Linear Algebra 2

Lecture #15

Gram-Schmidt orthogonalization

Irena Penev

March 12, 2025

• Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.

- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.

- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
 - The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.

- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
 - The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
 - The second version produces an orthonormal basis directly.

- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
 - The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
 - The second version produces an orthonormal basis directly.
- We first describe the first version, we give a numerical example, and we outline the proof of correctness of the process (the full technical details are in the Lecture Notes).

- Our goal is to describe the "Gram-Schmidt orthogonalization process," which gives a recipe for transforming an arbitrary basis of a real or complex vector space (equipped with a scalar product and the norm induced by it) into an orthogonal (and even orthonormal) basis.
- There are in fact two different (but similar) versions of the Gram-Schmidt orthogonalization process.
 - The first version first produces an orthogonal basis, and then (optionally) produces an orthonormal basis.
 - The second version produces an orthonormal basis directly.
- We first describe the first version, we give a numerical example, and we outline the proof of correctness of the process (the full technical details are in the Lecture Notes).
- Then we describe the second version.
 - The proof of correctness is similar to the proof of the first, and we omit it.
 - A numerical example is given in the Lecture Notes.

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\ell} := \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\ell}) = \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\ell}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

• The sequence $\mathbf{u}_1, \ldots, \mathbf{u}_k$ is obtained (recursively) as follows:

•
$$\mathbf{u}_1 := \mathbf{v}_1;$$

• $\mathbf{u}_2 := \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_2);$
• $\mathbf{u}_3 := \mathbf{v}_3 - \left(\operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_3) + \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_3)\right);$
:
• $\mathbf{u}_k := \mathbf{v}_k - \left(\operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_k) + \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_k) + \dots + \operatorname{proj}_{\mathbf{u}_{k-1}}(\mathbf{v}_k)\right).$

Example 6.3.8

Consider the following linearly independent vectors in \mathbb{R}^4 :

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\ 4\\ -4\\ 3 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -5\\ 10\\ 2\\ 11 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 8\\ 19\\ 11\\ -2 \end{bmatrix}$$

Set $U := \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$. Using the Gram-Schmidt orthogonalization process (version 1):

- compute an orthogonal basis of U (w.r.t. the standard scalar product • in R⁴).
- **(**) compute an orthonormal basis of U (w.r.t. the standard scalar product \cdot in \mathbb{R}^4 and the norm $|| \cdot ||$ induced by it).

 Remark: To see that v₁, v₂, v₃ really are linearly independent, we compute

$$\mathsf{RREF}\Big(\Big[\begin{array}{cccc} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{array}\Big]\Big) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

and we deduce that rank($\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$) = 3, i.e. $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ has full column rank. So, by Theorem 3.3.12(a), vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

Example 6.3.8

Consider the following linearly independent vectors in \mathbb{R}^4 :

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\ 4\\ -4\\ 3 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -5\\ 10\\ 2\\ 11 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 8\\ 19\\ 11\\ -2 \end{bmatrix}$$

Set $U := \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$. Using the Gram-Schmidt orthogonalization process (version 1):

- compute an orthogonal basis of U (w.r.t. the standard scalar product \cdot in \mathbb{R}^4).
- **(**) compute an orthonormal basis of U (w.r.t. the standard scalar product \cdot in \mathbb{R}^4 and the norm $|| \cdot ||$ induced by it).
 - Solution: On the board.

• Let's now prove the correctness of the Gram-Schmidt orthogonalization process! (Or rather: give an outline of it.)

- Let's now prove the correctness of the Gram-Schmidt orthogonalization process! (Or rather: give an outline of it.)
- We begin with a technical proposition.

- Let's now prove the correctness of the Gram-Schmidt orthogonalization process! (Or rather: give an outline of it.)
- We begin with a technical proposition.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y} := \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ and $\mathbf{z} := \mathbf{v} - \mathbf{y}$. Then all the following hold: (a) $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z}\}$ is an orthogonal set of vectors; (b) $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$; (c) $\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}) = \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z})$.

Proof.

- Let's now prove the correctness of the Gram-Schmidt orthogonalization process! (Or rather: give an outline of it.)
- We begin with a technical proposition.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y} := \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ and $\mathbf{z} := \mathbf{v} - \mathbf{y}$. Then all the following hold: (a) $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z}\}$ is an orthogonal set of vectors; (b) $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$; (c) $\operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}) = \operatorname{Span}(\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{z})$.

Proof. First of all, Proposition 6.3.2 guarantees that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is a linearly independent set, and we deduce that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of Span $(\mathbf{u}_1, \ldots, \mathbf{u}_k)$.

