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1 The orthogonal complement of a subspace

Definition
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. For a set A ⊆ V ,a the orthogonal complement of A,
denoted by A⊥, is the set of all vectors in V that are orthogonal to
A.

aHere, A may or may not be a subspace of V .

Thus, we have the following:

A⊥ = {v ∈ V | v ⊥ A}

= {v ∈ V | v ⊥ a ∀a ∈ A}

= {v ∈ V | ⟨v, a⟩ = 0 ∀a ∈ A}.
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Proposition 6.4.1
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let A, B ⊆ V . Then

(a) A⊥ is a subspace of V ;a
(b) if A ⊆ B, then A⊥ ⊇ B⊥.

aNote that it is possible that A = ∅. In this case, we simply get that
A⊥ = V . This is because every vector in V is (vacuously) orthogonal to every
vector in the empty set.

Proof (outline).

For (a), we simply check that A⊥ contains 0 and
is closed under vector addition and scalar multiplication (details:
Lecture Notes).

Part (b) is “obvious”: if A ⊆ B, then any vector that is orthogonal
to every vector in B is, in particular, orthogonal to every vector in
A. □
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Proposition 6.4.2
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let u1, . . . , uk ∈ V . Then
{u1, . . . , uk}⊥ = Span(u1, . . . , uk)⊥.

Proof.

Since {u1, . . . , uk} ⊆ Span(u1, . . . , uk), Prop. 6.4.1(b)
guarantees that {u1, . . . , uk}⊥ ⊇ Span(u1, . . . , uk)⊥.
Let us prove the reverse inclusion. Fix x ∈ {u1, . . . , uk}⊥. WTS
x ∈ Span(u1, . . . , uk)⊥. Fix u ∈ Span(u1, . . . , uk). Then there
exist scalars α1, . . . , αk s.t. u = α1u1 + · · · + αkuk . But now

⟨u, x⟩ = ⟨α1u1 + · · · + αkuk , x⟩

= α1⟨u1, x⟩ + · · · + αk⟨uk , x⟩

(∗)= α10 + · · · + αk0 = 0,

where (*) follows from the fact that x ∈ {u1, . . . , uk}⊥. This
proves that x ⊥ u, and consequently, x ∈ Span(u1, . . . , uk)⊥. □
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Recall from subsection 3.1.3 of the Lecture Notes (last
semester) that if V is a vector space over a field F, and U and
W are subspaces of V , then

U + W := {u + w | u ∈ U, w ∈ W }

is a subspace of V .

Theorem 3.2.23
Let V be a finite-dimensional vector space over a field F, and let U
and W be subspaces of V . Then U ∩ W and U + W are
subspaces of V . Moreover, U, W , U ∩ W , and U + W are all
finite-dimensional and satisfy

dim(U + W ) + dim(U ∩ W ) = dim(U) + dim(W ).
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Reminder (for subspaces U and W of a vector space V ):
U + W := {u + w | u ∈ U, w ∈ W };
dim(U + W ) + dim(U ∩ W ) = dim(U) + dim(W ) when V is
finite-dimensional (Theorem 3.2.23).

Recall from subsection 3.2.6 of the Lecture Notes that if
V = U + W and U ∩ W = {0}, then we say that V is the
direct sum of U and W , and we write V = U ⊕ W .

By Theorem 3.2.23, if V = U ⊕ W , then
dim(V ) = dim(U) + dim(W ).

