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This lecture has three parts:

1 Complex numbers;
This is intended to be a very quick review of the material that
you already know from high school.

2 The scalar product
We first study the scalar product in real vector spaces, and
then we study the scalar product in complex vector spaces.

3 Orthogonality
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1 Complex numbers

To define complex numbers, we first introduce the imaginary
unit number, denoted by i , which satisfies

i2 = −1.

A complex number is any number of the form z = a + bi ,
where a and b are real numbers; the real part of the complex
number z is the real number a, and the imaginary part of z is
the real number b.
The real and imaginary part of a complex number z are
denoted by Re(z) and Im(z), respectively.

For example, we have the following:
Re(2 + i) = 2 and Im(2 + i) = 1;
Re(−3i) = 0 and Im(−3i) = −3;
Re(7) = 7 and Im(7) = 0.

Note that real numbers are precisely those complex numbers
whose imaginary part is zero.
The set of all complex numbers is denoted by C.
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Complex numbers can be visualized in the “complex plane.”
This plane has two axes: the real axis (denoted by Re) and
the imaginary axis (denoted by Im).

b

a

z = a + ib

Re

Im

Note that real numbers are precisely those complex numbers
that lie on the real axis.
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We add/subtract complex numbers by adding/subtracting the
real and imaginary parts.

For example:
(2 + 3i) + (3 − 5i) = (2 + 3) + (3i − 5i) = 5 − 2i ;

(2 + 3i) − (3 − 5i) = (2 − 3) +
(
3i − (−5i)

)
= −1 + 8i .

To multiply complex numbers, we must keep in mind that
i2 = −1.

For example:

(2 + 3i)(3 − 5i) = 2 · 3 + 2(−5i) + (3i)3 + (3i)(−5i)

= 6 − 10i + 9i − 15 i2︸︷︷︸
=−1

= 21 − i .

Division: later!
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Proposition 0.3.1
All the following hold:

(a) addition and multiplication in C are commutative, that is, for
all z1, z2 ∈ C, we have that z1 + z2 = z2 + z1 and z1z2 = z2z1;

(b) addition and multiplication in C are associative, that is, for all
z1, z2, z3 ∈ C, we have that (z1 + z2) + z3 = z1 + (z2 + z3)
and (z1z2)z3 = z1(z2z3);

(c) multiplication is distributive over addition in C, that is, for all
z1, z2, z3 ∈ C, we have that z1(z2 + z3) = z1z2 + z1z3.

Powers of complex numbers are defined in the usual way.
For a complex number z , we define

z0 := 1;
zm+1 := zmz for all non-negative integers m.

So, for all positive integers m, we have the familiar expression
zm = z . . . z︸ ︷︷ ︸

m
.
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Definition
For a complex number z = a + bi (where a, b ∈ R):

the complex conjugate of z is z := a − bi ;
the modulus (or absolute value) of z is |z | :=

√
a2 + b2.

Geometrically, the complex conjugate of a complex number z
is obtained by reflecting z about the Re axis.
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z = a + ib

z = a− ib

Re

Im

Obviously, z = z .
Note that z = z iff z is in fact a real number, i.e. Im(z) = 0.
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the complex conjugate of z is z := a − bi ;
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The modulus of a complex number z is the usual Pythagorean
distance between z and the origin in the complex plane.
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|z| =
√
a2 + b2

Note that |z | is a non-negative real number, and moreover, we
have that |z | = 0 iff z = 0.
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Proposition 0.3.2
For all complex numbers z = a + bi (with a, b ∈ R), we have that

zz = a2 + b2 = |z |2.

Note that Proposition 0,3,2, in particular, establishes that
multiplying a complex number z by its conjugate produces a
real number; that real number is zero iff z = 0.

This is important for division!



Proposition 0.3.2
For all complex numbers z = a + bi (with a, b ∈ R), we have that

zz = a2 + b2 = |z |2.

Note that Proposition 0,3,2, in particular, establishes that
multiplying a complex number z by its conjugate produces a
real number; that real number is zero iff z = 0.

