to V$ be a linear function. Then the following two statements are equivalent:

- () the columns of the $n \times m$ matrix $_{\mathcal{B}_{V}} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_{U}}$ form an orthonormal set of vectors in \mathbb{R}^{n} (with respect to the standard scalar product \cdot and the induced norm $|| \cdot ||$);^{*a*}
- **(**) f preserves the scalar product, that is, for all vectors $\mathbf{x}, \mathbf{y} \in U$, we have that $\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_V = \langle \mathbf{x}, \mathbf{y} \rangle_U$.

^aHowever, despite Theorem 6.8.1, this does not necessarily mean that the matrix $_{\mathcal{B}_V} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_U}$ is orthogonal. This is because $_{\mathcal{B}_V} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_U}$ is an $n \times m$ matrix, and it is possible that $m \neq n$, in which case $_{\mathcal{B}_V} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_U}$ is not a square matrix. Only square matrices can be orthogonal!

Proof. Set $_{\mathcal{B}_V} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_U} = \begin{bmatrix} \mathbf{c}_1 & \dots & \mathbf{c}_m \end{bmatrix}$.

Proof. Set
$$_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}} = [\mathbf{c}_{1} \dots \mathbf{c}_{m}]$$
. We observe that
 $(_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}})^{T} _{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}} = \begin{bmatrix} \mathbf{c}_{1}^{T} \\ \mathbf{c}_{2}^{T} \\ \vdots \\ \mathbf{c}_{m}^{T} \end{bmatrix} [\mathbf{c}_{1} \mathbf{c}_{2} \dots \mathbf{c}_{m}]$
 $= \begin{bmatrix} \mathbf{c}_{1} \cdot \mathbf{c}_{1} \mathbf{c}_{1} \cdot \mathbf{c}_{2} \dots \mathbf{c}_{1} \cdot \mathbf{c}_{m} \\ \mathbf{c}_{2} \cdot \mathbf{c}_{1} \mathbf{c}_{2} \cdot \mathbf{c}_{2} \dots \mathbf{c}_{2} \cdot \mathbf{c}_{m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{c}_{m} \cdot \mathbf{c}_{1} \mathbf{c}_{m} \cdot \mathbf{c}_{2} \dots \mathbf{c}_{m} \cdot \mathbf{c}_{m} \end{bmatrix}$

•

So, we see that (i) holds iff $(_{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}})^{T} _{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}} = I_{m}.$

Proof (cont.). Reminder: (i) holds iff $(_{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}})^{T} _{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}} = I_{m}$.

Proof (cont.). Reminder: (i) holds iff $\begin{pmatrix} f \\ B_V \end{pmatrix}^T = \begin{pmatrix} f \\ B_U \end{pmatrix}^T = I_m$. Next, by Proposition 6.9.1, the following hold for all $\mathbf{x}, \mathbf{y} \in U$: (1) $\langle \mathbf{x}, \mathbf{y} \rangle_U = \begin{bmatrix} \mathbf{x} \\ B_U \end{pmatrix} \cdot \begin{bmatrix} \mathbf{y} \\ B_U \end{bmatrix}$; (2) $\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_V = \begin{bmatrix} f(\mathbf{x}) \\ B_V \end{pmatrix} \cdot \begin{bmatrix} f(\mathbf{y}) \\ B_V \end{bmatrix}$. *Proof (cont.).* Reminder: (i) holds iff $\begin{pmatrix} f \\ B_V \end{pmatrix}^T = \begin{pmatrix} f \\ B_U \end{pmatrix}^T = I_m$. Next, by Proposition 6.9.1, the following hold for all $\mathbf{x}, \mathbf{y} \in U$: (1) $\langle \mathbf{x}, \mathbf{y} \rangle_U = \begin{bmatrix} \mathbf{x} \\ B_U \end{pmatrix} \cdot \begin{bmatrix} \mathbf{y} \\ B_U \end{bmatrix}$; (2) $\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_V = \begin{bmatrix} f(\mathbf{x}) \\ B_V \end{pmatrix} \cdot \begin{bmatrix} f(\mathbf{y}) \\ B_V \end{bmatrix}$. Now, for all $\mathbf{x}, \mathbf{y} \in U$, we have that

$$\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_{V} \stackrel{(2)}{=} [f(\mathbf{x})]_{\mathcal{B}_{V}} \cdot [f(\mathbf{y})]_{\mathcal{B}_{V}}$$

$$= ([f(\mathbf{x})]_{\mathcal{B}_{V}})^{T} [f(\mathbf{y})]_{\mathcal{B}_{V}}$$

$$= (_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}} [\mathbf{x}]_{\mathcal{B}_{U}})^{T} (_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}} [\mathbf{y}]_{\mathcal{B}_{U}})$$

$$= ([\mathbf{x}]_{\mathcal{B}_{U}})^{T} (_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}} [f]_{\mathcal{B}_{U}} [\mathbf{y}]_{\mathcal{B}_{U}}.$$

