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Our goal is to describe the “Gram-Schmidt orthogonalization
process,” which gives a recipe for transforming an arbitrary
basis of a real or complex vector space (equipped with a scalar
product and the norm induced by it) into an orthogonal (and
even orthonormal) basis.

There are in fact two different (but similar) versions of the
Gram-Schmidt orthogonalization process.

The first version first produces an orthogonal basis, and then
(optionally) produces an orthonormal basis.
The second version produces an orthonormal basis directly.

We first describe the first version, we give a numerical
example, and we outline the proof of correctness of the
process (the full technical details are in the Lecture Notes).
Then we describe the second version.

The proof of correctness is similar to the proof of the first, and
we omit it.
A numerical example is given in the Lecture Notes.
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Gram-Schmidt orthogonalization process (version 1)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ := vℓ −
ℓ−1∑
i=1

projui (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ,ui ⟩
⟨ui ,ui ⟩ ui .

Then {u1, . . . , uk} is an orthogonal basis of Span(v1, . . . , vk), and{
u1

||u1|| , . . . , uk
||uk ||

}
is an orthonormal basis of Span(v1, . . . , vk).

The sequence u1, . . . , uk is obtained (recursively) as follows:
u1 := v1;
u2 := v2 − proju1(v2);
u3 := v3 −

(
proju1(v3) + proju2(v3)

)
;

...
uk := vk −

(
proju1(vk) + proju2(vk) + · · · + projuk−1

(vk)
)

.



Example 6.3.8
Consider the following linearly independent vectors in R4:

v1 =


3
4

−4
3

 , v2 =


−5
10
2

11

 , v3 =


8

19
11
−2

 .

Set U := Span(v1, v2, v3). Using the Gram-Schmidt
orthogonalization process (version 1):

(a) compute an orthogonal basis of U (w.r.t. the standard scalar
product · in R4).

(b) compute an orthonormal basis of U (w.r.t. the standard scalar
product · in R4 and the norm || · || induced by it).



Remark: To see that v1, v2, v3 really are linearly independent,
we compute

RREF
( [

v1 v2 v3
] )

=


1 0 0
0 1 0
0 0 1
0 0 0

 ,

and we deduce that rank
( [

v1 v2 v3
] )

= 3, i.e.[
v1 v2 v3

]
has full column rank. So, by

Theorem 3.3.12(a), vectors v1, v2, v3 are linearly independent.



Example 6.3.8
Consider the following linearly independent vectors in R4:

v1 =


3
4

−4
3

 , v2 =


−5
10
2

11

 , v3 =


8

19
11
−2

 .

Set U := Span(v1, v2, v3). Using the Gram-Schmidt
orthogonalization process (version 1):

(a) compute an orthogonal basis of U (w.r.t. the standard scalar
product · in R4).

(b) compute an orthonormal basis of U (w.r.t. the standard scalar
product · in R4 and the norm || · || induced by it).

Solution: On the board.



Let’s now prove the correctness of the Gram-Schmidt
orthogonalization process! (Or rather: give an outline of it.)

We begin with a technical proposition.

Proposition 6.3.7
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let {u1, . . . , uk} be an orthogonal set of non-zero

vectors in V . Let v ∈ V , and set y :=
k∑

i=1
projui (v) =

k∑
i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui

and z := v − y. Then all the following hold:
(a) {u1, . . . , uk , z} is an orthogonal set of vectors;
(b) z = 0 iff v ∈ Span(u1, . . . , uk);
(c) Span(u1, . . . , uk , v) = Span(u1, . . . , uk , z).

Proof. First of all, Proposition 6.3.2 guarantees that {u1, . . . , uk}
is a linearly independent set, and we deduce that {u1, . . . , uk} is
an orthogonal basis of Span(u1, . . . , uk).
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Proof (continued). Let us first prove (a).

By hypothesis, vectors
u1, . . . , uk are pairwise orthogonal. On the other hand, for each
j ∈ {1, . . . , k}, we have the following:

⟨z, uj⟩ = ⟨v −
k∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui , uj⟩

(∗)= ⟨v, uj⟩ −
k∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩⟨ui , uj⟩

(∗∗)= ⟨v, uj⟩ − ⟨v,uj ⟩
⟨uj ,uj ⟩⟨uj , uj⟩

= ⟨v, uj⟩ − ⟨v, uj⟩ = 0,

where (*) follows from r.2 and r.3 (in the real case) or from c.2
and c.3 (in the complex case), and (**) follows from the fact that
{u1, . . . , uk} is an orthogonal set. Thus, {u1, . . . , uk , z} is an
orthogonal set of vectors. This proves (a).
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Proof (continued). Next, we prove (b).

Clearly, z = 0 iff

v =
k∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui .

So, we need to show that v =
k∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui iff v ∈ Span(u1, . . . , uk).