This is important for division!



Proposition 0.3.2
For all complex numbers z = a + bi (with a, b ∈ R), we have that

zz = a2 + b2 = |z |2.

Let us now explain how division works in C.

First of all, given a complex number z = a + bi (with
a, b ∈ R) and a real number r ̸= 0, we have

z
r = a

r + b
r i .

Now suppose that z1 and z2 ̸= 0 are complex numbers.

To compute z1
z2

, we need to transform the denominator into a
non-zero real number.
We do this by multiplying both the numerator and the
denominator by z2, at which point (by Proposition 0.3.2) the
denominator becomes |z2|2, which is a non-zero real number,
and we can divide as above.

Let us take a look at an example.
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Example 0.3.3
Compute the following quotients:

(a) 7−6i
3+2i ; (b) 1

2−i ; (c) 2−3i
5 ; (d) 4−2i

2−i .

Solution.

(a) We multiply both the numerator and the
denominator by 3 + 2i = 3 − 2i , and we obtain

7−6i
3+2i = (7−6i)(3−2i)

(3+2i)(3−2i) = 9−32i
9+4 = 9

13 − 32
13 i .

(b) We multiply both the numerator and the denominator by
2 − i = 2 + i , and we obtain

1
2−i = 2+i

(2−i)(2+i) = 2+i
4+1 = 2

5 + 1
5 i .
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Solution (continued). (c) The denominator is a real number, and
so we have

2−3i
5 = 2

5 − 3
5 i .

(d) We could multiply both the numerator and the denominator by
2 − i = 2 + i . However, in this particular case, it is easier to
compute as follows:

4−2i
2−i = 2(2−i)

2−i
(∗)= 2,

where (*) was obtained by canceling out the common factor 2 − i
in the numerator and the denominator. □
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Proposition 0.3.4
For all z1, z2 ∈ C, the following hold:

(a) z1 + z2 = z1 + z2;
(b) z1 − z2 = z1 − z2;
(c) z1z2 = z1 z2;
(d) if z2 ̸= 0, then z1/z2 = z1/z2.

Moreover, for all z ∈ C and non-negative integers m, we have that
(e) zm = (z)m.



Proposition 0.3.5
For all z1, z2 ∈ C, the following hold:

(a) |z1z2| = |z1||z2|;
(b) if z2 ̸= 0, then |z1/z2| = |z1|/|z2|.

Moreover, for all z ∈ C, the following hold:
(c) | − z | = |z |;
(d) for all non-negative integers m, we have |zm| = |z |m.



We next discuss the Fundamental Theorem of Algebra.

A root of a polynomial p(x) with complex coefficients is a
complex number c such that p(c) = 0.
For example, 1 + i is a root of the polynomial
p(x) = x2 − 2x + 2 because

p(1 + i) = (1 + i)2 − 2(1 + i) + 2 = 0.

In the particular case of p(x) = x2 − 2x + 2, the roots could
have been found via the familiar quadratic equation.
There exist formulas for finding the complex roots of all third
and fourth degree polynomials with complex coefficients, but
no such formula exists for polynomials of degree five or more
(although in some special cases, we may be able to use various
tricks to find the roots of these higher-degree polynomials).
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Nevertheless, we do have the following existence result.
A constant polynomial is a polynomial of the form p(x) = c,
where c is a fixed constant/number.

The Fundamental Theorem of Algebra
Any non-constant polynomial with complex coefficients has a
complex root.



The Fundamental Theorem of Algebra
Any non-constant polynomial with complex coefficients has a
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The Fundamental Theorem of Algebra
Any non-constant polynomial with complex coefficients has a
complex root.

We omit the proof of the Fundamental Theorem of Algebra.
There are no known elementary proofs of this theorem: all the
known proofs of the Fundamental Theorem of Algebra rely on
advanced mathematics, such as complex analysis or topology.



The Fundamental Theorem of Algebra implies that any
polynomial p(x) with complex coefficients and of degree
n ≥ 1 can be factored into n linear factors.