Proof (continued). Let us first prove (a).

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are pairwise orthogonal.

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are pairwise orthogonal. On the other hand, for each $j \in \{1, \ldots, k\}$, we have the following:

$$\begin{array}{lll} \langle \mathbf{z}, \mathbf{u}_j \rangle &=& \langle \mathbf{v} - \sum\limits_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i, \mathbf{u}_j \rangle \\ &\stackrel{(*)}{=} & \langle \mathbf{v}, \mathbf{u}_j \rangle - \sum\limits_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \langle \mathbf{u}_i, \mathbf{u}_j \rangle \\ &\stackrel{(**)}{=} & \langle \mathbf{v}, \mathbf{u}_j \rangle - \frac{\langle \mathbf{v}, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \langle \mathbf{u}_j, \mathbf{u}_j \rangle \\ &= & \langle \mathbf{v}, \mathbf{u}_j \rangle - \langle \mathbf{v}, \mathbf{u}_j \rangle = \mathbf{0}, \end{array}$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\{u_1, \ldots, u_k\}$ is an orthogonal set.

Proof (continued). Let us first prove (a). By hypothesis, vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are pairwise orthogonal. On the other hand, for each $j \in \{1, \ldots, k\}$, we have the following:

$$\begin{array}{lll} \langle \mathbf{z}, \mathbf{u}_j \rangle &=& \langle \mathbf{v} - \sum\limits_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i, \mathbf{u}_j \rangle \\ &\stackrel{(*)}{=} & \langle \mathbf{v}, \mathbf{u}_j \rangle - \sum\limits_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \langle \mathbf{u}_i, \mathbf{u}_j \rangle \\ &\stackrel{(**)}{=} & \langle \mathbf{v}, \mathbf{u}_j \rangle - \frac{\langle \mathbf{v}, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \langle \mathbf{u}_j, \mathbf{u}_j \rangle \\ &= & \langle \mathbf{v}, \mathbf{u}_j \rangle - \langle \mathbf{v}, \mathbf{u}_j \rangle = \mathbf{0}, \end{array}$$

where (*) follows from r.2 and r.3 (in the real case) or from c.2 and c.3 (in the complex case), and (**) follows from the fact that $\{u_1, \ldots, u_k\}$ is an orthogonal set. Thus, $\{u_1, \ldots, u_k, z\}$ is an orthogonal set of vectors. This proves (a).

Proof (continued). Next, we prove (b).

Proof (continued). Next, we prove (b). Clearly, z = 0 iff $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$.

Proof (continued). Next, we prove (b). Clearly, $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$.

So, we need to show that $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ iff $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

Proof (continued). Next, we prove (b). Clearly, z = 0 iff $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$

So, we need to show that $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ iff $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

If $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$, then \mathbf{v} is a linear combination of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$, and consequently, $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

Proof (continued). Next, we prove (b). Clearly, $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$.

So, we need to show that $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ iff $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$.

If $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$, then \mathbf{v} is a linear combination of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$, and consequently, $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$. On the other hand, if $\mathbf{v} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$, then Theorem 6.3.5 guarantees $\mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ (because $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$). This proves (b).

Proof (continued).

Suppose first that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v})$.

Suppose first that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v})$. Then there exist scalars $\alpha_1, \dots, \alpha_k, \beta$ s.t. $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{v}$.

Suppose first that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v})$. Then there exist scalars $\alpha_1, \dots, \alpha_k, \beta$ s.t. $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{v}$. But now

$$\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{v}$$

$$= \left(\sum_{i=1}^{k} \alpha_i \mathbf{u}_i\right) + \beta(\mathbf{y} + \mathbf{z})$$

$$= \left(\sum_{i=1}^{k} \alpha_{i} \mathbf{u}_{i}\right) + \beta\left(\left(\sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}\right) + \mathbf{z}\right)$$

$$= \left(\sum_{i=1}^{\infty} \left(\alpha_i + \beta \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle}\right) \mathbf{u}_i\right) + \beta \mathbf{z},$$

and we deduce that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z}).$

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$. Then there exist scalars $\alpha_1, \dots, \alpha_k, \beta$ s.t. $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{z}$.

