Linear Algebra 2: HW#1

Irena Penev Summer 2025

due Friday, March 7, 2025, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and it should be either typed or written in dark ink/pencil (blue, black...) on a light (white, beige...) background. Other formats will not be accepted. Please do **not** send your HW by e-mail. Please write your **name** on top of the first page of your HW.

Unless explicitly stated otherwise, make sure you **show your work** (though you may omit the details of row reduction, as per the Remark below). If you do not show your work, you will receive **no credit** for the exercise/problem in question, even if your final answer is correct.

Remark: Feel free to use a calculator such as the one from

https://www.dcode.fr/matrix-row-echelon

for any row reduction that you need to perform. However, keep in mind that on the exam, you might be asked to solve problems like this **without** a calculator, and so you should in principle be able to perform row reduction of this sort by hand.^{*a*} Moreover, make sure you correctly tell the calculator what kinds of numbers you are working with,^{*b*} because otherwise, the calculator may give you a wrong answer.

 $[^]a{\rm If}$ you do not yet feel confident in your ability to row reduce, then row reduce by hand first, and then check your answer with a calculator.

^bFor real numbers, you should use their "Echelon Form Matrix Reduction Calculator." For \mathbb{Z}_2 , use "RREF with Modulo Calculator" with Base/Modulus = 2. For \mathbb{Z}_3 , use "RREF with Modulo Calculator" with Base/Modulus = 3.

Remark: When working with coordinate vectors and matrices of linear functions, make sure you always **specify the bases** that you are working with.

Exercise 1 (10 points). Let U and V be real vector spaces (i.e. vector spaces over \mathbb{R}), let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4}$ be a basis of U, and let $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3}$ be a basis of V. Let $f : U \to V$ be the unique linear function that satisfies the following:

- $f(\mathbf{b}_1) = 7\mathbf{c}_1 2\mathbf{c}_3;$
- $f(\mathbf{b}_2) = \mathbf{c}_2;$
- $f(\mathbf{b}_3) = -\mathbf{c}_1 + 2\mathbf{c}_2;$
- $f(\mathbf{b}_4) = 3\mathbf{c}_2 \mathbf{c}_3$.

(The existence and uniqueness of f follow from Theorem 4.3.2 of the Lecture Notes.) Compute the matrix $_{\mathcal{C}}[f]_{\mathcal{B}}$. Then, compute rank(f) and $\dim(\operatorname{Ker}(f))$. Is f one-to-one? Is it onto? Is it an isomorphism? (Make sure you justify your answer.)

Exercise 2 (10 points). Consider the following sets of vectors (with entries understood to be in \mathbb{Z}_3):

• $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\};$ • $\mathcal{C} = \left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$

Prove that \mathcal{B} and \mathcal{C} are bases of \mathbb{Z}_3^3 , and compute the change of basis matrix $\begin{bmatrix} Id_{\mathbb{Z}_3^3} \end{bmatrix}_{\mathcal{B}}$.

Problem 1 (30 points). Let U and V be non-trivial, finite-dimensional vector spaces over a field \mathbb{F} , and let $f: U \to V$ be a linear function. Prove that the following are equivalent:

- (1) f is an isomorphism;
- (2) there exists a positive integer n, a basis \mathcal{B} of U, and a basis \mathcal{C} of V such that $_{\mathcal{C}} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}} = I_n$.

Problem 2 (30 points). Consider the following polynomials with coefficients in \mathbb{Z}_2 and matrices with entries in \mathbb{Z}_2 :

• $p_1(x) = x^3 + x;$	• $M_1 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix};$
• $p_2(x) = x^2 + 1;$	• $M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix};$
• $p_3(x) = x^3 + x^2 + x + 1;$	• $M_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix};$
• $p_4(x) = x^2 + x;$	• $M_4 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix};$
• $p_5(x) = x^3 + x + 1;$	• $M_5 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix};$
• $p_6(x) = x^2;$	• $M_6 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.

(a) Prove that there exists a unique linear function $f : \mathbb{P}^3_{\mathbb{Z}_2} \to \mathbb{Z}^{2\times 2}_2$ satisfying the property that $f(p_i(x)) = M_i$ for all indices $i \in \{1, \ldots, 6\}$.

Notation: As usual, $\mathbb{P}^3_{\mathbb{Z}_2}$ is the vector space (over \mathbb{Z}_2) of all polynomials with coefficients in \mathbb{Z}_2 and of degree at most 3. $\mathbb{Z}_2^{2\times 2}$ is the vector space (over \mathbb{Z}_2) of all 2×2 matrices with entries in \mathbb{Z}_2 .

(b) Find a formula for the linear function f from part (a). Your final answer should be of the following form:

$$f(a_3x^3 + a_2x^2 + a_1x + a_0) = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \quad \forall a_0, a_1, a_2, a_3 \in \mathbb{Z}_2$$

with the question marks replaced with the appropriate values.

(c) Prove that the linear function f from part (a) is an isomorphism, and find a formula for f^{-1} . Your final answer should be of the following form:

$$f^{-1}\left(\left[\begin{array}{cc}a_{1,1} & a_{1,2}\\a_{2,1} & a_{2,2}\end{array}\right]\right) = - - - \forall a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2} \in \mathbb{Z}_2$$

with the blank filled in with the appropriate polynomial.

Problem 3 (20 points). Consider the following polynomials with coefficients in \mathbb{Z}_3 :

- $p_5(x) = 2x^3 + x + 1;$ $q_5(x) = x^3 + x^2 + 2x.$

Prove that there exists a linear function $f : \mathbb{P}^3_{\mathbb{Z}_3} \to \mathbb{P}^3_{\mathbb{Z}_3}$ satisfying the property that $f(p_i(x)) = q_i(x)$ for all indices $i \in \{1, \ldots, 5\}$. How many such linear functions f exist?