Theorem 3.2.24
Let V be a vector space over a field F, and let U and W be
subspaces of V such that V = U ⊕ W . Then for all v ∈ V , there
exist unique u ∈ U and w ∈ W such that v = u + w.
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Theorem 6.4.3
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V . Then U⊥ is a subspace of V , and all
the following hold:

(a) if {u1, . . . , uk} is an orthogonal basis of U, and
{u1, . . . , uk , uk+1, . . . , un} is an extension of that basis to an
orthogonal basis of V , then {uk+1, . . . , un} is an orthogonal
basis of U⊥;

(b) if {u1, . . . , uk} is an orthonormal basis of U, and
{u1, . . . , uk , uk+1, . . . , un} is an extension of that basis to an
orthonormal basis of V , then {uk+1, . . . , un} is an
orthonormal basis of U⊥;

(c) (U⊥)⊥ = U;
(d) V = U ⊕ U⊥, that is, V = U + U⊥ and U ∩ U⊥ = {0};
(e) dim(V ) = dim(U) + dim(U⊥).



Proof. By Proposition 6.4.1(a), U⊥ is a subspace of V . It remains
to prove (a)-(e).

Theorem 6.4.3
(a) if {u1, . . . , uk} is an orthogonal basis of U, and

{u1, . . . , uk , uk+1, . . . , un} is an extension of that basis to an
orthogonal basis of V , then {uk+1, . . . , un} is an orthogonal
basis of U⊥;

Proof of (a). Assume that {u1, . . . , uk} is an orthogonal basis of
U, and that {u1, . . . , uk , uk+1, . . . , un} is an extension of that
basis to an orthogonal basis of V . WTS {uk+1, . . . , un} is an
orthogonal basis of U⊥. Clearly, {uk+1, . . . , un} is an orthogonal
set of vectors, and so it suffices to show that {uk+1, . . . , un} is in
fact a basis of U⊥. We already know that {uk+1, . . . , un} is
linearly independent (because it is a subset of the basis
{u1, . . . , uk , uk+1, . . . , un} of V ), and so we need only show that
Span(uk+1, . . . , un) = U⊥.
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Proof of (a) (cont.). Reminder: WTS Span(uk+1, . . . , un) = U⊥.

We first prove that Span(uk+1, . . . , un) ⊇ U⊥. Fix x ∈ U⊥. Then

x (∗)=
n∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui

(∗∗)=
n∑

i=k+1

⟨x,ui ⟩
⟨ui ,ui ⟩ui ,

where (*) follows from Theorem 6.3.5 (since
{u1, . . . , uk , uk+1, . . . , un} is an orthogonal basis of V ) and (**)
follows from the fact that x ∈ U⊥ and u1, . . . , uk ∈ U, we so
⟨x, ui⟩ = 0 for all i ∈ {1, . . . , k}.
Thus, x is a linear combination of the vectors uk+1, . . . , un, and we
deduce that x ∈ Span(uk+1, . . . , un). This proves that
Span(uk+1, . . . , un) ⊇ U⊥.
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Fix an arbitrary
x ∈ Span(uk+1, . . . , un). WTS x ∈ U⊥. Fix scalars αk+1, . . . , αn
such that

x = αk+1uk+1 + · · · + αnun.

Fix any u ∈ U; we must show that x ⊥ u. Since {u1, . . . , uk} is a
basis of U, we know that there exist scalars α1, . . . , αk such that

u = α1u1 + · · · + αkuk .

Since {u1, . . . , uk} ⊥ {uk+1, . . . , un}, it readily follows that x ⊥ u
(details: Lecture Notes), and we deduce that
Span(uk+1, . . . , un) ⊆ U⊥. This proves (a).
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(a) if {u1, . . . , uk} is an orthogonal basis of U, and

{u1, . . . , uk , uk+1, . . . , un} is an extension of that basis to an
orthogonal basis of V , then {uk+1, . . . , un} is an orthogonal
basis of U⊥;

(b) if {u1, . . . , uk} is an orthonormal basis of U, and
{u1, . . . , uk , uk+1, . . . , un} is an extension of that basis to an
orthonormal basis of V , then {uk+1, . . . , un} is an
orthonormal basis of U⊥;

Proof of (b). Part (b) follows immediately from part (a).



