Linear Algebra 2: Tutorial 10

Todor Antić \& Irena Penev

Summer 2024

Exercise 1. Suppose you are given a matrix $A \in \mathbb{C}^{15 \times 15}$, for which your friend the calculator computes the characteristic polynomial

$$
p_{A}(\lambda)=\lambda^{7}(\lambda-7)^{2}(\lambda+1)^{6}
$$

and further helpfully computes the following:

- $\operatorname{rank}\left(A^{0}\right)=15$;
- $\operatorname{rank}\left(\left(A-7 I_{15}\right)^{0}\right)=15$;
- $\operatorname{rank}\left(A^{1}\right)=13 ;$
- $\operatorname{rank}\left(\left(A-7 I_{15}\right)^{1}\right)=14$;
- $\operatorname{rank}\left(A^{2}\right)=11 ;$
- $\operatorname{rank}\left(\left(A-7 I_{15}\right)^{2}\right)=13$;
- $\operatorname{rank}\left(A^{3}\right)=9$;
- $\operatorname{rank}\left(\left(A-7 I_{15}\right)^{3}\right)=13$;
- $\operatorname{rank}\left(A^{4}\right)=8$;
- $\operatorname{rank}\left(A^{5}\right)=8 ;$
- $\operatorname{rank}\left(\left(A+I_{15}\right)^{0}\right)=15$;
- $\operatorname{rank}\left(\left(A+I_{15}\right)^{1}\right)=12$;
- $\operatorname{rank}\left(\left(A+I_{15}\right)^{2}\right)=9$;
- $\operatorname{rank}\left(\left(A+I_{15}\right)^{3}\right)=9$.

What is the Jordan normal form of A?

Exercise 2. Suppose you are given a matrix $A \in \mathbb{C}^{7 \times 7}$, for which your friend the calculator computes the characteristic polynomial

$$
p_{A}(\lambda)=(\lambda-2)^{5}(\lambda-5)^{2}
$$

and further helpfully computes the following:

- $\operatorname{rank}\left(\left(A-2 I_{7}\right)^{0}\right)=7$;
- $\operatorname{rank}\left(\left(A-2 I_{7}\right)^{1}\right)=5$;
- $\operatorname{rank}\left(\left(A-5 I_{7}\right)^{0}\right)=7$;
- $\operatorname{rank}\left(\left(A-2 I_{7}\right)^{2}\right)=2$;
- $\operatorname{rank}\left(\left(A-5 I_{7}\right)^{1}\right)=5$;
- $\operatorname{rank}\left(\left(A-2 I_{7}\right)^{3}\right)=2$;

Oh, no!! The calculator messed up!!! (Or more likely: you miscopied something to and/or from the calculator.) How do you know that something went wrong?

Exercise 3. Suppose that a matrix $A \in \mathbb{C}^{10 \times 10}$ has (exactly) the following eigenvalues:

- $\lambda_{1}=3$ with algebraic multiplicity 3 and geometric multiplicity 1 ;
- $\lambda_{2}=4$ with algebraic multiplicity 3 and geometric multiplicity 1 ;
- $\lambda_{3}=-1$ with algebraic multiplicity 2 and geometric multiplicity 1 ;
- $\lambda_{4}=0$ with algebraic multiplicity 2 and geometric multiplicity 2.

Based on this information, can you determine the Jordan normal form of A (up to a reordering of the Jordan blocks)? If not, determine all possible candidates that are consistent with the information above.

Exercise 4. Suppose that a matrix $A \in \mathbb{C}^{12 \times 12}$ has (exactly) the following eigenvalues:

- $\lambda_{1}=-3$ with algebraic multiplicity 4 and geometric multiplicity 3;
- $\lambda_{2}=-4$ with algebraic multiplicity 4 and geometric multiplicity 2 .
- $\lambda_{3}=-5$ with algebraic multiplicity 4 and geometric multiplicity 1.

Based on this information, can you determine the Jordan normal form of A (up to a reordering of the Jordan blocks)? If not, determine all possible candidates that are consistent with the information above.

Exercise 5. For any subspace V of \mathbb{R}^{n}, let P_{V} be the matrix of orthogonal projection onto V. Is P_{V} orthogonally diagonalizable for every subspace V of \mathbb{R}^{n} ? If so, explain why. If not, decide if it must be diagonalizable.

Exercise 6. Diagonalize the following matrix in $\mathbb{R}^{n \times n}(n \geq 2)$.

$$
A_{n}=\left[\begin{array}{cccc}
3 & 1 & \ldots & 1 \\
1 & 3 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 3
\end{array}\right]
$$

Hint: Guess the eigenvalues, and then find bases of the corresponding eigenspaces. As a starting point, here are the characteristic polynomials of A_{n} for small values of n :

- $p_{A_{2}}(\lambda)=(\lambda-4)(\lambda-2)$
- $p_{A_{3}}(\lambda)=(\lambda-5)(\lambda-2)^{2}$
- $p_{A_{4}}(\lambda)=(\lambda-6)(\lambda-2)^{3}$

Exercise 7. Let p be any real number. Diagonalize the following matrix in $\mathbb{R}^{n \times n}(n \geq 2)$.

$$
B_{n}=\left[\begin{array}{cccc}
p & 1 & \ldots & 1 \\
1 & p & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & p
\end{array}\right] .
$$

Exercise 8. Orthogonally diagonalize the following matrix in $\mathbb{R}^{n \times n}(n \geq 2)$.

$$
C_{n}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right] .
$$

Hint: To make your Q, you might want to start with vectors $\mathbf{w}_{k}:=\left[\begin{array}{lllllll}1 & \ldots & 1 & -k & 0 & \ldots & 0\end{array}\right]^{T}$ (k many 1's), plus another vector (which one?). Now what?