More precisely, for such a polynomial p(x), there exist
complex numbers a, α1, . . . , αℓ such that a ̸= 0 and such that
α1, . . . , αℓ are pairwise distinct, and positive integers
n1, . . . , nℓ satisfying n1 + · · · + nℓ = n, such that

p(x) = a(x − α1)n1 . . . (x − αℓ)nℓ ,

and moreover, this factorization into linear factors is unique
up a permutation of the αi ’s and the corresponding ni ’s.

Here, a is the leading coefficient of p(x), i.e. the coefficient in
front of xn. Complex numbers α1, . . . , αℓ are the roots of p(x)
with multiplicities n1, . . . , nℓ, respectively.
If we think of each αi as being a root “ni times” (due to its
multiplicity), then we see that the n-th degree polynomial p(x)
has exactly n complex roots.
This is often summarized as follows: “every n-th degree
polynomial (with n ≥ 1) with complex coefficients has exactly
n complex roots, when multiplicities are taken into account.”
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As we already mentioned, there are formulas that allow us to
compute the roots of polynomials with complex coefficients of
degree at most four.

However, no such formulas exist for polynomials (with
complex coefficients) of degree n ≥ 5: we know that all such
polynomials have n complex roots (when multiplicities are
taken into account), but in general, there is no formula for
computing these roots.
In fact, not only is no such formula known, but using Galois
theory, one can show that no such formula can exist for
polynomials of degree at least five.

Once again, we may be able to use various tricks to compute
the roots of some special high-degree polynomials. However,
none of these tricks will work in the general case.
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Recall that, geometrically, the complex conjugate of a
complex number z is obtained by reflecting z about the Re
axis in the complex plane.
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Theorem 0.3.6
Let p(x) be any polynomial with real coefficients, and let z ∈ C.
Then z is a root of p(x) iff z is a root of p(x).

First a remark, then a proof.
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Theorem 0.3.6
Let p(x) be any polynomial with real coefficients, and let z ∈ C.
Then z is a root of p(x) iff z is a root of p(x).

Remark: Note that Theorem 0.3.6 implies that the complex
roots of a non-constant polynomial are symmetric about the
Re axis in the complex plane.

Some (or perhaps all) of those roots may lie on the Re axis,
i.e. they may be real numbers.
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Theorem 0.3.6
Let p(x) be any polynomial with real coefficients, and let z ∈ C.
Then z is a root of p(x) iff z is a root of p(x).

Proof. Set p(x) = anxn + · · · + a1x + a0, where a0, a1, . . . , an ∈ R.
Then we have the following sequence of equivalences:

p(z) = 0 ⇐⇒ p(z) = 0

⇐⇒ anzn + · · · + a1z + a0 = 0

(∗)⇐⇒ an(z)n + · · · + a1(z) + a0 = 0

(∗∗)⇐⇒ an(z)n + · · · + a1z + a0 = 0

⇐⇒ p(z) = 0,

where (*) follows from Proposition 0.3.4, and (**) follows from
the fact that a0, a1, . . . , an and 0 are real numbers. □



2 The scalar product

So far, we have worked with vector spaces over arbitrary fields
F.
In this lecture, we impose some additional structure on vector
spaces, namely the “scalar product” (also called “inner
product”). In our next lecture, we will also introduce the
“norm.”

A scalar product is a way of multiplying two vectors and
obtaining a scalar.
A norm is a way of measuring the distance of a vector from
the origin, or alternatively, measuring the length of a vector.

As a trade-off for imposing this additional structure, we
restrict ourselves to vector spaces over only two fields: R and
C.

The theory that we develop over the next few weeks
(corresponding to chapter 6 of the Lecture Notes) would not
work for vector spaces over general fields F.
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Definition
A scalar product (also called inner product) in a real vector space
V is a function ⟨·, ·⟩ : V × V → R that satisfies the following four
axioms:
r.1. for all x ∈ V , ⟨x, x⟩ ≥ 0, and equality holds iff x = 0;
r.2. for all x, y, z ∈ V , ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩;
r.3. for all x, y ∈ V and α ∈ R, ⟨αx, y⟩ = α⟨x, y⟩;
r.4. for all x, y ∈ V , ⟨x, y⟩ = ⟨y, x⟩.