Theorem 6.4.3
(c) (U⊥)⊥ = U;
(d) V = U ⊕ U⊥, that is, V = U + U⊥ and U ∩ U⊥ = {0};
(e) dim(V ) = dim(U) + dim(U⊥).

Proof (continued). It remains to prove (c), (d), and (e).

First, since V is finite-dimensional, so is U. So, by
Corollary 6.3.11(a), U has an orthogonal basis {u1, . . . , uk}. By
Corollary 6.3.11(b), the orthogonal basis {u1, . . . , uk} of U can be
extended to an orthogonal basis {u1, . . . , uk , uk+1, . . . , un} of V .
By (a), {uk+1, . . . , un} is an orthogonal basis of U⊥. But then
{uk+1, . . . , un, u1, . . . , uk} is an orthogonal basis of V that extends
{uk+1, . . . , un}, and so by (a) applied to the vector space U⊥, we
have that {u1, . . . , uk} is an orthogonal basis of (U⊥)⊥. But now
{u1, . . . , uk} is a basis of both U and (U⊥)⊥, and it follows that
U = (U⊥)⊥, i.e. (c) holds.
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Proof (continued). Further, we have the following:
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Let us first show that U ∩ U⊥ = {0}. Since U and U⊥ are both
subspaces of V , they both contain 0, and consequently,
0 ∈ U ∩ U⊥.

Now, fix any u ∈ U ∩ U⊥; we must show that u = 0. Since u ∈ U
and u ∈ U⊥, we have that u ⊥ u, i.e. ⟨u, u⟩ = 0. But then by the
definition of a scalar product, we have that u = 0. This proves
that U ∩ U⊥ = {0}.
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Theorem 6.4.3
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V . Then U⊥ is a subspace of V , and all
the following hold:

(a) if {u1, . . . , uk} is an orthogonal basis of U, and
{u1, . . . , uk , uk+1, . . . , un} is an extension of that basis to an
orthogonal basis of V , then {uk+1, . . . , un} is an orthogonal
basis of U⊥;

(b) if {u1, . . . , uk} is an orthonormal basis of U, and
{u1, . . . , uk , uk+1, . . . , un} is an extension of that basis to an
orthonormal basis of V , then {uk+1, . . . , un} is an
orthonormal basis of U⊥;

(c) (U⊥)⊥ = U;
(d) V = U ⊕ U⊥, that is, V = U + U⊥ and U ∩ U⊥ = {0};
(e) dim(V ) = dim(U) + dim(U⊥).



As a corollary of Theorem 6.4.3(a-b), we obtain the following
computationally useful proposition.

The proposition is long, and we need two slides to state it.

Proposition 6.4.4
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let {v1, . . . , vk} be any linearly independent set of vectors V , and
let {v1, . . . , vk , vk+1, . . . , vn} be an extension of that linearly
independent set to a basis of V . Set U := Span(v1, . . . , vk).

(a) If the Gram-Schmidt orthogonalization process (version 1) is
applied to input vectors v1, . . . , vk , vk+1, . . . , vn to produce
output vectors u1, . . . , uk , uk+1, . . . , un, then both the
following hold:

{u1, . . . , uk} is an orthogonal basis of U, and {uk+1, . . . , un} is
an orthogonal basis of U⊥;{

u1
||u1|| , . . . , uk

||uk ||

}
is an orthonormal basis of U, and{

uk+1
||uk+1|| , . . . , un

||un||

}
is an orthonormal basis of U⊥.
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(b) If the Gram-Schmidt orthogonalization process (version 2) is
applied to input vectors v1, . . . , vk , vk+1, . . . , vn to produce
output vectors z1, . . . , zk , zk+1, . . . , zn, then {z1, . . . , zk} is an
orthonormal basis of U, and {zk+1, . . . , zn} is an orthonormal
basis of U⊥.

This is an easy corollary of Theorem 6.4.3 (details: Lecture
Notes).
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Example 6.4.5
Consider the following vectors in R4:

a1 =


1
1
1
0

 , a2 =


2
2
2
0

 , a3 =


0
3
3
3

 , a4 =


2
4
4
2

 .

