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1 A brief review of projections onto subspaces

Theorem 6.5.1
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V , and let x ∈ V . Then there exists a
unique vector xU ∈ U that has the property that

||x − xU || = min
u∈U

||x − u||.

Moreover, if {u1, . . . , uk} is an orthogonal basis of U, then this
vector xU is given by the formula

xU =
k∑

i=1
projui (x) =

k∑
i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui .

Terminology/Notation: The vector xU from Theorem 6.5.1
is called the orthogonal projection of x onto U.
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Corollary 6.5.3
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V , and let x ∈ V . Then

x = xU + xU⊥ .

Moreover, this is the unique way of expressing x as a sum of a
vector in U and a vector in U⊥.a

aThis means that for all y ∈ U and z ∈ U⊥, if x = y + z, then y = xU and
z = xU⊥ .

U

U⊥

x

xU

xU⊥



Suppose that V is a finite-dimensional real or complex vector
space, equipped with a scalar product ⟨·, ·⟩ and the induced
norm || · ||, and suppose that U is a subspace of V .

We can then define the function projU : V → V by setting
projU(x) = xU for all x ∈ V (where xU is the orthogonal
projection of x onto U, as in Theorem 6.5.1).
Clearly, projU(u) = u for all u ∈ U.
Moreover, we have that Im

(
projU

)
= U and projU [U] = U.

Using the formula from Theorem 6.5.1, we can easily see that
the function projU is linear.
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2 Orthogonal projection onto subspaces of Rn

In what follows, we will assume that Rn is equipped with the
standard scalar product · and the induced norm || · ||.
Suppose that U is a subspace of Rn.

As we saw, projU : Rn → Rn is linear (and its image is U).
Since projU is linear, it has a standard matrix.

Note that this matrix belongs to Rn×n.
By definition, if A is the standard matrix of projU , then we
have that

projU(x) = Ax ∀x ∈ Rn.

Our goal is to we give formulas for the standard matrices of
orthogonal projections onto various subspaces of Rn.
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In section 3.3 of the Lecture Notes (last semester), we defined
the row space of a matrix A to be the span of the rows of A.

Proposition 3.3.1(b) states that

Row(A) =
{
uT | u ∈ Col(AT )

}
.

In what follows, it will be convenient to slightly modify the
definition of the row space, as follows:

Row(A) := Col(AT ).

So, we (re)defined the row space of a matrix to be the span of
the transposes of its rows.
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For example, for the matrix

A =

 1 2 1 2
2 3 2 3
3 4 3 4

 ,

we have that

AT =


1 2 3
2 3 4
1 2 3
2 3 4

 ,

and consequently,

Row(A) = Span
( 

1
2
1
2

 ,


2
3
2
3

 ,


3
4
3
4

 )
.

If this change of definition bothers you, then every time you
see Row(□), mentally replace it with Col(□T ).
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Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Proof.

In view of Theorem 6.4.3(c), it suffices to show that
Row(A)⊥ = Nul(A).

Indeed, by Theorem 6.4.3(c), we have that

(Row(A)⊥)⊥ = Row(A).

So, if Row(A)⊥ = Nul(A), then

Nul(A)⊥ = (Row(A)⊥)⊥ = Row(A).

Set

A =

 aT
1
...

aT
n

 ,

so that Row(A) = Span(a1, . . . , an).
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Proof (continued). Now, for all vectors x ∈ Rm:

x ∈ Nul(A) ⇐⇒ Ax = 0

⇐⇒

 aT
1
...

aT
n

 x = 0

⇐⇒

 a1 · x
...

an · x

 = 0

⇐⇒ ai · x = 0 ∀i ∈ {1, . . . , n}
⇐⇒ ai ⊥ x ∀i ∈ {1, . . . , n}
⇐⇒ x ∈ {a1, . . . , an}⊥

(∗)⇐⇒ x ∈ Span(a1, . . . , an)⊥

⇐⇒ x ∈ Row(A)⊥,

where (*) follows from the fact that
{a1, . . . , am}⊥ = Span(a1, . . . , am)⊥ (by Proposition 6.4.2). This
proves that Nul(A) = Row(A)⊥, and we are done. □
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Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof. We first prove (a). Note that AT A ∈ Rm×m, and that both
Nul(A) and Nul(AT A) are subspaces of Rm. Now, fix any x ∈ Rm.
WTS x ∈ Nul(AT A) iff x ∈ Nul(A).

