Linear Algebra 2: Tutorial 6

Todor Antić \& Irena Penev

Summer 2024

Exercise 1. Using the definition of a determinant (with permutations), compute the determinant of the matrix below.

$$
A=\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 4 & 0
\end{array}\right]
$$

Exercise 2. Consider the matrix A below, with entries understood to be in \mathbb{R}. Determine whether $\operatorname{det}(A)$ is positive, negative, or zero. Can you tell which it is without actually computing the determinant?

$$
A=\left[\begin{array}{cccc}
1 & 1000 & 2 & 3 \\
1000 & -3 & 5 & 0 \\
2 & 3 & 5 & 1000 \\
1 & 2 & 1000 & 4
\end{array}\right]
$$

Exercise 3. Compute the determinant of the matrix below, with entries understood to be in \mathbb{Z}_{3}.

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
2 & 2 & 2 & 2 \\
2 & 2 & 0 & 0 \\
1 & 0 & 0 & 2
\end{array}\right]
$$

Exercise 4. Let $a, b, c, d, e, f, g, h, i$ be real numbers such that

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=7 .
$$

Compute the following determinants.

1. $\left|\begin{array}{ccc}a & b & c \\ d & e & f \\ 5 g & 5 h & 5 i\end{array}\right|$
2. $\left|\begin{array}{ccc}a & b & c \\ 3 d & 3 e & 3 f \\ g & h & i\end{array}\right|$
3. $\left|\begin{array}{lll}a & b & c \\ g & h & i \\ d & e & f\end{array}\right|$
4. $\left|\begin{array}{lll}g & h & i \\ a & b & c \\ d & e & f\end{array}\right|$
5. $\left|\begin{array}{ccc}a & b & c \\ 2 d+a & 2 e+b & 2 f+c \\ g & h & i\end{array}\right|$
6. $\left|\begin{array}{ccc}a+d & b+e & c+f \\ d & e & f \\ g & h & i\end{array}\right|$

Exercise 5. Compute the determinants of the matrices below, with entries understood to be in \mathbb{R}.

- $A_{1}=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 5\end{array}\right]$
- $A_{4}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 2 \\ 3 & 3 & 3\end{array}\right]$
- $A_{2}=\left[\begin{array}{llll}5 & 0 & 0 & 0 \\ 4 & 6 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4\end{array}\right]$
- $A_{5}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4\end{array}\right]$
- $A_{3}=\left[\begin{array}{llll}1 & 0 & -1 & 3 \\ 2 & 0 & -2 & 4 \\ 3 & 3 & -3 & 3 \\ 4 & 4 & -4 & 4\end{array}\right]$
- $A_{6}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 \\ 0 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5\end{array}\right]$

Exercise 6. Let A be an $n \times n$ matrix of the following form:

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & a_{1, n} \\
0 & 0 & \ldots & a_{2, n-1} & a_{2, n} \\
\vdots & \vdots & . & \vdots & \vdots \\
0 & a_{n-1,2} & \ldots & a_{n-1, n-1} & a_{n-1, n} \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

Find a formula for $\operatorname{det}(A)$.

Exercise 7. Using determinants, determine for which (if any) values of k the matrix A (below) is invertible. (Entries of A are understood to be in \mathbb{R}).

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & k & 1 \\
3 & 1 & 0
\end{array}\right]
$$

Exercise 8. Let $A \in \mathbb{R}^{n \times n}$. If $\operatorname{det}(A)=3$, then what is $\operatorname{det}\left(A^{T} A\right)$?

Exercise 9. Let $A \in \mathbb{R}^{n \times n}$. What can you say about the sign of $\operatorname{det}\left(A^{T} A\right)$?

Definition. Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$.

- A is symmetric if $A^{T}=A$.
- A is skew-symmetric of $A^{T}=-A$.

Exercise 10. Let \mathbb{F} be a field of characteristic other than 2, i.e. assume that in the field $\mathbb{F}, 1+1 \neq 0$.
(a) Show that if n is odd positive integer, then any skew-symmetric matrix $A \in \mathbb{F}^{n \times n}$ is non-invertible. (Use determinants.)
(b) For each even positive integer n, construct an invertible skew-symmetric matrix in $\mathbb{F}^{n \times n}$.

