Linear Algebra 2: Tutorial 6

Todor Antić & Irena Penev

Summer 2024

Exercise 1. Using the **definition** of a determinant (with permutations), compute the determinant of the matrix below.

$$A = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 4 & 0 \end{bmatrix}$$

Exercise 2. Consider the matrix A below, with entries understood to be in \mathbb{R} . Determine whether det(A) is positive, negative, or zero. Can you tell which it is without actually computing the determinant?

A	=	1	1000	2	3
		1000	-3	5	0
		2	3	5	1000
		1	2	1000	4

Exercise 3. Compute the determinant of the matrix below, with entries understood to be in \mathbb{Z}_3 .

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

Exercise 4. Let a, b, c, d, e, f, g, h, i be real numbers such that

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7.$$

Compute the following determinants.

1.
$$\begin{vmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{vmatrix}$$
4.
 $\begin{vmatrix} g & h & i \\ a & b & c \\ d & e & f \end{vmatrix}$

2.
 $\begin{vmatrix} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{vmatrix}$
5.
 $\begin{vmatrix} a & b & c \\ 2d + a & 2e + b & 2f + c \\ g & h & i \end{vmatrix}$

3.
 $\begin{vmatrix} a & b & c \\ g & h & i \\ d & e & f \end{vmatrix}$
6.
 $\begin{vmatrix} a + d & b + e & c + f \\ d & e & f \\ g & h & i \end{vmatrix}$

Exercise 5. Compute the determinants of the matrices below, with entries understood to be in \mathbb{R} .

Exercise 6. Let A be an $n \times n$ matrix of the following form:

		[0	0	• • •	0	$a_{1,n}$	
		0	0		$a_{2,n-1}$	$a_{2,n}$	
A	=	:	:	.	:	:	
		0	$a_{n-1,2}$		$a_{n-1,n-1}$	$a_{n-1,n}$	
		$\lfloor a_{n,1}$	$a_{n,2}$		$a_{n,n-1}$	$a_{n,n}$	-

Find a formula for det(A).

Exercise 7. Using determinants, determine for which (if any) values of k the matrix A (below) is invertible. (Entries of A are understood to be in \mathbb{R}).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & k & 1 \\ 3 & 1 & 0 \end{bmatrix}$$

Exercise 8. Let $A \in \mathbb{R}^{n \times n}$. If det(A) = 3, then what is $det(A^T A)$?

Exercise 9. Let $A \in \mathbb{R}^{n \times n}$. What can you say about the sign of $det(A^T A)$?

Definition. Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$.

- A is symmetric if $A^T = A$.
- A is skew-symmetric of $A^T = -A$.

Exercise 10. Let \mathbb{F} be a field of characteristic other than 2, i.e. assume that in the field \mathbb{F} , $1 + 1 \neq 0$.

- (a) Show that if n is odd positive integer, then any skew-symmetric matrix $A \in \mathbb{F}^{n \times n}$ is non-invertible. (Use determinants.)
- (b) For each even positive integer n, construct an invertible skew-symmetric matrix in $\mathbb{F}^{n \times n}$.