If v =
k∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui , then v is a linear combination of the vectors

u1, . . . , uk , and consequently, v ∈ Span(u1, . . . , uk).

On the other hand, if v ∈ Span(u1, . . . , uk), then Theorem 6.3.5

guarantees v =
k∑

i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui (because {u1, . . . , uk} is an orthogonal

basis of Span(u1, . . . , uk)). This proves (b).
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Proof (continued).

Finally, we prove (c). Fix any vector x ∈ V .
WTS x ∈ Span(u1, . . . , uk , v) iff x ∈ Span(u1, . . . , uk , z). We
prove both directions (they are very similar).

Suppose first that x ∈ Span(u1, . . . , uk , v). Then there exist scalars
α1, . . . , αk , β s.t. x = α1u1 + · · · + αkuk + βv. But now

x = α1u1 + · · · + αkuk + βv

=
( k∑

i=1
αiui

)
+ β(y + z)

=
( k∑

i=1
αiui

)
+ β

(( k∑
i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui

)
+ z

)

=
( k∑

i=1

(
αi + β ⟨v,ui ⟩

⟨ui ,ui ⟩
)
ui

)
+ βz,

and we deduce that x ∈ Span(u1, . . . , uk , z).
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Proof (continued). Suppose, conversely, that
x ∈ Span(u1, . . . , uk , z).

Then there exist scalars α1, . . . , αk , β s.t.
x = α1u1 + · · · + αkuk + βz. But now

x = α1u1 + · · · + αkuk + βz

=
( k∑

i=1
αiui

)
+ β(v − y)

=
( k∑

i=1
αiui

)
+ β

(
v −

( k∑
i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui

))

=
( k∑

i=1

(
αi − β ⟨v,ui ⟩

⟨ui ,ui ⟩
)
ui

)
+ βv,

and we deduce that x ∈ Span(u1, . . . , uk , v). This proves (c). □
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Proposition 6.3.7
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let {u1, . . . , uk} be an orthogonal set of non-zero

vectors in V . Let v ∈ V , and set y :=
k∑

i=1
projui (v) =

k∑
i=1

⟨v,ui ⟩
⟨ui ,ui ⟩ui

and z := v − y. Then all the following hold:
(a) {u1, . . . , uk , z} is an orthogonal set of vectors;
(b) z = 0 iff v ∈ Span(u1, . . . , uk);
(c) Span(u1, . . . , uk , v) = Span(u1, . . . , uk , z).

Using Proposition 6.3.7, we can now prove the correctness of
the Gram-Schmidt orthogonalization process (version 1).
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Gram-Schmidt orthogonalization process (version 1)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ := vℓ −
ℓ−1∑
i=1

projui (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ,ui ⟩
⟨ui ,ui ⟩ ui .

Then {u1, . . . , uk} is an orthogonal basis of Span(v1, . . . , vk), and{
u1

||u1|| , . . . , uk
||uk ||

}
is an orthonormal basis of Span(v1, . . . , vk).

Proof (outline).

If {u1, . . . , uk} is an orthogonal basis of
Span(v1, . . . , vk), then Proposition 6.3.3(b) guarantees that{

u1
||u1|| , . . . , uk

||uk ||

}
is an orthonormal basis of Span(v1, . . . , vk). So,

we just need to show that {u1, . . . , uk} is an orthogonal basis of
Span(v1, . . . , vk).
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Proof (outline, continued).

How do we prove that {u1, . . . , uk} is
an orthogonal basis of Span(v1, . . . , vk)? The idea is to prove (by
induction) that for all ℓ ∈ {1, . . . , k}, we have that {u1, . . . , uℓ} is
an orthogonal basis of Uℓ := Span(v1, . . . , vℓ).

For ℓ = 1, we have that u1 = v1, and the result is immediate.

Now fix ℓ ∈ {1, . . . , k − 1}, and assume that {u1, . . . , uℓ} is an
orthogonal basis of Uℓ := Span(v1, . . . , vℓ). Then letting v := vℓ+1
and z := uℓ+1, we apply Proposition 6.3.7. □
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Gram-Schmidt orthogonalization process (version 2)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ = vℓ −
ℓ−1∑
i=1

projzi (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ, zi⟩ zi ;

zℓ = uℓ
||uℓ|| .

Then {z1, . . . , zk} is an orthonormal basis of Span(v1, . . . , vk).



The Gram-Schmidt orthogonalization process (version 2)
recursively constructs two sequences of vectors, namely,
u1, . . . , uk and z1, . . . , zk , as follows:

u1 = v1;
z1 = u1

||u1|| ;
u2 = v2 − projz1(v2);
z2 = u2

||u2|| ;

u3 = v3 −
(

projz1(v3) + projz2(v3)
)

;
z3 = u3

||u3|| ;
...
uk = vk −

(
projz1(vk) + projz2(vk) + · · · + projzk−1

(vk)
)

;
zk = uk

||uk || .