The name “scalar product” comes from the fact that we
multiply two vectors and obtain a scalar as a result.
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Axioms r.2 and r.3 guarantee that the scalar product in a real
vector space V is linear in the first variable (when we keep the
second variable fixed).

But in fact, axioms r.2, r.3, and r.4 guarantee that it is linear
in the second variable as well (when we keep the first variable
fixed).

More precisely, we have the following (next slide):
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Definition
The standard scalar product of vectors x =

[
x1 . . . xn

]T and
y =

[
y1 . . . yn

]T in Rn is given by

x · y :=
n∑

i=1
xiyi .

For example, for vectors
[

1 −2 5
]T and

[
−3 2 1

]T in
R3, we compute: 1

−2
5

 ·

 −3
2
1

 = 1 · (−3) + (−2) · 2 + 5 · 1 = −2.

We still need to check that · really is a scalar product, i.e.
that it satisfies axioms r.1-r.4.

Later!
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Definition
The standard scalar product of vectors x =

[
x1 . . . xn

]T and
y =

[
y1 . . . yn

]T in Rn is given by

x · y :=
n∑

i=1
xiyi .

For vectors x =
[

x1 . . . xn
]T and y =

[
y1 . . . yn

]T in
Rn, we have that:

xT y =
[

x1 . . . xn
]  y1

...
yn

 =
[ n∑
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get that

x · y = xT y ∀x, y ∈ Rn.



Definition
The standard scalar product of vectors x =

[
x1 . . . xn

]T and
y =

[
y1 . . . yn

]T in Rn is given by

x · y :=
n∑

i=1
xiyi .

For vectors x =
[

x1 . . . xn
]T and y =

[
y1 . . . yn

]T in
Rn, we have that:

xT y =
[

x1 . . . xn
]  y1

...
yn

 =
[ n∑

i=1
xiyi

]
=

[
x · y

]
.

So, if we identify 1 × 1 matrices with scalars, then we simply
get that

x · y = xT y ∀x, y ∈ Rn.



Proposition 6.1.1
The standard scalar product in Rn is a scalar product.

Proof.

We need to check that the standard scalar product · in Rn

satisfies the four axioms from the definition of a scalar product in a
real vector space.

r.1. For a vector x =
[

x1 . . . xn
]T in Rn, we have that

x · x =
n∑

i=1
x2

i
(∗)
≥ 0,

and (*) is an equality iff x1 = · · · = xn = 0, i.e. iff x = 0.
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Proposition 6.1.1
The standard scalar product in Rn is a scalar product.

Proof (continued). r.2. For vectors x =
[

x1 . . . xn
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product. □
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Definition
The standard scalar product of vectors x =

[
x1 . . . xn

]T and
y =

[
y1 . . . yn

]T in Rn is given by

x · y :=
n∑

i=1
xiyi .

Proposition 6.1.1
The standard scalar product in Rn is a scalar product.

A similar type of scalar product can be defined for matrices.
Indeed, for matrices A =

[
ai ,j

]
n×m

and B =
[

bi ,j
]

n×m
in

Rn×m, we can define

⟨A, B⟩ =
n∑

i=1

m∑
j=1

aijbij .

It is easy to verify that this really is a scalar product in Rn×m

(the proof is similar to that of Proposition 6.1.1).
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Remark: The standard scalar product is only one of many
possible scalar products in Rn.

A full characterization of all possible scalar products in Rn will
be given in a later lecture (in a couple of months).
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If you know calculus, here is an example with integrals:

Proposition 6.1.2
Let a, b ∈ R be such that a < b, and let C[a,b] be the (real) vector
space of all continuous functions from the closed interval [a, b] to
R. Then the function ⟨·, ·⟩ : C[a,b] × C[a,b] → R defined by

⟨f , g⟩ :=
b∫
a

f (x)g(x)dx

for all f , g ∈ C[a,b] is a scalar product.