Proof (continued). Suppose first that (i) holds. Then $\binom{g_V}{f} \binom{f}{B_U}^T \binom{g_V}{B_V} \binom{f}{B_U} = I_m$, and consequently, for all $\mathbf{x}, \mathbf{y} \in U$, we have that

$$\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_{V} = \left(\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}_{U}} \right)^{T} \underbrace{\left(\underbrace{B_{V}} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_{U}} \right)^{T} \underbrace{B_{V}} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_{U}}}_{=I_{m}} \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}_{U}}$$

$$= ([\mathbf{x}]_{\mathcal{B}_{U}})^{T} [\mathbf{y}]_{\mathcal{B}_{U}}$$
$$= [\mathbf{x}]_{\mathcal{B}_{U}} \cdot [\mathbf{y}]_{\mathcal{B}_{U}}$$

$$\stackrel{(1)}{=} \langle \mathbf{x}, \mathbf{y} \rangle_U.$$

Thus, (ii) holds.

Proof (continued). Reminder: $_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}} = [\mathbf{c}_{1} \dots \mathbf{c}_{m}]$ Suppose now that (ii) holds. Then for all $i, j \in \{1, \dots, m\}$, we have that

$$\mathbf{e}_{i}^{m} \cdot \mathbf{e}_{j}^{m} = [\mathbf{u}_{i}]_{\mathcal{B}_{U}} \cdot [\mathbf{u}_{j}]_{\mathcal{B}_{U}}$$

$$\stackrel{(1)}{=} \langle \mathbf{u}_{i}, \mathbf{u}_{j} \rangle_{U}$$

$$\stackrel{(ii)}{=} \langle f(\mathbf{u}_{i}), f(\mathbf{u}_{j}) \rangle_{V}$$

$$\stackrel{(2)}{=} [f(\mathbf{u}_{i})]_{\mathcal{B}_{V}} \cdot [f(\mathbf{u}_{j})]_{\mathcal{B}_{V}}$$

$$= (_{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}} [\mathbf{u}_{i}]_{\mathcal{B}_{U}}) \cdot (_{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}} [\mathbf{u}_{j}]_{\mathcal{B}_{U}})$$

$$= (_{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}} \mathbf{e}_{i}^{m}) \cdot (_{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}} \mathbf{e}_{j}^{m})$$

$$= \mathbf{c}_{i} \cdot \mathbf{c}_{j}.$$

So, $\{c_1, \ldots, c_n\}$ is an orthonormal set of vectors in \mathbb{R}^n , that is, (i) holds. \Box

Let U and V be non-trivial, finite-dimensional **real** vector spaces. Assume that U is equipped with a scalar product $\langle \cdot, \cdot \rangle_U$ and the induced norm $|| \cdot ||_U$, and that V is equipped with a scalar product $\langle \cdot, \cdot \rangle_V$ and the induced norm $|| \cdot ||_V$. Let $\mathcal{B}_U = \{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ and $\mathcal{B}_V = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be **orthonormal** bases of U and V, respectively, and let $f : U \to V$ be a linear function. Then the following two statements are equivalent:

- () the columns of the $n \times m$ matrix $_{\mathcal{B}_{V}} [f]_{\mathcal{B}_{U}}$ form an orthonormal set of vectors in \mathbb{R}^{n} (with respect to the standard scalar product \cdot and the induced norm $|| \cdot ||$);^{*a*}
- **(**) f preserves the scalar product, that is, for all vectors $\mathbf{x}, \mathbf{y} \in U$, we have that $\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_V = \langle \mathbf{x}, \mathbf{y} \rangle_U$.

^aHowever, despite Theorem 6.8.1, this does not necessarily mean that the matrix $_{\mathcal{B}_V} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_U}$ is orthogonal. This is because $_{\mathcal{B}_V} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_U}$ is an $n \times m$ matrix, and it is possible that $m \neq n$, in which case $_{\mathcal{B}_V} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_U}$ is not a square matrix. Only square matrices can be orthogonal!