Linear Algebra 2: HW#5

Irena Penev Summer 2025

due Friday, April 18, 2025, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Unless explicitly stated otherwise, make sure you **show your work** (though you may omit the details of row reduction, as per the Remark below). If you do not show your work, you will receive **no credit** for the exercise/problem in question, even if your final answer is correct.

Remark: Feel free to use a calculator such as the one from

https://www.dcode.fr/matrix-row-echelon

for any row reduction that you need to perform. However, keep in mind that on the exam, you might be asked to solve problems like this **without** a calculator, and so you should in principle be able to perform row reduction of this sort by hand.^{*a*} Moreover, make sure you correctly tell the calculator what kinds of numbers you are working with,^{*b*} because otherwise, the calculator may give you a wrong answer.

 $[^]a{\rm If}$ you do not yet feel confident in your ability to row reduce, then row reduce by hand first, and then check your answer with a calculator.

^bFor real numbers, you should use their "Echelon Form Matrix Reduction Calculator." For \mathbb{Z}_2 , use "RREF with Modulo Calculator" with Base/Modulus = 2. For \mathbb{Z}_3 , use "RREF with Modulo Calculator" with Base/Modulus = 3.

Exercise 1 (5 points). Consider the following permutation in S_7 :

π	=	(1	2	3	4	5	6	7	
			7	6	3	2	4	1	5).

Compute the matrix P_{π} , and compute $det(P_{\pi})$.

Hint: $det(P_{\pi})$ can be computed in various ways, but it is easiest to use Proposition 7.1.1 from the Lecture Notes.

Exercise 2 (5 points). Consider the following permutation matrix (with entries understood to be in some field \mathbb{F}):

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Compute the permutation $\pi \in S_6$ such that $A = P_{\pi}$, and compute det(A).

Hint: Same hint as for the previous exercise.

Exercise 3 (15 points). Compute the determinant of the following matrix (with entries understood to be in \mathbb{R}):

$$A = \begin{bmatrix} -2 & 1 & 1 & 0 & 2 \\ 0 & 1 & -2 & 0 & 0 \\ -3 & 1 & 2 & 0 & -1 \\ 1 & 3 & -1 & 2 & 3 \\ 2 & -1 & 1 & 0 & 0 \end{bmatrix}$$

You may use any method (or combination of methods) that you like, but make sure you show your work.¹

Exercise 4 (10 points). Consider the following matrix and vector, with entries understood to be in \mathbb{Z}_3 :

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Either use **Cramer's rule** to solve the matrix-vector equation $A\mathbf{x} = \mathbf{b}$, or explain why this equation cannot be solved using Cramer's rule. (If the equation cannot be solved using Cramer's rule, then you do not need to solve it.)

¹You should compute this by hand (and show your work!), but you can, and probably should, check your answer with a calculator.

Exercise 5 (15 points). Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 0 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$

with entries understood to be in \mathbb{R} . Compute:

- 1. det(A);
- 2. the cofactor matrix of A;
- 3. the adjugate matrix of A.

Is A invertible? If so, compute its inverse.

Problem 1 (25 points). Let \mathbb{F} be a field, let $n \geq 2$ be an integer, and let $\mathbf{a}_2, \ldots, \mathbf{a}_n$ be linearly independent vectors in \mathbb{F}^n . Define the function $f: \mathbb{F}^n \to \mathbb{F}$ by setting

$$f(\mathbf{x}) = |\mathbf{x} \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n|$$
 for all $\mathbf{x} \in \mathbb{F}^n$.

By Proposition 7.2.1 of the Lecture Notes, f is linear. Find a basis of Ker(f), and compute the dimension of Ker(f) and Im(f). Make sure you fully justify your answer.

Problem 2 (25 points). Let A be an invertible matrix in $\mathbb{R}^{n \times n}$, and assume that the entries of A are all integers. Prove that the entries of A^{-1} are all integers if and only if $det(A) = \pm 1$.

Hint: Use the adjugate matrix.