Suppose first that x ∈ Nul(A). Then Ax = 0, and consequently,
AT Ax = 0. So, x ∈ Nul(AT A).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof.

We first prove (a). Note that AT A ∈ Rm×m, and that both
Nul(A) and Nul(AT A) are subspaces of Rm. Now, fix any x ∈ Rm.
WTS x ∈ Nul(AT A) iff x ∈ Nul(A).

Suppose first that x ∈ Nul(A). Then Ax = 0, and consequently,
AT Ax = 0. So, x ∈ Nul(AT A).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof. We first prove (a).

Note that AT A ∈ Rm×m, and that both
Nul(A) and Nul(AT A) are subspaces of Rm. Now, fix any x ∈ Rm.
WTS x ∈ Nul(AT A) iff x ∈ Nul(A).

Suppose first that x ∈ Nul(A). Then Ax = 0, and consequently,
AT Ax = 0. So, x ∈ Nul(AT A).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof. We first prove (a). Note that AT A ∈ Rm×m, and that both
Nul(A) and Nul(AT A) are subspaces of Rm.

Now, fix any x ∈ Rm.
WTS x ∈ Nul(AT A) iff x ∈ Nul(A).

Suppose first that x ∈ Nul(A). Then Ax = 0, and consequently,
AT Ax = 0. So, x ∈ Nul(AT A).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof. We first prove (a). Note that AT A ∈ Rm×m, and that both
Nul(A) and Nul(AT A) are subspaces of Rm. Now, fix any x ∈ Rm.
WTS x ∈ Nul(AT A) iff x ∈ Nul(A).

Suppose first that x ∈ Nul(A). Then Ax = 0, and consequently,
AT Ax = 0. So, x ∈ Nul(AT A).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof. We first prove (a). Note that AT A ∈ Rm×m, and that both
Nul(A) and Nul(AT A) are subspaces of Rm. Now, fix any x ∈ Rm.
WTS x ∈ Nul(AT A) iff x ∈ Nul(A).

Suppose first that x ∈ Nul(A).

Then Ax = 0, and consequently,
AT Ax = 0. So, x ∈ Nul(AT A).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof. We first prove (a). Note that AT A ∈ Rm×m, and that both
Nul(A) and Nul(AT A) are subspaces of Rm. Now, fix any x ∈ Rm.
WTS x ∈ Nul(AT A) iff x ∈ Nul(A).

Suppose first that x ∈ Nul(A). Then Ax = 0, and consequently,
AT Ax = 0. So, x ∈ Nul(AT A).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof (continued). Suppose, conversely, that x ∈ Nul(AT A).

Then
AT Ax = 0, and it follows that xT AT Ax = 0. But note that

xT AT Ax = (Ax)T (Ax) = (Ax) · (Ax) = ||Ax||2;

consequently, ||Ax||2 = 0. It follows that ||Ax|| = 0, and therefore,
Ax = 0, i.e. x ∈ Nul(A). This proves (a).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof (continued). Suppose, conversely, that x ∈ Nul(AT A). Then
AT Ax = 0, and it follows that xT AT Ax = 0.

