Linear Algebra 2: Tutorial 7

Todor Antić & Irena Penev

Summer 2024

Theorem 7.11.1. Let \mathbb{F} be an algebraically closed field. Let m and n be positive integers, and let $p(x) = \sum_{i=0}^{m} a_i x^i$ $(a_m \neq 0)$ and $q(x) = \sum_{i=0}^{n} b_i x^i$ $(b_n \neq 0)$ be polynomials with coefficients in \mathbb{F} . Let P be the $n \times (n+m)$ matrix whose j-th row (for $j \in \{1, ..., n\}$) is

and let Q be the $m \times (n+m)$ matrix whose j-th row (for $j \in \{1, ..., m\}$) is

Then p(x) and q(x) have a common root in \mathbb{F} if and only if

$$det\left(\left[-\frac{P}{\bar{Q}}\right]\right) = 0.$$

Exercise 1. In this exercise we use the notation from Theorem 7.11.1.

- (a) Analyze the proof of Theorem 7.11.1, and determine whether both implications require an algebraically closed field, or if only one (which one?) does.
- (b) Suppose that \mathbb{F} is **any** field (not necessarily an algebraically closed one). Is either one of the statements below guarantees to be true? (Can you come up with a counterexample to one (or both) of the implications?)
 - 1. If $det\left(\begin{bmatrix} P \\ \bar{Q} \end{bmatrix}\right) = 0$, then p(x) and q(x) have a common root in \mathbb{F} .
 - 2. If $det\left(\left[-\frac{P}{\bar{Q}}\right]\right) \neq 0$, then p(x) and q(x) do **not** have a common root in \mathbb{F} .

Exercise 2. For invertible matrices $A, B \in \mathbb{R}^{n \times n}$, what is the relationship between adj(A), adj(B), and adj(AB)?

Exercise 3. Prove or disprove the following statement:

For all matrices $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$ in $\mathbb{R}^{n \times n}$, we have that $|\det(A)| \leq \prod_{i=1}^n ||\mathbf{a}_i||$.

Hint: Volume.

Exercise 4. What is the maximum possible value of det(A) if A is a matrix in $\mathbb{R}^{4\times4}$, all of whose entries are 1, 0, or -1? Exhibit a matrix A for which this maximum is reached.

Exercise 5. Prove of disprove the following statement:

For all invertible matrices $A \in \mathbb{R}^{2 \times 2}$ and $\mathbf{v} \in \mathbb{R}^2$, we have that $||A\mathbf{v}|| \leq |det(A)| ||\mathbf{v}||$.

Exercise 6. Either construct a matrix $A \in \mathbb{R}^{3 \times 3}$ such that $A^2 = -I_3$, or prove that no such matrix exists.

Exercise 7.

- (a) Either construct invertible matrices $P, A \in \mathbb{R}^{3 \times 3}$ such that $P^{-1}AP = -A$, or prove that no such matrices exist.
- (b) Either construct invertible matrices $P, A \in \mathbb{R}^{3 \times 3}$ such that $P^T A P = -A$, or prove that no such matrices exist.

Exercise 8. Prove or disprove the each of the following statements.

- (a) For all $A, B \in \mathbb{R}^{2 \times 2}$, $det(A + B) \neq det(A) + det(B)$.
- (b) For all $A \in \mathbb{R}^2$, there exists some $B \in \mathbb{R}^{2 \times 2}$ such that $det(A + B) \neq det(A) + det(B)$.

Exercise 9. Show that the area of the triangle with vertices (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) in \mathbb{R}^2 is equal to

$$\frac{1}{2} \left| \left| \begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right| \right|.$$

Exercise 10. For which (if any) real values of k is the matrix

$$A = \begin{bmatrix} k^2 & 1 & 4 \\ k & -1 & -2 \\ 1 & 1 & 1 \end{bmatrix}$$

invertible?