Compute an orthonormal basis of U := Span(a1, a2, a3, a4) and an
orthonormal basis of U⊥.
Solution.

First, we need to find a basis of U and extend it to a
basis of R4. For this, we use Proposition 3.3.21. We consider the
standard basis E4 = {e1, e2, e3, e4} of R4, and we form the matrix

C :=
[

a1 a2 a3 a4 e1 e2 e3 e4
]

=


1 2 0 2 1 0 0 0
1 2 3 4 0 1 0 0
1 2 3 4 0 0 1 0
0 0 3 2 0 0 0 1

 .
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Solution (continued). Reminder:
C :=

[
a1 a2 a3 a4 e1 e2 e3 e4

]
.

By row reducing, we obtain

RREF(C) =


1 2 0 2 0 0 1 −1
0 0 1 2/3 0 0 0 1/3
0 0 0 0 1 0 −1 1
0 0 0 0 0 1 −1 0

 .

As we can see, the pivot columns of C are its first, third, fifth,
and sixth column. So, by Proposition 3.3.21, {a1, a3} is a basis of
U, and {a1, a3, e1, e2} is a basis of R4 that extends {a1, a3}. By
applying the Gram-Schmidt orthogonalization process (version 2)
to the vectors a1, a3, e1, e2, we obtain the following vectors (next
slide):
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applying the Gram-Schmidt orthogonalization process (version 2)
to the vectors a1, a3, e1, e2, we obtain the following vectors (next
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Solution (continued).

z1 =


1/

√
3

1/
√

3
1/

√
3

0

 , z2 =


−2/

√
15

1/
√

15
1/

√
15

3/
√

15

 ,

z3 =


2/

√
10

−1/
√

10
−1/

√
10

2/
√

10

 , z4 =


0

1/
√

2
−1/

√
2

0

 .

By Proposition 6.4.4(b), {z1, z2} is an orthonormal basis of U,
whereas {z3, z4} is an orthonormal basis of U⊥. □



Solution (continued).

z1 =


1/

√
3

1/
√

3
1/

√
3

0

 , z2 =


−2/

√
15

1/
√

15
1/

√
15

3/
√

15

 ,

z3 =


2/

√
10

−1/
√

10
−1/

√
10

2/
√

10

 , z4 =


0

1/
√

2
−1/

√
2

0

 .

By Proposition 6.4.4(b), {z1, z2} is an orthonormal basis of U,
whereas {z3, z4} is an orthonormal basis of U⊥. □
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Consider the following vectors in R4:
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1
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 , a2 =


2
2
2
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0
3
3
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4
4
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Compute an orthonormal basis of U := Span(a1, a2, a3, a4) and an
orthonormal basis of U⊥.

Remark: We could also have applied the Gram-Schmidt
orthogonalization process (version 1) to the vectors
a1, a3, e1, e2, and then normalized the output vectors. We
would have gotten the same vectors z1, z2, z3, z4 as above.
Proposition 6.4.4(a) would then imply that {z1, z2} is an
orthonormal basis of U, whereas {z3, z4} is an orthonormal
basis of U⊥.



2 Orthogonal projection onto a subspace

Theorem 6.5.1
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V , and let x ∈ V . Then there exists a
unique vector xU ∈ U that has the property that

||x − xU || = min
u∈U

||x − u||.

Moreover, if {u1, . . . , uk} is an orthogonal basis of U, then this
vector xU is given by the formula

xU =
k∑

i=1
projui (x) =

k∑
i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui .

Terminology/Notation: The vector xU from Theorem 6.5.1
is called the orthogonal projection of x onto U.
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Remarks:

If {u1, . . . , uk} is an orthonormal basis of U, then

xU =
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i=1
projui (x) =

k∑
i=1

⟨x, ui⟩ ui .

