Linear Algebra 2: Tutorial 11

Todor Antić \& Irena Penev

Summer 2024

Exercise 1. Consider the bilinear form f on \mathbb{R}^{3} given by the formula

$$
f(\mathbf{x}, \mathbf{y})=x_{1} y_{1}+2 x_{1} y_{2}+x_{1} y_{3}-x_{2} y_{1}+x_{2} y_{2}+x_{3} y_{1}-5 x_{3} y_{3}
$$

for all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T}$ in \mathbb{R}^{3}. Compute the matrix of the bilinear form f with respect to the standard basis \mathcal{E}_{3} of \mathbb{R}^{3}. Is the bilinear form f symmetric?

Exercise 2. Compute the (symmetric) matrix of the quadratic form q on \mathbb{R}^{3} given by

$$
q(\mathbf{x})=x_{1} x_{2}+4 x_{1} x_{3}+x_{2}^{2}-6 x_{2} x_{3}+2 x_{3}^{2}
$$

for all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ in \mathbb{R}^{3} (with respect to the standard basis \mathcal{E}_{3} of \mathbb{R}^{3}).

Exercise 3. Give an example of a quadratic form q on \mathbb{Z}_{2}^{2} for which there does not exist a symmetric matrix $A \in \mathbb{Z}_{2}^{2 \times 2}$ that satisfies the following:

$$
q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x} \quad \text { for all } \mathbf{x} \in \mathbb{Z}_{2}^{2}
$$

Exercise 4. Determine whether the following matrices (with entries in \mathbb{R} are positive definite. Do this in two ways: using the Gaussian elimination test of positive definiteness, and using Sylvester's criterion of positive definiteness.
(a) $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$;
(b) $B=\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]$;
(c) $C=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 1 \\ 3 & 1 & 1\end{array}\right]$.

Exercise 5. Consider the bilinear form $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{3} given by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=3 x_{1} y_{1}+2 x_{1} y_{2}+x_{1} y_{3}+2 x_{2} y_{1}+2 x_{2} y_{2}+x_{3} y_{1}+2 x_{3} y_{3}
$$

for all $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ and $\mathbf{y}=\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T}$ in \mathbb{R}^{3}.
(a) Compute the matrix of the bilinear form $\langle\cdot, \cdot\rangle$ with respect to the standard basis \mathcal{E}_{4} of \mathbb{R}^{4}.
(b) Is the bilinear form $\langle\cdot, \cdot\rangle$ symmetric?
(c) Is the bilinear form $\langle\cdot, \cdot\rangle$ a scalar product in \mathbb{R}^{3} ?