Proof (continued). Suppose, conversely, that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$. Then there exist scalars $\alpha_1, \dots, \alpha_k, \beta$ s.t. $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{z}$. But now

 $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k + \beta \mathbf{z}$

$$= \left(\sum_{i=1}^{k} \alpha_i \mathbf{u}_i\right) + \beta(\mathbf{v} - \mathbf{y})$$

$$= \left(\sum_{i=1}^{k} \alpha_{i} \mathbf{u}_{i}\right) + \beta \left(\mathbf{v} - \left(\sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}\right)\right)$$

$$= \left(\sum_{i=1}^{k} \left(\alpha_{i} - \beta \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle}\right) \mathbf{u}_{i}\right) + \beta \mathbf{v},$$

and we deduce that $\mathbf{x} \in \text{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v})$. This proves (c). \Box

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y} := \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ and $\mathbf{z} := \mathbf{v} - \mathbf{y}$. Then all the following hold: (a) $\{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z}\}$ is an orthogonal set of vectors; (b) $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$; (c) $\operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}) = \operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$.

Proposition 6.3.7

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$. Let $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ be an orthogonal set of non-zero vectors in V. Let $\mathbf{v} \in V$, and set $\mathbf{y} := \sum_{i=1}^k \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i$ and $\mathbf{z} := \mathbf{v} - \mathbf{y}$. Then all the following hold: (a) $\{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z}\}$ is an orthogonal set of vectors; (b) $\mathbf{z} = \mathbf{0}$ iff $\mathbf{v} \in \operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$; (c) $\operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}) = \operatorname{Span}(\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{z})$.

• Using Proposition 6.3.7, we can now prove the correctness of the Gram-Schmidt orthogonalization process (version 1).

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\boldsymbol{\ell}} := \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\boldsymbol{\ell}}) = \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\boldsymbol{\ell}}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof (outline).

Gram-Schmidt orthogonalization process (version 1)

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\boldsymbol{\ell}} := \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{u}_i}(\mathbf{v}_{\boldsymbol{\ell}}) = \mathbf{v}_{\boldsymbol{\ell}} - \sum_{i=1}^{\ell-1} \frac{\langle \mathbf{v}_{\boldsymbol{\ell}}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, and $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}\right\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof (outline). If $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$, then Proposition 6.3.3(b) guarantees that $\{ \frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||} \}$ is an orthonormal basis of Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$. So, we just need to show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Proof (outline, continued).

Proof (outline, continued). How do we prove that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$? The idea is to prove (by induction) that for all $\ell \in \{1, \ldots, k\}$, we have that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of $U_\ell := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell)$.

Proof (outline, continued). How do we prove that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$? The idea is to prove (by induction) that for all $\ell \in \{1, \ldots, k\}$, we have that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of $U_\ell := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell)$.

For $\ell = 1$, we have that $\mathbf{u}_1 = \mathbf{v}_1$, and the result is immediate.

Proof (outline, continued). How do we prove that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ is an orthogonal basis of Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$? The idea is to prove (by induction) that for all $\ell \in \{1, \ldots, k\}$, we have that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of $U_\ell := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell)$.

For $\ell = 1$, we have that $\mathbf{u}_1 = \mathbf{v}_1$, and the result is immediate.

Now fix $\ell \in \{1, \ldots, k-1\}$, and assume that $\{\mathbf{u}_1, \ldots, \mathbf{u}_\ell\}$ is an orthogonal basis of $U_\ell := \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_\ell)$. Then letting $\mathbf{v} := \mathbf{v}_{\ell+1}$ and $\mathbf{z} := \mathbf{u}_{\ell+1}$, we apply Proposition 6.3.7. \Box

Gram-Schmidt orthogonalization process (version 2)

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\begin{aligned} \mathbf{u}_{\ell} &= \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{z}_{i}}(\mathbf{v}_{\ell}) &= \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \langle \mathbf{v}_{\ell}, \mathbf{z}_{i} \rangle \mathbf{z}_{i}; \\ \mathbf{z}_{\ell} &= \frac{\mathbf{u}_{\ell}}{||\mathbf{u}_{\ell}||}. \end{aligned}$$

Then $\{z_1, \ldots, z_k\}$ is an orthonormal basis of $\text{Span}(v_1, \ldots, v_k)$.

