Linear Algebra 2: Tutorial 7

Todor Antić \& Irena Penev

Summer 2024

Theorem 7.11.1. Let \mathbb{F} be an algebraically closed field. Let m and n be positive integers, and let $p(x)=\sum_{i=0}^{m} a_{i} x^{i}\left(a_{m} \neq 0\right)$ and $q(x)=\sum_{i=0}^{n} b_{i} x^{i}$ $\left(b_{n} \neq 0\right)$ be polynomials with coefficients in \mathbb{F}. Let P be the $n \times(n+m)$ matrix whose j-th row (for $j \in\{1, \ldots, n\}$) is

$$
\left[\begin{array}{lllllll}
\underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{j-1} a_{m} & a_{m-1} & \ldots & a_{0} & \underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{n-j}
\end{array}\right]
$$

and let Q be the $m \times(n+m)$ matrix whose j-th row (for $j \in\{1, \ldots, m\}$) is

$$
\left[\begin{array}{lllllll}
\underbrace{\begin{array}{llll}
0 & \ldots & 0
\end{array}}_{j-1} b_{n} & b_{n-1} & \ldots & b_{0} & \underbrace{\begin{array}{llll}
0 & \ldots & 0
\end{array}}_{m-j}
\end{array}\right] .
$$

Then $p(x)$ and $q(x)$ have a common root in \mathbb{F} if and only if

$$
\operatorname{det}\left(\left[\begin{array}{c}
P \\
-\bar{Q}
\end{array}\right]\right)=0 .
$$

Exercise 1. In this exercise we use the notation from Theorem 7.11.1.
(a) Analyze the proof of Theorem 7.11.1, and determine whether both implications require an algebraically closed field, or if only one (which one?) does.
(b) Suppose that \mathbb{F} is any field (not necessarily an algebraically closed one). Is either one of the statements below guarantees to be true? (Can you come up with a counterexample to one (or both) of the implications?)

1. If $\operatorname{det}\left(\left[\begin{array}{c}P \\ -\bar{Q}\end{array}\right]\right)=0$, then $p(x)$ and $q(x)$ have a common root in \mathbb{F}.
2. If $\operatorname{det}\left(\left[\begin{array}{c}P \\ -\bar{Q}\end{array}\right]\right) \neq 0$, then $p(x)$ and $q(x)$ do not have a common root in \mathbb{F}.

Exercise 2. For invertible matrices $A, B \in \mathbb{R}^{n \times n}$, what is the relationship between $\operatorname{adj}(A)$, adj (B), and $\operatorname{adj}(A B)$?

Exercise 3. Prove or disprove the following statement:
For all matrices $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$ in $\mathbb{R}^{n \times n}$, we have that $|\operatorname{det}(A)| \leq \prod_{i=1}^{n}\left\|\mathbf{a}_{i}\right\|$.

Hint: Volume.

Exercise 4. What is the maximum possible value of $\operatorname{det}(A)$ if A is a matrix in $\mathbb{R}^{4 \times 4}$, all of whose entries are 1,0 , or -1 ? Exhibit a matrix A for which this maximum is reached.

Exercise 5. Prove of disprove the following statement:
For all invertible matrices $A \in \mathbb{R}^{2 \times 2}$ and $\mathbf{v} \in \mathbb{R}^{2}$, we have that $\|A \mathbf{v}\| \leq|\operatorname{det}(A)|\|\mathbf{v}\|$.

Exercise 6. Either construct a matrix $A \in \mathbb{R}^{3 \times 3}$ such that $A^{2}=-I_{3}$, or prove that no such matrix exists.

Exercise 7.

(a) Either construct invertible matrices $P, A \in \mathbb{R}^{3 \times 3}$ such that $P^{-1} A P=-A$, or prove that no such matrices exist.
(b) Either construct invertible matrices $P, A \in \mathbb{R}^{3 \times 3}$ such that $P^{T} A P=-A$, or prove that no such matrices exist.

Exercise 8. Prove or disprove the each of the following statements.
(a) For all $A, B \in \mathbb{R}^{2 \times 2}$, $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.
(b) For all $A \in \mathbb{R}^{2}$, there exists some $B \in \mathbb{R}^{2 \times 2}$ such that $\operatorname{det}(A+B) \neq$ $\operatorname{det}(A)+\operatorname{det}(B)$.

Exercise 9. Show that the area of the triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ in \mathbb{R}^{2} is equal to

$$
\frac{1}{2}\left|\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\right|
$$

Exercise 10. For which (if any) real values of k is the matrix

$$
A=\left[\begin{array}{crr}
k^{2} & 1 & 4 \\
k & -1 & -2 \\
1 & 1 & 1
\end{array}\right]
$$

invertible?

