Linear Algebra 2: HW#8

Irena Penev Summer 2025

due Friday, May 16, 2025, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Unless explicitly stated otherwise, make sure you **show your work** (though you may omit the details of row reduction, as per the Remark below). If you do not show your work, you will receive **no credit** for the exercise/problem in question, even if your final answer is correct.

Remark: Feel free to use a calculator such as the one from

https://www.dcode.fr/matrix-row-echelon

for any row reduction that you need to perform. However, keep in mind that on the exam, you might be asked to solve problems like this **without** a calculator, and so you should in principle be able to perform row reduction of this sort by hand.^{*a*} Moreover, make sure you correctly tell the calculator what kinds of numbers you are working with,^{*b*} because otherwise, the calculator may give you a wrong answer.

 $[^]a{\rm If}$ you do not yet feel confident in your ability to row reduce, then row reduce by hand first, and then check your answer with a calculator.

^bFor real numbers, you should use their "Echelon Form Matrix Reduction Calculator." For \mathbb{Z}_2 , use "RREF with Modulo Calculator" with Base/Modulus = 2. For \mathbb{Z}_3 , use "RREF with Modulo Calculator" with Base/Modulus = 3.

Exercise 1 (10 points). Suppose you are given a matrix $A \in \mathbb{C}^{14 \times 14}$ for which your friend the calculator computes the characteristic polynomial

$$p_A(\lambda) = (\lambda - 2)^4 (\lambda + 3)^4 (\lambda - 4)^6,$$

and further helpfully computes the following:

- $rank((A 2I_{14})^0) = 14;$
- $rank((A 2I_{14})^1) = 12;$
- $rank((A 2I_{14})^2) = 11;$
- $rank((A 2I_{14})^3) = 10;$
- $rank((A 2I_{14})^4) = 10;$
- $rank((A+3I_{14})^0) = 14;$
- $rank((A+3I_{14})^1) = 12;$
- $rank((A+3I_{14})^2) = 10;$
- $rank((A+3I_{14})^3) = 10;$

Compute the Jordan normal form of A.

Problem 1 (15 points). Consider all possible matrices in $\mathbb{C}^{14\times 14}$ whose eigenvalues are (exactly) the following:

- $\lambda_1 = 3$ with algebraic multiplicity 5 and geometric multiplicity 4;
- $\lambda_2 = 5$ with algebraic multiplicity 4 and geometric multiplicity 1;
- $\lambda_3 = 6$ with algebraic multiplicity 5 and geometric multiplicity 2.

Are all such matrices similar? Make sure you fully justify your answer.

Hint: Jordan normal form.

Definition/Remark. Let \mathbb{F} be a field. For a positive integer n, let us define the following $n \times n$ matrix with entries understood to be in \mathbb{F} .

$$P_n := \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix}_{n \times n}$$

• $rank((A - 4I_{14})^1) = 11;$

• $rank((A - 4I_{14})^0) = 14;$

- $rank((A 4I_{14})^2) = 10;$
- $rank((A 4I_{14})^3) = 9;$
- $rank((A 4I_{14})^4) = 8;$
- $rank((A 4I_{14})^5) = 8.$

 $(P_n \text{ is } not \text{ the standard notation for this matrix. There probably is no standard notation for it, but we need some way to refer to it.) It is easy to see that <math>RREF([P_n \mid I_n]) = [I_n \mid P_n]$, and so P_n is invertible and is its own inverse, i.e. $P_n^{-1} = P_n$. Moreover, it is not hard to see that for any matrix $A \in \mathbb{F}^{n \times n}$, we have the following:

- (1) AP_n is the matrix obtained by reflecting the entries of A about the vertical axis through the middle of A;¹
- (2) $P_n^{-1}A = P_nA$ is the matrix obtained by reflecting the entries of A about the horizontal axis through the middle of A;²
- (3) $P_n^{-1}AP_n = P_nAP_n$ is the matrix obtained by rotating the entries of A by 180° about the center of the matrix.³

(You don't need to give a formal proof, but do try to convince yourself that this really is true!)

Problem 2 (25 points). Let \mathbb{F} be an algebraically closed field.⁴ Using the Jordan normal form (plus the Definition/Remark above), prove that every square matrix with entries in \mathbb{F} is similar to its own transpose.

Hint: First, prove the result for Jordan blocks (use the Definition/Remark above). Then, prove it for Jordan matrices. Finally, prove it for arbitrary square matrices with entries in \mathbb{F} . Where exactly do you need the fact that \mathbb{F} is algebraically closed.

¹For example:

1	2	3	1 [0	0	1]		3	2	1	1
4	5	6		0	1	0	=	6	5	4	.
7	8	9		1	0	0		9	8	7	
$=P_3$											

²For example:

$$\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{=P_3^{-1}=P_3} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

³For example:

$$\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{=P_0^{-1}=P_3} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{=P_3} = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

⁴Actually, the assumption that the field \mathbb{F} is algebraically closed is not strictly necessary. However, the proof would become harder without it. **Problem 3** (25 points). Orthogonally diagonalize the following symmetric matrix in $\mathbb{R}^{3\times 3}$:

$$A := \begin{bmatrix} 1 & -2 & 2 \\ -2 & 4 & -4 \\ 2 & -4 & 4 \end{bmatrix}$$

In other words, compute a diagonal matrix D and an orthogonal matrix Q, both in $\mathbb{R}^{3\times 3}$, such that $D = Q^T A Q$.

Hint: This is very similar to Example 8.7.7 of the Lecture Notes.

Problem 4 (25 points). Let $A \in \mathbb{R}^{n \times m}$. Prove that there exists an orthonormal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ of \mathbb{R}^m such that vectors $A\mathbf{v}_1, \ldots, A\mathbf{v}_m$ are pairwise orthogonal. (Here, orthogonality and orthonormality are assumed to be with respect to the standard scalar product \cdot and the induced norm $|| \cdot || .$)

Remark: It is possible that some of the Av_i 's are zero.

Hint: Explain why \mathbb{R}^m has an orthonormal eigenbasis associated with $A^T A$, and then use that eigenbasis.