Linear Algebra 2: HW#9

Irena Penev Summer 2025

due Sunday, June 1, 2025, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Unless explicitly stated otherwise, make sure you **show your work** (though you may omit the details of row reduction, as per the Remark below). If you do not show your work, you will receive **no credit** for the exercise/problem in question, even if your final answer is correct.

Remark: Feel free to use a calculator such as the one from

https://www.dcode.fr/matrix-row-echelon

for any row reduction that you need to perform. However, keep in mind that on the exam, you might be asked to solve problems like this **without** a calculator, and so you should in principle be able to perform row reduction of this sort by hand.^{*a*} Moreover, make sure you correctly tell the calculator what kinds of numbers you are working with,^{*b*} because otherwise, the calculator may give you a wrong answer.

 $[^]a{\rm If}$ you do not yet feel confident in your ability to row reduce, then row reduce by hand first, and then check your answer with a calculator.

^bFor real numbers, you should use their "Echelon Form Matrix Reduction Calculator." For \mathbb{Z}_2 , use "RREF with Modulo Calculator" with Base/Modulus = 2. For \mathbb{Z}_3 , use "RREF with Modulo Calculator" with Base/Modulus = 3.

Exercise 1 (10 points). Consider the quadratic form q on \mathbb{R}^3 given by the formula

$$q(\mathbf{x}) = x_1^2 - 2x_1x_2 + 3x_1x_3 - 4x_2^2 + 5x_2x_3 - x_3^2$$

for all $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ in \mathbb{R}^3 . Compute the (symmetric) matrix of the quadratic form q with respect to the standard basis \mathcal{E}_3 of \mathbb{R}^3 .

Hint: See Example 9.3.2 of the Lecture Notes, plus the Remark right above it.

Exercise 2 (15 points). Consider the bilinear form $\langle \cdot, \cdot \rangle$ on \mathbb{R}^3 given by

 $\langle \mathbf{x}, \mathbf{y} \rangle = 2x_1y_1 + 2x_1y_2 - x_1y_3 + 2x_2y_1 + 3x_2y_2 + 2x_2y_3 - x_3y_1 + 2x_3y_2 + 4x_3y_3$

for all $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ and $\mathbf{y} = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix}^T$ in \mathbb{R}^3 .

- (a) Compute the matrix of the bilinear form $\langle \cdot, \cdot \rangle$ with respect to the standard basis \mathcal{E}_3 of \mathbb{R}^3 .
- (b) Is the bilinear form $\langle \cdot, \cdot \rangle$ symmetric?
- (c) Is the bilinear form $\langle \cdot, \cdot \rangle$ a scalar product in \mathbb{R}^3 ?

Problem 1 (25 points). Consider the quadratic form q on \mathbb{R}^4 given by the formula

 $q(\mathbf{x}) = -8x_1^2 + 14x_1x_2 + 8x_1x_3 + 2x_1x_4 - 3x_2^2 - 2x_2x_3 + 2x_2x_4 + 2x_3x_4 + x_4^2$

for all $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$ in \mathbb{R}^4 . Compute the signature (n_+, n_-, n_0) of q, a polar basis \mathcal{B} of \mathbb{R}^4 associated with q, and the matrix D of q with respect to \mathcal{B} .

Remark: The relevant section for this problem is section 9.4 of the Lecture Notes. A "polar basis" is defined at the beginning of subsection 9.4.2 of the Lecture Notes.

Problem 2 (25 points). Let $A \in \mathbb{R}^{n \times n}$ be a positive definite matrix. Prove that there exists a positive definite matrix $B \in \mathbb{R}^{n \times n}$ such that $A = B^2$.

Problem 3 (25 points). Let A and B be symmetric matrices in $\mathbb{R}^{n \times n}$, and assume that every eigenvalue of A is strictly greater than every eigenvalue of B. Prove that the matrix A - B is positive definite.

Hint: Start with an orthonormal eigenbasis of \mathbb{R}^n associated with A, and an orthonormal eigenbasis of \mathbb{R}^n associated with B. (You must explain why such eigenbases exist, and note that the two eigenbases need not be the same!) Can you find a lower bound for the expression $\mathbf{x}^T A \mathbf{x}$ in terms of \mathbf{x} and the eigenvalues of A (where \mathbf{x} is an arbitrary vector in \mathbb{R}^n)? And an upper bound for $\mathbf{x}^T B \mathbf{x}$ in terms of \mathbf{x} and the eigenvalues of B? Now what?