But note that

xT AT Ax = (Ax)T (Ax) = (Ax) · (Ax) = ||Ax||2;

consequently, ||Ax||2 = 0. It follows that ||Ax|| = 0, and therefore,
Ax = 0, i.e. x ∈ Nul(A). This proves (a).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof (continued). Suppose, conversely, that x ∈ Nul(AT A). Then
AT Ax = 0, and it follows that xT AT Ax = 0. But note that

xT AT Ax = (Ax)T (Ax) = (Ax) · (Ax) = ||Ax||2;

consequently, ||Ax||2 = 0. It follows that ||Ax|| = 0, and therefore,
Ax = 0, i.e. x ∈ Nul(A). This proves (a).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof (continued). Suppose, conversely, that x ∈ Nul(AT A). Then
AT Ax = 0, and it follows that xT AT Ax = 0. But note that

xT AT Ax = (Ax)T (Ax) = (Ax) · (Ax) = ||Ax||2;

consequently, ||Ax||2 = 0.

It follows that ||Ax|| = 0, and therefore,
Ax = 0, i.e. x ∈ Nul(A). This proves (a).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof (continued). Suppose, conversely, that x ∈ Nul(AT A). Then
AT Ax = 0, and it follows that xT AT Ax = 0. But note that

xT AT Ax = (Ax)T (Ax) = (Ax) · (Ax) = ||Ax||2;

consequently, ||Ax||2 = 0. It follows that ||Ax|| = 0, and therefore,
Ax = 0, i.e. x ∈ Nul(A). This proves (a).



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).

Proof (continued). For (b), we observe that

Row(AT A) = Nul(AT A)⊥ by Theorem 6.6.1

= Nul(A)⊥ by (a)

= Row(A) by Theorem 6.6.1.



Theorem 6.6.1
Let A ∈ Rn×m. Then Row(A)⊥ = Nul(A) and Row(A) = Nul(A)⊥.

Corollary 6.6.2
Let A ∈ Rn×m. Then all the following hold:

(a) Nul(AT A) = Nul(A);
(b) Row(AT A) = Row(A);
(c) rank(AT A) = rank(A).
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rank(AT A) = dim
(
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= dim
(
Row(A)

)
by (b)

= rank(A) by Theorem 3.3.9.

This completes the argument. □



Theorem 6.6.3
Let A ∈ Rn×m be a matrix of rank m (i.e. A is a matrix of full
column rank). Then the matrix A(AT A)−1AT is the standard
matrix of orthogonal projection onto Col(A), that is, for all x ∈ Rn,
the orthogonal projection of x onto C := Col(A) is given by

xC = A(AT A)−1AT x.

Proof.

Fix x ∈ Rn. We must first check that the expression
A(AT A)−1AT x is defined and belongs to C = Col(A).

First, note that AT A ∈ Rm×m, and that by Corollary 6.6.2(a), we
have that rank(AT A) = rank(A) = m. So, by the Invertible Matrix
Theorem, AT A is invertible, and we see that (AT A)−1 is defined
and belongs to Rm×m. Since A ∈ Rn×m, (AT A)−1 ∈ Rm×m, and
AT ∈ Rm×n, we see that A(AT A)−1AT ∈ Rn×n; since x ∈ Rn, we
see that A(AT A)−1AT x is defined and belongs to Rn. Meanwhile,
(AT A)−1AT x is a vector in Rm, and so (next slide):
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Proof (continued).

A(AT A)−1AT x = A︸︷︷︸
∈Rn×m

(
(AT A)−1AT x︸ ︷︷ ︸

∈Rm

)

is a linear combination of the columns of A. By definition, this
means that A(AT A)−1AT x ∈ Col(A) = C .
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xC = A(AT A)−1AT x.

Proof (continued). In view of Corollary 6.5.3, it is now enough to
prove that

(
x − A(AT A)−1AT x

)
∈ C⊥, for it will then follow that

xC = A(AT A)−1AT x, which is what we need to show.

