Linear Algebra 2: Tutorial 8

Todor Antić \& Irena Penev

Summer 2024

Exercise 1. For each of the following matrices A in $\mathbb{C}^{3 \times 3}$, compute the characteristic polynomial $p_{A}(\lambda)$ and the spectrum of A. For each eigenvalue λ of A, determine both the algebraic and the geometric multiplicity of λ, and compute a basis of the eigenspace E_{λ}.
(a) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$;
(b) $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$;
(c) $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$;
(d) $A=\left[\begin{array}{rrr}3 & 0 & -2 \\ -7 & 0 & 4 \\ 4 & 0 & -3\end{array}\right]$;
(e) $A=\left[\begin{array}{lll}-1 & 0 & 1 \\ -3 & 0 & 1 \\ -4 & 0 & 3\end{array}\right]$;

Definition. For a field \mathbb{F}, a scalar $\lambda_{0} \in \mathbb{F}$, and a positive integer t, the Jordan block $J_{t}\left(\lambda_{0}\right)$ is defined to be following $t \times t$ matrix (with entries understood to be in \mathbb{F}):

$$
J_{t}\left(\lambda_{0}\right)=\left[\begin{array}{cccccc}
\lambda_{0} & 1 & 0 & \ldots & 0 & 0 \\
0 & \lambda_{0} & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \lambda_{0} & 1 \\
0 & 0 & 0 & \ldots & 0 & \lambda_{0}
\end{array}\right]_{t \times t}
$$

Thus, $J_{t}\left(\lambda_{0}\right)$ is a matrix in $\mathbb{F}^{t \times t}$, it has all λ_{0} 's on the main diagonal, all 1 's on the diagonal right above the main diagonal, and 0's everywhere else.

Exercise 2. Let \mathbb{F} be a field, let $\lambda_{0} \in \mathbb{F}$, and let t be a positive integer. What are the eigenvalues of $J_{t}\left(\lambda_{0}\right)$? What are their algebraic and geometric multiplicities? Find a basis of each eigenspace.

Definition. Let \mathbb{F} be a field. For square matrices $A_{1} \in \mathbb{F}^{n_{1} \times n_{1}}, A_{2} \in$ $\mathbb{F}^{n_{2} \times n_{2}}, \ldots, A_{k} \in \mathbb{F}^{n_{k} \times n_{k}}$, we define the direct sum of $A_{1}, A_{2} \ldots, A_{k}$ to be the $\left(n_{1}+n_{2}+\cdots+n_{k}\right) \times\left(n_{1}+n_{2}+\cdots+n_{k}\right)$ matrix

$$
A_{1} \oplus A_{2} \oplus \cdots \oplus A_{k}:=\left[\begin{array}{c:c:c:c}
A_{1} & O_{n_{1} \times n_{2}} & \ldots & O_{n_{1} \times n_{k}} \\
\hdashline O_{n_{2}} \times n_{1} & \bar{A}_{2}- & \cdots & \bar{O}_{n_{2} \times n_{k}} \\
\hdashline \vdots & \vdots & \ddots & \vdots \\
\hdashline O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \cdots & A_{k}
\end{array}\right] .
$$

For example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \oplus\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \oplus[1]=\left[\begin{array}{cc:ccc:c}
1 & 2 & 0 & 0 & 0 & 0 \\
3 & 4 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 1 & 2 & 3 & 0 \\
0 & 0 & 4 & 5 & 6 & 0 \\
0 & 0 & 7 & 8 & 9 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise 3. Let \mathbb{F} be a field, let $\lambda_{0} \in \mathbb{F}$, and let t_{1}, \ldots, t_{k} be positive integers. What are the eigenvalues of $J_{t_{1}}\left(\lambda_{0}\right) \oplus \cdots \oplus J_{t_{k}}\left(\lambda_{0}\right)$? What are the algebraic and geometric multiplicities of those eigenvalues?

Exercise 4. Let \mathbb{F} be a field, let $\lambda_{1}, \lambda_{2} \in \mathbb{F}$ be distinct, and let t_{1}, t_{2} be positive integers. What are the eigenvalues of $J_{t_{1}}\left(\lambda_{1}\right) \oplus J_{t_{2}}\left(\lambda_{2}\right)$? What are the algebraic and geometric multiplicities of those eigenvalues?

Exercise 5. Try to generalize Exercises 3 and 4. What are the eigenvalues of matrix that is a direct sum of arbitrarily many Jordan blocks, when those Jordan blocks can be of arbitrary size and type? ${ }^{1}$ (Such a matrix is called a "Jordan matrix," or a matrix in "Jordan normal form.") What are the algebraic and geometric multiplicities of those eigenvalues?

Remark: You don't have to give a fully formal proof, but try to give a reasonable proof outline.

[^0]
[^0]: ${ }^{1}$ So, the matrix is of the form $J_{t_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{t_{k}}\left(\lambda_{k}\right)$, where $\lambda_{1}, \ldots, \lambda_{k}$ are (not necessarily distinct) scalars in the field \mathbb{F} in question, and t_{1}, \ldots, t_{k} are some positive integers.