Proof: Lecture Notes (optional).
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Definition
A scalar product (also called inner product) in a complex vector
space V is a function ⟨·, ·⟩ : V × V → C that satisfies the
following four axioms:
c.1. for all x ∈ V , ⟨x, x⟩ is a real number, ⟨x, x⟩ ≥ 0 , and equality

holds iff x = 0;
c.2. for all x, y, z ∈ V , ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩;
c.3. for all x, y ∈ V and α ∈ C, ⟨αx, y⟩ = α⟨x, y⟩;
c.4. for all x, y ∈ V , ⟨x, y⟩ = ⟨y, x⟩.

Axioms c.2 and c.3 guarantee that the scalar product in a
complex vector space V is linear in the first variable (when we
keep the second variable fixed).
Unlike in the real case, it is not linear in the second variable
(when we keep the first variable fixed).

We do, however, have the following (next slide):
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c.2’. for all x, y, z ∈ V , ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩;
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Proof.

c.2’. For all x, y, z ∈ V , we have the following:

⟨x, y + z⟩ c.4= ⟨y + z, x⟩

c.2= ⟨y, x⟩ + ⟨z, x⟩

= ⟨y, x⟩ + ⟨z, x⟩

c.4= ⟨x, y⟩ + ⟨x, z⟩.

c.3’. For all x, y ∈ V and α ∈ C, we have the following:

⟨x, αy⟩ c.4= ⟨αy, x⟩ c.3= α⟨y, x⟩ = α ⟨y, x⟩ c.4= α⟨x, y⟩.

□
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Definition
A scalar product (also called inner product) in a complex vector
space V is a function ⟨·, ·⟩ : V × V → C that satisfies the
following four axioms:
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Definition
The standard scalar product of vectors x =

[
x1 . . . xn

]T and
y =

[
y1 . . . yn

]T in Cn is given by

x · y :=
n∑

i=1
xiyi .

For example, for vectors
[

1 − 2i −2 + i
]T and[

2 + i 1 + 3i
]T in C2, we compute:[

1 − 2i
−2 + i

]
·
[

2 + i
1 + 3i

]
= (1 − 2i)(2 + i) + (−2 + i)(1 + 3i)

= (1 − 2i)(2 − i) + (−2 + i)(1 − 3i)

= 1 + 2i .



Definition
The standard scalar product of vectors x =

[
x1 . . . xn

]T and
y =

[
y1 . . . yn

]T in Cn is given by

x · y :=
n∑

i=1
xiyi .

Proposition 6.1.3
The standard scalar product in Cn is a scalar product.

Proof: Lecture Notes (similar to the real case).



3 Orthogonality

Definition
Given a real or complex vector space V , equipped with a scalar
product ⟨·, ·⟩, we say that vectors x and y in V are orthogonal, and
we write x ⊥ y, if ⟨x, y⟩ = 0.

When our scalar product is the standard scalar product in Rn,
this corresponds to the usual geometric interpretation.

Details: Later!
However, for general scalar products, this is how we define
orthogonality.

For example, for the scalar product defined on C[−π,π] in
Proposition 6.1.2 (the one with integrals), we have that

sin x ⊥ cos x ,

since
〈

sin x , cos x
〉

=
π∫

−π

sin x cos xdx = 0.
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Proposition 6.1.4
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Then all the following hold:

(a) for all vectors x, y ∈ V , we have that x ⊥ y iff y ⊥ x;
(b) for all vectors x, y ∈ V and scalars α, β,a if x ⊥ y then

(αx) ⊥ (βy);
(c) for all vectors x ∈ V , we have that x ⊥ 0 and 0 ⊥ x.

aHere, α and β are real or complex numbers, depending on whether V is a
real or complex vector space.

Proof.