Indeed, if we can show that
(
x − A(AT A)−1AT x

)
∈ C⊥, then

we get that

x = A(AT A)−1AT x︸ ︷︷ ︸
∈C

+
(

x − A(AT A)−1AT x︸ ︷︷ ︸
∈C⊥

)
,

which (by Corollary 6.5.3) implies that xC = A(AT A)−1AT x
and xC⊥ = x − A(AT A)−1AT x.
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matrix of orthogonal projection onto Col(A), that is, for all x ∈ Rn,
the orthogonal projection of x onto C := Col(A) is given by

xC = A(AT A)−1AT x.

Proof (continued). But note that

C⊥ = Col(A)⊥ = Row(AT )⊥ (∗)= Nul(AT ),
where (*) follows from Theorem 6.6.1.

So, it in fact suffices to
show that the vector x − A(AT A)−1AT x belongs to Nul(AT ). For
this, we compute:

AT
(
x − A(AT A)−1AT x

)
= AT x − AT A(AT A)−1︸ ︷︷ ︸

=Im

AT x = 0.

This proves that x − A(AT A)−1AT x ∈ Nul(AT ), and we are
done. □
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Theorem 6.6.3: If A ∈ Rn×m has full column rank, then
A(AT A)−1AT is the standard matrix of orthogonal projection
onto Col(A).

Remark: Suppose that we are given a non-zero matrix
A =

[
a1 . . . am

]
in Rn×m, and that we need to compute

the standard matrix of orthogonal projection onto Col(A).

If rank(A) = m (i.e. A has full column rank), then the matrix
that we need is A(AT A)−1AT , as per Theorem 6.6.3.
But what if rank(A) < m?
In that case, we let B be the matrix obtained from A by
deleting all the non-pivot columns of A.
By Theorem 3.3.4, the columns of B form a basis of Col(A),
and we see that Col(A) = Col(B).
Moreover, all the columns of B are pivot columns, and so B
has full column rank.
But now the matrix B satisfies the hypotheses of
Theorem 6.6.3. So, the standard matrix of orthogonal
projection onto Col(A) = Col(B) is B(BT B)−1BT .
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Theorem 6.6.3
Let A ∈ Rn×m be a matrix of rank m (i.e. A is a matrix of full
column rank). Then the matrix A(AT A)−1AT is the standard
matrix of orthogonal projection onto Col(A), that is, for all x ∈ Rn,
the orthogonal projection of x onto C := Col(A) is given by

xC = A(AT A)−1AT x.

Corollary 6.6.4
Let a be a non-zero vector in Rn. Then the standard matrix of
projection onto the line L := Span(a) is the matrix

a(aT a)−1aT = a(a · a)−1aT = 1
a·aaaT .

Consequently, for every vector x ∈ Rn, we have that
xL = projL(x) = 1

a·aaaT x.

Proof. This is a special case of Theorem 6.6.3 for A =
[

a
]
. □
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Theorem 6.6.5
Let U be a subspace of Rn, and let P ∈ Rn×n be the standard
matrix of projU . Then In − P is the standard matrix of projU⊥ ,
that is, for all x ∈ Rn, the orthogonal projection of x onto U⊥ is
given by xU⊥ = (In − P)x.

Proof.

We observe that for all x ∈ Rn, we have that

(In − P)x = Inx − Px (∗)= x − xU
(∗∗)= xU⊥ ,

where (*) follows from the fact that P is the standard matrix of
projU , and (**) follows from Corollary 6.5.3. So, In − P is indeed
the standard matrix of projU⊥ . □
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Corollary 6.6.6
Let A ∈ Rn×m be a matrix of rank n (i.e. A is a matrix of full row
rank). Then the matrix Im − AT (AAT )−1A is the standard matrix
of orthogonal projection onto N := Nul(A), that is, for all x ∈ Rm,
the orthogonal projection of x onto N is given by
xN =

(
Im − AT (AAT )−1A

)
x.