The Gram-Schmidt orthogonalization process (version 2) recursively constructs two sequences of vectors, namely, u₁,..., u_k and z₁,..., z_k, as follows:

•
$$\mathbf{u}_{1} = \mathbf{v}_{1};$$

• $\mathbf{z}_{1} = \frac{\mathbf{u}_{1}}{||\mathbf{u}_{1}||};$
• $\mathbf{u}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{z_{1}}(\mathbf{v}_{2});$
• $\mathbf{z}_{2} = \frac{\mathbf{u}_{2}}{||\mathbf{u}_{2}||};$
• $\mathbf{u}_{3} = \mathbf{v}_{3} - \left(\operatorname{proj}_{z_{1}}(\mathbf{v}_{3}) + \operatorname{proj}_{z_{2}}(\mathbf{v}_{3})\right);$
• $\mathbf{z}_{3} = \frac{\mathbf{u}_{3}}{||\mathbf{u}_{3}||};$
:
• $\mathbf{u}_{k} = \mathbf{v}_{k} - \left(\operatorname{proj}_{z_{1}}(\mathbf{v}_{k}) + \operatorname{proj}_{z_{2}}(\mathbf{v}_{k}) + \cdots + \operatorname{proj}_{z_{k-1}}(\mathbf{v}_{k})\right);$
• $\mathbf{z}_{k} = \frac{\mathbf{u}_{k}}{||\mathbf{u}_{k}||}.$

The Gram-Schmidt orthogonalization process (version 2) recursively constructs two sequences of vectors, namely, u₁,..., u_k and z₁,..., z_k, as follows:

•
$$\mathbf{u}_{1} = \mathbf{v}_{1};$$

• $\mathbf{z}_{1} = \frac{\mathbf{u}_{1}}{||\mathbf{u}_{1}||};$
• $\mathbf{u}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{z_{1}}(\mathbf{v}_{2});$
• $\mathbf{z}_{2} = \frac{\mathbf{u}_{2}}{||\mathbf{u}_{2}||};$
• $\mathbf{u}_{3} = \mathbf{v}_{3} - \left(\operatorname{proj}_{z_{1}}(\mathbf{v}_{3}) + \operatorname{proj}_{z_{2}}(\mathbf{v}_{3})\right);$
• $\mathbf{z}_{3} = \frac{\mathbf{u}_{3}}{||\mathbf{u}_{3}||};$
 \vdots
• $\mathbf{u}_{k} = \mathbf{v}_{k} - \left(\operatorname{proj}_{z_{1}}(\mathbf{v}_{k}) + \operatorname{proj}_{z_{2}}(\mathbf{v}_{k}) + \cdots + \operatorname{proj}_{z_{k-1}}(\mathbf{v}_{k})\right);$
• $\mathbf{z}_{k} = \frac{\mathbf{u}_{k}}{||\mathbf{u}_{k}||}.$

• So, at each step, we obtain a vector \mathbf{u}_{ℓ} that is orthogonal to the previously constructed vectors $\mathbf{z}_1, \ldots, \mathbf{z}_{\ell-1}$, and then we normalize \mathbf{u}_{ℓ} to obtain the unit vector \mathbf{z}_{ℓ} that points in the same direction as \mathbf{u}_{ℓ} .

Gram-Schmidt orthogonalization process (version 2)

Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent vectors in V. For all $\ell \in \{1, \ldots, k\}$, set

$$\mathbf{u}_{\ell} = \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \operatorname{proj}_{\mathbf{z}_i}(\mathbf{v}_{\ell}) = \mathbf{v}_{\ell} - \sum_{i=1}^{\ell-1} \langle \mathbf{v}_{\ell}, \mathbf{z}_i \rangle \mathbf{z}_i;$$

 $\mathbf{z}_{\ell} = \frac{\mathbf{u}_{\ell}}{||\mathbf{u}_{\ell}||}.$

Then $\{z_1, \ldots, z_k\}$ is an orthonormal basis of $\text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

- The proof of correctness is similar to that of version 1.
- A numerical example is given in the Lecture Notes.

Corollary 6.3.11

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V. Then all the following hold:

- U has an orthogonal basis;
- any orthogonal basis of U can be extended to an orthogonal basis of V;^a
- U has an orthonormal basis;
- any orthonormal basis of U can be extended to an orthonormal basis of V.^b

^aThis means that for any orthogonal basis \mathcal{B} of U, there exists an orthogonal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.

^bThis means that for any orthonormal basis \mathcal{B} of U, there exists an orthonormal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.

Proof. We first prove (a) and (c).

Proof. We first prove (a) and (c). Since V is finite-dimensional, Theorem 3.2.21 guarantees that the subspace U of V is also finite-dimensional.

Proof. We first prove (a) and (c). Since V is finite-dimensional, Theorem 3.2.21 guarantees that the subspace U of V is also finite-dimensional. Consider any basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ of U.