If x ∈ U, then xU = x, since in this case, the expression
||x − u|| (for u ∈ U) is minimized for u = x.
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Theorem 6.5.1
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V , and let x ∈ V . Then there exists a
unique vector xU ∈ U that has the property that

||x − xU || = min
u∈U

||x − u||.

Moreover, if {u1, . . . , uk} is an orthogonal basis of U, then this
vector xU is given by the formula

xU =
k∑

i=1
projui (x) =

k∑
i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui .

Now let’s prove the theorem!



Proof.

Using Corollary 6.3.11, we fix an orthogonal basis
{u1, . . . , uk} of U, and we extend it to an orthogonal basis
{u1, . . . , uk , uk+1, . . . , un} of V . By Theorem 6.4.3(a),
{uk+1, . . . , un} is an orthogonal basis of U⊥. Set

u∗ :=
k∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui .

So, u∗ is defined via the formula from the statement of the
theorem.
The reason we call it u∗ rather than xU is because we have
not proven the existence and uniqueness of xU yet.
However, this is just a minor stylistic matter!

Since u∗ is a linear combination of the vectors u1, . . . , uk , which
form a basis of U, we see that u∗ ∈ U.

Now, fix any u ∈ U. We must show that ||x − u∗|| ≤ ||x − u||, and
that equality holds iff u∗ = u. Clearly, this is sufficient to prove the
theorem.
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Proof (continued). Reminder: u∗ :=
k∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui ; u ∈ U; WTS

||x − u∗|| ≤ ||x − u|| and that equality holds iff u∗ = u.

Let us first prove that (u∗ − u) ⊥ (x − u∗). Since u∗, u ∈ U, and
since U is a subspace of V , it is clear that u∗ − u ∈ U. So, it
suffices to show that x − u∗ ∈ U⊥.

By Theorem 6.3.5, we have that

x =
n∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui ,

and it follows that

x − u∗ =
n∑

i=k+1

⟨x,ui ⟩
⟨ui ,ui ⟩ui .

So, x − u∗ is a linear combination of the vectors uk+1, . . . , un;
since those n − k vectors form a basis of U⊥, it follows that
x − u∗ ∈ U⊥. This proves that (u∗ − u) ⊥ (x − u∗).
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||x − u∗|| ≤ ||x − u|| and that equality holds iff u∗ = u.

Now that we have shown that vectors u∗ − u and x − u∗ are
orthogonal to each other, we can apply the Pythagorean theorem
to them, as follows:

||x − u||2 = ||(x − u∗) + (u∗ − u)||2

(∗)= ||x − u∗||2 + ||u∗ − u||2

≥ ||x − u∗||2,

where (*) follows from the Pythagorean theorem.

Consequently,
we have that ||x − u∗|| ≤ ||x − u||. Moreover, the inequality above
is an equality iff ||u∗ − u|| = 0, i.e. iff u∗ = u. This completes the
argument. □
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argument. □



Theorem 6.5.1
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V , and let x ∈ V . Then there exists a
unique vector xU ∈ U that has the property that

||x − xU || = min
u∈U

||x − u||.

Moreover, if {u1, . . . , uk} is an orthogonal basis of U, then this
vector xU is given by the formula

xU =
k∑

i=1
projui (x) =

k∑
i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui .

Terminology/Notation: The vector xU from Theorem 6.5.1
is called the orthogonal projection of x onto U.



Corollary 6.5.2
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let u be any non-zero vector in V , and set U := Span(u).a Then
for every x ∈ V , we have that

xU = proju(x) = ⟨x,u⟩
⟨u,u⟩u.

aSo, U is a one-dimensional subspace of V .

Proof.

Clearly, {u} is an orthogonal basis of U. So, the result
follows immediately from Theorem 6.5.1. □
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Corollary 6.5.3
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V , and let x ∈ V . Then

x = xU + xU⊥ .