Proof. First, note that

Nul(A) (∗)= Row(A)⊥ = Col(AT )⊥.

where (*) follows from Theorem 6.6.1. Note further that
AT ∈ Rm×n and that rank(AT ) = rank(A) = n, i.e. AT has full
column rank. So, by Theorem 6.6.3, the standard matrix of
orthogonal projection onto Col(AT ) is AT (AAT )−1A. Finally, by
Theorem 6.6.5, the standard matrix of orthogonal projection onto
Col(AT )⊥ = Nul(A) is Im − AT (AAT )−1A. □
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Col(AT )⊥ = Nul(A) is Im − AT (AAT )−1A. □
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3 The method of least squares

In some real-world applications, we may be interested in
finding the best approximate solution to a (possibly
inconsistent) matrix-vector equation Ax = b.
More formally, suppose we are given a norm || · || on Rn, a
matrix A ∈ Rn×m, and a vector b ∈ Rn.
We would then like to find a vector x for which

||Ax − b||

is as small as possible.
If Ax = b is consistent, then any solution of that equation will
minimize ||Ax − b||.
However, what if the equation Ax = b is inconsistent?
Then the answer will obviously depend on which norm that we
are using.
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In what follows, we will work only with the norm induced by
the standard scalar product in Rn, i.e. the standard
Euclidean norm.

Recall that this is the norm || · || given by

||x|| =
√

x · x =
√

x2
1 + · · · + x2

n

for all vectors x =
[

x1 . . . xn
]T in Rn.



Theorem 6.7.1
Let A ∈ Rn×m and b ∈ Rn. Then the matrix-vector equation

AT Ax = AT b
is consistent, and moreover, its solution set is precisely the set of
vectors x in Rm that minimize the expression

||Ax − b||.

Terminology: Suppose we are given a matrix A ∈ Rn×m and
a vector b ∈ Rn.

Vectors x ∈ Rm that minimize the expression ||Ax − b|| are
called the least-squares solutions of the equation Ax = b (such
solutions are often denoted by x̂), whereas the number

min
x∈Rm

||Ax − b||

is called the least-squares error for the equation Ax = b.
By Theorem 6.7.1, the equation Ax = b has at least one
least-squares solution x̂, and consequently, the least-squares
error is defined and is equal to ||Ax̂ − b||.
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is consistent, and moreover, its solution set is precisely the set of
vectors x in Rm that minimize the expression

||Ax − b||.

Remark: Obviously, if Ax = b is consistent, then the
least-squares solutions of Ax = b are precisely the solutions of
the equation Ax = b itself.

This is because if Ax = b is consistent, then the solutions of
that equation minimize the expression ||Ax − b|| (indeed,
||Ax − b|| = 0 iff Ax = b).
Moreover, the matrix-vector equation Ax = b is consistent iff
the least-squares error of this equation is zero.
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Theorem 6.7.1
Let A ∈ Rn×m and b ∈ Rn. Then the matrix-vector equation

AT Ax = AT b
is consistent, and moreover, its solution set is precisely the set of
vectors x in Rm that minimize the expression

||Ax − b||.

First an example, then a proof.



Example 6.7.2
Let

A =


1 −2

−1 2
0 3
2 5

 and b =


3
1

−4
2

 ,

with entries understood to be in R. Find all least-squares
solutions x̂ of Ax = b, as well as the least-squares error. Is the
equation Ax = b consistent?

Solution.

We apply Theorem 6.7.1. So, we need to find the
solutions of the equation AT Ax̂ = AT b. We first compute

AT A =
[

6 6
6 42

]
and AT b =

[
6

−6

]
,

and then we compute

RREF
( [

AT A AT b
] )

=
[

1 0 4/3
0 1 −1/3

]
.
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Solution (continued). Reminder: We need to solve AT Ax̂ = AT b;
we computed RREF

( [
AT A AT b

] )
=

[
1 0 4/3
0 1 −1/3

]
.

It follows that
x̂ =

[
4/3

−1/3

]
is the unique solution of the matrix-vector equation AT Ax̂ = AT b,

and consequently, the unique least-squares solution of the
matrix-vector equation Ax = b.
The least-squares error of Ax = b is

||Ax̂ − b|| = ||

[
1 −2

−1 2
0 3
2 5

][
4/3

−1/3

]
−

[
3
1

−4
2

]
|| = ||

[
−1
−3

3
−1

]
|| = 2

√
5.