Proof. We first prove (a) and (c). Since *V* is finite-dimensional, Theorem 3.2.21 guarantees that the subspace *U* of *V* is also finite-dimensional. Consider any basis {**v**₁,...,**v**_k} of *U*. Then the Gram-Schmidt orthogonalization process (version 1) applied to the vectors **v**₁,...,**v**_k yields a sequence of vectors **u**₁,...,**u**_k s.t. {**u**₁,...,**u**_k} is an orthogonal and { $\frac{u_1}{||u_1||},...,\frac{u_k}{||u_k||}$ } an orthonormal basis of *U* = Span(**v**₁,...,**v**_k). *Proof.* We first prove (a) and (c). Since *V* is finite-dimensional, Theorem 3.2.21 guarantees that the subspace *U* of *V* is also finite-dimensional. Consider any basis { $v_1, ..., v_k$ } of *U*. Then the Gram-Schmidt orthogonalization process (version 1) applied to the vectors $v_1, ..., v_k$ yields a sequence of vectors $u_1, ..., u_k$ s.t. { $u_1, ..., u_k$ } is an orthogonal and { $\frac{u_1}{||u_1||}, ..., \frac{u_k}{||u_k||}$ } an orthonormal basis of $U = \text{Span}(v_1, ..., v_k)$. This proves (a) and (c).

We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n$, and we obtain a sequence $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ s.t. $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V.

We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n$, and we obtain a sequence $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ s.t. $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V.

However, since $\mathbf{v}_1, \ldots, \mathbf{v}_k$ were pairwise orthogonal to begin with, we see from the description of the Gram-Schmidt orthogonalization process that $\mathbf{u}_1 = \mathbf{v}_1, \ldots, \mathbf{u}_k = \mathbf{v}_k$.

We apply the Gram-Schmidt orthogonalization process (version 1) to the sequence $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n$, and we obtain a sequence $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n$ s.t. $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ is an orthogonal basis of V.

However, since $\mathbf{v}_1, \ldots, \mathbf{v}_k$ were pairwise orthogonal to begin with, we see from the description of the Gram-Schmidt orthogonalization process that $\mathbf{u}_1 = \mathbf{v}_1, \ldots, \mathbf{u}_k = \mathbf{v}_k$.

So, the orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ of V extends the orthogonal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ of U. This proves (b).

Proof (continued). For (d), consider any orthonormal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of *U*.

Then by Proposition 6.3.3(c),

$$\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||},\ldots,\frac{\mathbf{u}_k}{||\mathbf{u}_k||},\frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||},\ldots,\frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$$

is an orthonormal basis of V.

Then by Proposition 6.3.3(c),

$$\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||},\ldots,\frac{\mathbf{u}_k}{||\mathbf{u}_k||},\frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||},\ldots,\frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$$

is an orthonormal basis of V.

But since the basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U is orthonormal, we know that $||\mathbf{u}_1|| = \cdots = ||\mathbf{u}_k|| = 1$,

Then by Proposition 6.3.3(c),

$$\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||},\ldots,\frac{\mathbf{u}_k}{||\mathbf{u}_k||},\frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||},\ldots,\frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$$

is an orthonormal basis of V.

But since the basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U is orthonormal, we know that $||\mathbf{u}_1|| = \cdots = ||\mathbf{u}_k|| = 1$, and it follows that $\frac{\mathbf{u}_1}{||\mathbf{u}_1||} = \mathbf{u}_1, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||} = \mathbf{u}_k$.

Then by Proposition 6.3.3(c),

$$\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||},\ldots,\frac{\mathbf{u}_k}{||\mathbf{u}_k||},\frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||},\ldots,\frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$$

is an orthonormal basis of V.

But since the basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of U is orthonormal, we know that $||\mathbf{u}_1|| = \cdots = ||\mathbf{u}_k|| = 1$, and it follows that $\frac{\mathbf{u}_1}{||\mathbf{u}_1||} = \mathbf{u}_1, \ldots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||} = \mathbf{u}_k$.

So, our orthonormal basis $\left\{\frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \dots, \frac{\mathbf{u}_k}{||\mathbf{u}_k||}, \frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||}, \dots, \frac{\mathbf{u}_n}{||\mathbf{u}_n||}\right\}$ of V in fact extends the orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ of U. This proves (d). \Box

Corollary 6.3.11

Let V be a finite-dimensional real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Let U be a subspace of V. Then all the following hold:

- U has an orthogonal basis;
- any orthogonal basis of U can be extended to an orthogonal basis of V;^a
- U has an orthonormal basis;
- any orthonormal basis of U can be extended to an orthonormal basis of V.^b

^aThis means that for any orthogonal basis \mathcal{B} of U, there exists an orthogonal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.

^bThis means that for any orthonormal basis \mathcal{B} of U, there exists an orthonormal basis \mathcal{C} of V s.t. $\mathcal{B} \subseteq \mathcal{C}$.