So, at each step, we obtain a vector uℓ that is orthogonal to
the previously constructed vectors z1, . . . , zℓ−1, and then we
normalize uℓ to obtain the unit vector zℓ that points in the
same direction as uℓ.
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(
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(vk)
)

;
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||uk || .
So, at each step, we obtain a vector uℓ that is orthogonal to
the previously constructed vectors z1, . . . , zℓ−1, and then we
normalize uℓ to obtain the unit vector zℓ that points in the
same direction as uℓ.



Gram-Schmidt orthogonalization process (version 2)
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩ and the induced norm || · ||, and let v1, . . . , vk be
linearly independent vectors in V . For all ℓ ∈ {1, . . . , k}, set

uℓ = vℓ −
ℓ−1∑
i=1

projzi (vℓ) = vℓ −
ℓ−1∑
i=1

⟨vℓ, zi⟩ zi ;

zℓ = uℓ
||uℓ|| .

Then {z1, . . . , zk} is an orthonormal basis of Span(v1, . . . , vk).

The proof of correctness is similar to that of version 1.
A numerical example is given in the Lecture Notes.



Corollary 6.3.11
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V . Then all the following hold:

(a) U has an orthogonal basis;
(b) any orthogonal basis of U can be extended to an orthogonal

basis of V ;a
(c) U has an orthonormal basis;
(d) any orthonormal basis of U can be extended to an

orthonormal basis of V .b
aThis means that for any orthogonal basis B of U, there exists an orthogonal

basis C of V s.t. B ⊆ C.
bThis means that for any orthonormal basis B of U, there exists an

orthonormal basis C of V s.t. B ⊆ C.



Proof. We first prove (a) and (c).

Since V is finite-dimensional,
Theorem 3.2.21 guarantees that the subspace U of V is also
finite-dimensional. Consider any basis {v1, . . . , vk} of U. Then the
Gram-Schmidt orthogonalization process (version 1) applied to the
vectors v1, . . . , vk yields a sequence of vectors u1, . . . , uk s.t.
{u1, . . . , uk} is an orthogonal and

{
u1

||u1|| , . . . , uk
||uk ||

}
an orthonormal

basis of U = Span(v1, . . . , vk). This proves (a) and (c).
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Proof (continued). For (b), consider any orthogonal basis
{v1, . . . , vk} of U, and using Theorem 3.2.19, extend it to a basis
{v1, . . . , vk , vk+1, . . . , vn} of V .

We apply the Gram-Schmidt orthogonalization process (version 1)
to the sequence v1, . . . , vk , vk+1, . . . , vn, and we obtain a sequence
u1, . . . , uk , uk+1, . . . , un s.t. {u1, . . . , uk , uk+1, . . . , un} is an
orthogonal basis of V .

However, since v1, . . . , vk were pairwise orthogonal to begin with,
we see from the description of the Gram-Schmidt orthogonalization
process that u1 = v1, . . . , uk = vk .

So, the orthogonal basis {u1, . . . , uk , uk+1, . . . , un} of V extends
the orthogonal basis {v1, . . . , vk} of U. This proves (b).
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Proof (continued). For (d), consider any orthonormal basis
{u1, . . . , uk} of U.

In particular, the basis {u1, . . . , uk} of U is
orthogonal, and so by (b), it can be extended to an orthogonal
basis {u1, . . . , uk , uk+1, . . . , un} of V .

Then by Proposition 6.3.3(c),{
u1

||u1|| , . . . , uk
||uk || ,

uk+1
||uk+1|| , . . . , un

||un||

}
is an orthonormal basis of V .

But since the basis {u1, . . . , uk} of U is orthonormal, we know
that ||u1|| = · · · = ||uk || = 1, and it follows that

u1
||u1|| = u1, . . . , uk

||uk || = uk .

So, our orthonormal basis
{

u1
||u1|| , . . . , uk

||uk || ,
uk+1

||uk+1|| , . . . , un
||un||

}
of V

in fact extends the orthonormal basis {u1, . . . , uk} of U. This
proves (d). □
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Corollary 6.3.11
Let V be a finite-dimensional real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||.
Let U be a subspace of V . Then all the following hold:

(a) U has an orthogonal basis;
(b) any orthogonal basis of U can be extended to an orthogonal

basis of V ;a
(c) U has an orthonormal basis;
(d) any orthonormal basis of U can be extended to an

orthonormal basis of V .b
aThis means that for any orthogonal basis B of U, there exists an orthogonal

basis C of V s.t. B ⊆ C.
bThis means that for any orthonormal basis B of U, there exists an

orthonormal basis C of V s.t. B ⊆ C.