Since the least-squares error of the equation Ax = b is strictly
positive, we see that the equation is inconsistent. □
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Theorem 6.7.1
Let A ∈ Rn×m and b ∈ Rn. Then the matrix-vector equation

AT Ax = AT b
is consistent, and moreover, its solution set is precisely the set of
vectors x in Rm that minimize the expression

||Ax − b||.

Proof.

We are looking for vectors x ∈ Rm that minimize the
expression ||Ax − b||. Our goal is to show is that the vectors we
are looking for are precisely those that satisfy AT Ax = AT b.
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Proof (continued). By Proposition 3.3.2(a), we have that
C := Col(A) = {Ax | x ∈ Rm}.

So, we are in fact looking for the
solutions x of the equation Ax = bC , because by the definition of
bC , such x’s are precisely the ones for which ||Ax − b|| is
minimized.
Moreover, by Corollary 6.5.3, b = bC + bC⊥ is the only way to
decompose b as a sum of a vector in C and a vector in C⊥. So, we
are looking for those x’s for which b − Ax ∈ C⊥. But note that

C⊥ = Col(A)⊥ = Row(AT )⊥ (∗)= Nul(AT ),
where (*) follows from Theorem 6.6.1. So, we in fact looking for
vectors x for which b − Ax ∈ Nul(AT ), i.e. those that satisfy
AT (b − Ax) = 0, which is obviously equivalent to AT Ax = AT b.
It remains to show that the equation AT Ax = AT b is consistent.
By our argument above, a vector x ∈ Rm satisfies AT Ax = AT b iff
it satisfies the equation Ax = bC . Since the latter equation is
consistent (this follows from the definition of C and the existence
of bC ), so is the former. □
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Theorem 6.7.1
Let A ∈ Rn×m and b ∈ Rn. Then the matrix-vector equation

AT Ax = AT b
is consistent, and moreover, its solution set is precisely the set of
vectors x in Rm that minimize the expression

||Ax − b||.



4 Data fitting

Suppose we are given a collection of two or more data points,
and we wish to find a line that best fits them. How would we
do this?

We will be plotting our data points, say
(x0, y0), (x1, y1), . . . , (xn, yn), in R2.
Most commonly, the x -axis is time (measured in whatever time
units happen to be convenient for the problem that we are
studying), whereas the y -axis is the quantity that we are
measuring, such as population size, the average global
temperature, the number of products of a certain type
produced or consumed in a given region, etc.
We are looking for a line f (x) = ax + b that best fits our data
points (picture: next slide).



4 Data fitting

Suppose we are given a collection of two or more data points,
and we wish to find a line that best fits them. How would we
do this?

We will be plotting our data points, say
(x0, y0), (x1, y1), . . . , (xn, yn), in R2.
Most commonly, the x -axis is time (measured in whatever time
units happen to be convenient for the problem that we are
studying), whereas the y -axis is the quantity that we are
measuring, such as population size, the average global
temperature, the number of products of a certain type
produced or consumed in a given region, etc.
We are looking for a line f (x) = ax + b that best fits our data
points (picture: next slide).



4 Data fitting

Suppose we are given a collection of two or more data points,
and we wish to find a line that best fits them. How would we
do this?

We will be plotting our data points, say
(x0, y0), (x1, y1), . . . , (xn, yn), in R2.

Most commonly, the x -axis is time (measured in whatever time
units happen to be convenient for the problem that we are
studying), whereas the y -axis is the quantity that we are
measuring, such as population size, the average global
temperature, the number of products of a certain type
produced or consumed in a given region, etc.
We are looking for a line f (x) = ax + b that best fits our data
points (picture: next slide).



4 Data fitting

Suppose we are given a collection of two or more data points,
and we wish to find a line that best fits them. How would we
do this?

