Linear Algebra 2: Tutorial 9

Todor Antić \& Irena Penev

Summer 2024

Exercise 1. Let \mathbb{F} be a field, and let $\lambda_{0} \in \mathbb{F}$ be an eigenvalue of a square matrix $A \in \mathbb{F}^{n \times n}$.
(a) Prove that for all non-negative integers m, λ_{0}^{m} is an eigenvalue of A^{m}.
(b) Prove that if A is invertible, then λ_{0}^{m} is an eigenvalue of A^{m} for all integers m.

- This, in particular, means that $\frac{1}{\lambda_{0}}$ is an eigenvalue of A^{-1} (again, assuming that A is invertible). How do you know that $\frac{1}{\lambda_{0}}$ is even defined, i.e. that you are not dividing by zero?
(c) Assume that $B:=P^{-1} A P$ for some invertible matrix $P \in \mathbb{F}^{n \times n}$. In particular, A and B are similar, and so by Theorem 8.2.9 of the Lecture Notes, A and B have the same eigenvalues. If \mathbf{v} is an eigenvector of A associated with the eigenvalue λ_{0}, can you construct an eigenvector of B associated with the eigenvalue λ_{0} ?

Exercise 2. Construct a matrix $A \in \mathbb{R}^{2 \times 2}$ such that A has no (real) eigenvalues, but A^{2} does have (real) eigenvalues.

Hint: Think geometrically.

Exercise 3. For the following matrices D and P (with entries understood to be in \mathbb{C}), set $A:=P D P^{-1}$ (so, $D=P^{-1} A P$), and then compute the characteristic polynomial and the spectrum of A, specify all the eigenvalues of A along with their algebraic and geometric multiplicities, and find a basis for each eigenspace of A. (In both parts, you may assume that the matrix P is indeed invertible. This can be checked, for example, by computing the determinant of P and seeing that it is non-zero.)
(a) $D=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$, $P=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 0 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \\ 2 & 2 & 3 & 3\end{array}\right]$;
(b) $D:=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right], P=\left[\begin{array}{rrrr}-1 & 0 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 2 & 3 & -2 & -3 \\ 4 & 5 & 6 & 7\end{array}\right]$.

Exercise 4. For each of the following matrices A, determine whether the matrix is diagonalizable, and if so, diagonalize it. If A is diagonalizable, then find a formula for A^{m} for all non-negative integers $m .^{1}$ Finally, determine whether your formula for A^{m} also works for negative integers m.
(a) $A=\left[\begin{array}{rrr}-2 & -10 & 0 \\ 0 & 3 & 0 \\ -5 & -10 & 3\end{array}\right]$
(b) $A=\left[\begin{array}{lll}-2 & 4 & 1 \\ -2 & 4 & 1 \\ -2 & 2 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{rrr}6 & 3 & 1 \\ -8 & -4 & -2 \\ 8 & 6 & 4\end{array}\right]$
(d) $A=\left[\begin{array}{rrrr}4 & -3 & 3 & 0 \\ 0 & 11 & 0 & -6 \\ -2 & 12 & -1 & -6 \\ 0 & 18 & 0 & -10\end{array}\right]$

[^0]
[^0]: ${ }^{1}$ If A is not diagonalizable, then you do not need to find a formula for A^{m}.