Moreover, this is the unique way of expressing x as a sum of a
vector in U and a vector in U⊥.a

aThis means that for all y ∈ U and z ∈ U⊥, if x = y + z, then y = xU and
z = xU⊥ .

U

U⊥

x

xU

xU⊥



Corollary 6.5.3
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
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Proof.

By Corollary 6.3.11, U has an orthogonal basis
{u1, . . . , uk}, and moreover, this basis can be extended to an
orthogonal basis {u1, . . . , uk , uk+1, . . . , un} of V . By
Theorem 6.4.3(a), we have that {uk+1, . . . , un} is an orthogonal
basis of U⊥. Now, by Theorem 6.5.1, we have that

xU =
k∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui and xU⊥ =

n∑
i=k+1

⟨x,ui ⟩
⟨ui ,ui ⟩ui .
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Solution (continued). On the other hand, by Theorem 6.3.5, we
have that

x =
n∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui .

Consequently,

x =
n∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ ui =

( k∑
i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ ui

)
+

( n∑
i=k+1

⟨x,ui ⟩
⟨ui ,ui ⟩ ui

)
= xU + xU⊥ .

It remains to prove the uniqueness part of the corollary. So,
suppose that y ∈ U and z ∈ U⊥ are such that x = y + z. WTS
y = xU and z = xU⊥ . We have that

xU + xU⊥ = x = y + z,

and consequently,

xU − y = z − xU⊥ .

But xU − y ∈ U and z − xU⊥ ∈ U⊥. Since U ∩ U⊥ = {0} (by
Theorem 6.4.3(d)), it follows that xU − y = z − xU⊥ = 0, and
consequently, y = xU and z = xU⊥ . □
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Corollary 6.5.3
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V , and let x ∈ V . Then

x = xU + xU⊥ .

Moreover, this is the unique way of expressing x as a sum of a
vector in U and a vector in U⊥.a

aThis means that for all y ∈ U and z ∈ U⊥, if x = y + z, then y = xU and
z = xU⊥ .

U

U⊥

x

xU

xU⊥



Suppose that V is a finite-dimensional real or complex vector
space, equipped with a scalar product ⟨·, ·⟩ and the induced
norm || · ||, and suppose that U is a subspace of V .

We can then define the function projU : V → V by setting
projU(x) = xU for all x ∈ V (where xU is the orthogonal
projection of x onto U, as in Theorem 6.5.1).
Clearly, projU(u) = u for all u ∈ U.
Moreover, we have that Im

(
projU

)
= U and projU [U] = U.

Using the formula from Theorem 6.5.1, we can easily see that
the function projU is linear.
Indeed, if {u1, . . . , uk} is any orthogonal basis of U (such a
basis exists by Corollary 6.3.11), then the following hold (next
two slides):
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for all x, y ∈ V , we have that

projU(x + y) (∗)=
k∑

i=1

⟨x+y,ui ⟩
⟨ui ,ui ⟩ ui

(∗∗)=
k∑

i=1

⟨x,ui ⟩+⟨y,ui ⟩
⟨ui ,ui ⟩ ui

=
( k∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui

)
+

( k∑
i=1

⟨y,ui ⟩
⟨ui ,ui ⟩ui

)
(∗)= projU(x) + projU(y),

where both instances of (*) follow from Theorem 6.5.1, and
(**) follows from r.2 or c.2;



for all x ∈ V and scalars α, we have that

projU(αx) (∗)=
k∑

i=1

⟨αx,ui ⟩
⟨ui ,ui ⟩ ui

(∗∗)=
k∑

i=1

α⟨x,ui ⟩
⟨ui ,ui ⟩ ui

= α
k∑

i=1

⟨x,ui ⟩
⟨ui ,ui ⟩ui

(∗)= αprojU(x),

where both instances of (*) follow from Theorem 6.5.1, and
(**) follows from r.3 or c.3.