We will be plotting our data points, say
(x0, y0), (x1, y1), . . . , (xn, yn), in R2.
Most commonly, the x -axis is time (measured in whatever time
units happen to be convenient for the problem that we are
studying), whereas the y -axis is the quantity that we are
measuring, such as population size, the average global
temperature, the number of products of a certain type
produced or consumed in a given region, etc.
We are looking for a line f (x) = ax + b that best fits our data
points (picture: next slide).



f (x) = ax + b

(x0, y0)

(x2, y2)

(xn, yn)

(x1, y1)

x

y



So, we set up a system of linear equations shown below.

ax0 + b = y0
ax1 + b = y1

...
axn + b = yn

This linear system can be rewritten as the matrix-vector
equation below, where the vector

[
a b

]T is the unknown.
x0 1
x1 1
...

...
xn 1


[

a
b

]
=


y0
y1
...

yn


Except in rare cases, the system above will be inconsistent.
For this reason, we will look for the least-squares solution(s)[

â b̂
]T of the system, which yields the line f̂ (x) = âx + b̂.
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This (approximate) solution minimizes the following quantity:

||

 x0 1
x1 1
...

...
xn 1

[
a
b

]
−

 y0
y1
...

yn

 || = ||

 ax0 + b − y0
ax1 + b − y1

...
axn + b − yn

 || = ||

 f (x0) − y0
f (x1) − y1

...
f (xn) − yn

 ||

=

√
n∑

i=0

(
f (xi ) − yi

)2
.

So, we are effectively minimizing the sum of squares of the
vertical distances between our data points and the line.

f (x) = ax + b

(x0, y0)

(x2, y2)

(xn, yn)

(x1, y1)

x

y



Example 6.7.3
Using the method of least squares, find the line that best fits the
data points (1, 2), (2, 3), (3, 3), (5, 6).

Solution.

We are looking for the function f (x) = ax + b that best
fits these four data points. We get the linear system below.

1a + b = 2
2a + b = 3
3a + b = 3
5a + b = 6

At a glance, we can see that this system is inconsistent; so, we
will not be able to find an exact solution and will instead have to
settle for an approximate one.
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Example 6.7.3
Using the method of least squares, find the line that best fits the
data points (1, 2), (2, 3), (3, 3), (5, 6).

Solution (continued). This system can be rewritten as a
matrix-vector equation below, where

[
a b

]T is the unknown.
1 1
2 1
3 1
5 1

 [
a
b

]
=


2
3
3
6



We multiply both sides by the transpose of the matrix on the left,
and we get the following (where a and b became â and b̂,
respectively, because we are now approximating):

[
1 2 3 5
1 1 1 1

] 
1 1
2 1
3 1
5 1

 [
â
b̂

]
=

[
1 2 3 5
1 1 1 1

] 
2
3
3
6

 .
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Example 6.7.3
Using the method of least squares, find the line that best fits the
data points (1, 2), (2, 3), (3, 3), (5, 6).

Solution (continued). After performing matrix multiplication, we
obtain [

39 11
11 5

] [
â
b̂

]
=

[
47
14

]
.

We now form the augmented matrix of the matrix-vector equation
above, and we row reduce to obtain:

RREF
( [

39 11 47
11 5 14

] )
=

[
1 0 81/74
0 1 29/74

]
.

This yields the least-squares solution[
â
b̂

]
=

[
81/74
29/74

]
.

So, the line that best fits our data points is

f̂ (x) = 81
74x + 29

74 . □
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â
b̂

]
=

[
81/74
29/74

]
.

So, the line that best fits our data points is

f̂ (x) = 81
74x + 29

74 . □



Example 6.7.3
Using the method of least squares, find the line that best fits the
data points (1, 2), (2, 3), (3, 3), (5, 6).

Solution (continued). After performing matrix multiplication, we
obtain [

39 11
11 5

] [
â
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