We prove the proposition for the case when V is a complex
vector space. The real case is similar but slightly easier (because
we do not have to deal with complex conjugates).
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Proposition 6.1.4
(a) for all vectors x, y ∈ V , we have that x ⊥ y iff y ⊥ x

Proof (continued). (a) For vectors x, y ∈ V , we have the following
sequence of equivalences:

x ⊥ y ⇐⇒ ⟨x, y⟩ = 0 by definition

⇐⇒ ⟨y, x⟩ = 0 by c.4

⇐⇒ ⟨y, x⟩ = 0

⇐⇒ y ⊥ x by definition.



Proposition 6.1.4
(b) for all vectors x, y ∈ V and scalars α, β, if x ⊥ y then

(αx) ⊥ (βy)

Proof (continued). (b) Fix vectors x, y ∈ V and scalars α, β ∈ C,
and assume that x ⊥ y. Then we compute:

⟨αx, βy⟩ = α⟨x, βy⟩ by c.3

= αβ⟨x, y⟩ by c.3’

= αβ0 beause x ⊥ y

= 0.

So, (αx) ⊥ (βy).



Proposition 6.1.4
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Then all the following hold:

(a) for all vectors x, y ∈ V , we have that x ⊥ y iff y ⊥ x;
(b) for all vectors x, y ∈ V and scalars α, β,a if x ⊥ y then

(αx) ⊥ (βy);
(c) for all vectors x ∈ V , we have that x ⊥ 0 and 0 ⊥ x.

aHere, α and β are real or complex numbers, depending on whether V is a
real or complex vector space.

Proof (continued). (c) Fix any vector x ∈ V . We then have that

⟨0, x⟩ = ⟨00, x⟩ c.3= 0⟨0, x⟩ = 0,

and so 0 ⊥ x. The fact that x ⊥ 0 now follows from (a). □



Definition
Given a real or complex vector space V , equipped with a scalar
product ⟨·, ·⟩, we say that vectors x and y in V are orthogonal, and
we write x ⊥ y, if ⟨x, y⟩ = 0.

Suppose that V is a real or complex vector space, equipped
with a scalar product ⟨·, ·⟩.

For a vector v ∈ V and a set of vectors A ⊆ V , we say that v
is orthogonal to A, and we write v ⊥ A, provided that v is
orthogonal to all vectors in A.

By definition, this means that:

⟨v, a⟩ = 0 ∀a ∈ A.

For sets of vectors A, B ⊆ V , we say that A is orthogonal to
B, and we write A ⊥ B, if every vector in A is orthogonal to
every vector in B.
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Definition
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Proposition 6.1.5
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let a1, . . . , ap, b1, . . . , bq ∈ V , and assume that
{a1, . . . , ap} ⊥ {b1, . . . , bq}. Then
Span(a1, . . . , ap) ⊥ Span(b1, . . . , bq).

Proof.

Fix a ∈ Span(a1, . . . , ap) and b ∈ Span(b1, . . . , bq). Then
there exist scalars α1, . . . , αp, β1, . . . , βq s.t.

a = α1a1 + · · · + αpap and b = β1b1 + · · · + βqbq.

We now compute (next slide):
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Proof (continued).

⟨a, b⟩ =
〈 p∑

i=1
αiai ,

q∑
j=1

βjbj

〉

=
p∑

i=1

〈
αiai ,

q∑
j=1

βjbj

〉
by r.2 or c.2

=
p∑

i=1

q∑
j=1

⟨αiai , βjbj⟩︸ ︷︷ ︸
(∗)
= 0

by r.2’ or c.2’

= 0,

where (*) follows from Proposition 6.1.4(b) and from the fact
that {a1, . . . , ap} ⊥ {b1, . . . , bq}. This proves that a ⊥ b, and the
result follows. □



Proposition 6.1.5
Let V be a real or complex vector space, equipped with a scalar
product ⟨·, ·⟩. Let a1, . . . , ap, b1, . . . , bq ∈ V , and assume that
{a1, . . . , ap} ⊥ {b1, . . . , bq}. Then
Span(a1, . . . , ap) ⊥ Span(b1, . . . , bq).


