Linear Algebra 2: HW#3

Irena Penev Summer 2025

due Friday, March 28, 2025, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Unless explicitly stated otherwise, make sure you **show your work** (though you may omit the details of row reduction, as per the Remark below). If you do not show your work, you will receive **no credit** for the exercise/problem in question, even if your final answer is correct.

Remark: Feel free to use a calculator such as the one from

https://www.dcode.fr/matrix-row-echelon

for any row reduction that you need to perform. However, keep in mind that on the exam, you might be asked to solve problems like this **without** a calculator, and so you should in principle be able to perform row reduction of this sort by hand.^{*a*} Moreover, make sure you correctly tell the calculator what kinds of numbers you are working with,^{*b*} because otherwise, the calculator may give you a wrong answer.

 $[^]a{\rm If}$ you do not yet feel confident in your ability to row reduce, then row reduce by hand first, and then check your answer with a calculator.

^bFor real numbers, you should use their "Echelon Form Matrix Reduction Calculator." For \mathbb{Z}_2 , use "RREF with Modulo Calculator" with Base/Modulus = 2. For \mathbb{Z}_3 , use "RREF with Modulo Calculator" with Base/Modulus = 3.

Exercise 1 (20 points). In this exercise, we consider \mathbb{R}^5 to be equipped with the standard scalar product \cdot and the induced norm $|| \cdot ||$. Consider the following linearly independent vectors in \mathbb{R}^5 :

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ -1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 2\\ 1\\ 4\\ -4\\ 2 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 5\\ -4\\ -3\\ 7\\ 1 \end{bmatrix}$$

(You may assume that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ really are linearly independent.) Using the Gram-Schmidt orthogonalization process (either version), compute an orthonormal basis of $U := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.

Exercise 2 (20 points). In this exercise, we assume that \mathbb{R}^4 is equipped with the standard scalar product \cdot and the induced norm $|| \cdot ||$. Consider the following matrix in $\mathbb{R}^{4 \times 5}$:

$$A = \begin{bmatrix} 3 & -5 & 1 & 1 & 4 \\ 1 & 1 & 3 & 1 & 2 \\ -1 & 5 & 3 & -2 & -3 \\ 3 & -7 & -1 & 8 & 11 \end{bmatrix}$$

Compute an orthonormal basis of Col(A).

Exercise 3 (30 points). In this exercise, we assume that \mathbb{R}^3 is equipped with the standard scalar product \cdot and the induced norm $|| \cdot ||$. Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

Set $U := Span(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$.

(a) Compute an orthonormal basis of U and an orthonormal basis of U^{\perp} .

Hint: See Proposition 6.4.4 and Example 6.4.5 of the Lecture Notes.

(b) Let $\mathbf{x} = \begin{bmatrix} 4 & 2 & 4 \end{bmatrix}^T$. Compute vectors $\mathbf{y} \in U$ and $\mathbf{z} \in U^{\perp}$ such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$.

Hint: See Corollary 6.5.3 of the Lecture Notes.

Problem 1 (30 points). Let $\langle \cdot, \cdot \rangle$ be a scalar product in \mathbb{R}^n (not necessarily the standard one). Let V be a real vector space, and let $f: V \to \mathbb{R}^n$ be a linear function. We define $\langle \cdot, \cdot \rangle_f: V \times V \to \mathbb{R}$ by setting

$$\langle \mathbf{u}, \mathbf{v} \rangle_f = \langle f(\mathbf{u}), f(\mathbf{v}) \rangle$$

for all $\mathbf{u}, \mathbf{v} \in V$. Prove that $\langle \cdot, \cdot \rangle_f$ is a scalar product in V if and only if f is one-to-one.