Linear Algebra 2: Tutorial 5

Todor Antić & Irena Penev

Summer 2024

Theorem 6.6.3. Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A(A^TA)^{-1}A^T$ is the standard matrix of orthogonal projection onto Col(A), that is, for all $\mathbf{x} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{x} onto C := Col(A) is given by

$$\mathbf{x}_C = A(A^T A)^{-1} A^T \mathbf{x}$$

Theorem 6.7.1. Let $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$. Then the matrix-vector equation

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

is consistent, and moreover, its solution set is precisely the set of vectors \mathbf{x} in \mathbb{R}^m that minimize the expression

$$||A\mathbf{x} - \mathbf{b}||.$$

The Interpolation Theorem. For all pairwise distinct $x_0, x_1, \ldots, x_n \in \mathbb{R}$ and all (not necessarily distinct) $y_0, y_1, \ldots, y_n \in \mathbb{R}$, there exists a unique polynomial p(x) of degree at most n such that $p(x_i) = y_i$ for all $i = 0, 1, \ldots, n$.

Remark: This theorem essentially states that if we are given n+1 data points $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$ (with x_0, x_1, \ldots, x_n pairwise distinct), then there is a unique polynomial of degree at most n whose graph passes through those data points.

Proof. Omitted.

Exercise 1. Compute the matrices of the following permutations in S_4 :

(a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix};$$
 (b) $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$

Exercise 2. Determine which of the following matrices are permutation matrices, and for those that are, find the permutations that correspond to them.

$$(a) \ A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$
$$(b) \ B = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix};$$
$$(c) \ C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Exercise 3. In what follows, we assume that \mathbb{R}^3 is equipped with the standard scalar product \cdot . Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}.$$

Set $C := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.

(a) Compute the standard matrix P of the orthogonal projection $proj_C : \mathbb{R}^3 \to \mathbb{R}^3$ onto C.

Warning: The matrix $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ does not have rank 3. So, you cannot use Theorem 6.6.3 directly.

(b) Using the matrix P from part (a), compute the vector \mathbf{x}_C (the projection of \mathbf{x} onto C). Does \mathbf{x} belong to C?

Exercise 4. Find a polynomial of degree at most 3 that passes through the points (1,3), (-1,13), (2,1), (-2,33).

Exercise 5. Fit a linear function of the the form $f(t) = c_0 + c_1 t$ to the data points (0,0), (0,1), (1,1) using least squares.

Exercise 6. The following table gives world population in 10-year intervals, starting with 1950 and ending with 2000.

y ear	population (in 10^9)
1950	2.519
1960	2.982
1970	3.692
1980	4.435
1990	5.263
2000	6.070

We would like to use the least-squares method to find the linear function that best fits these data. Set up the matrix-vector equation $A\mathbf{x} = \mathbf{b}$ to which we need to apply the least-squares method.

Exercise 7. Using the least-squares method, fit a quadratic function to the four data points $(a_1, b_1) = (-1, 8)$, $(a_2, b_2) = (0, 8)$, $(a_3, b_3) = (1, 4)$, and $(a_4, b_4) = (2, 16)$.

Exercise 8. Explain how one would a trigonometric function of the form $f(t) = c_0 + c_1 \sin t + c_2 \cos t$ that best fits the data points (0,0), (1,1), (2,2), (3,3).

Remark: Here, you should set up the matrix-vector equation $A\mathbf{c} = \mathbf{b}$ (where A and \mathbf{b} are known and \mathbf{c} is the unknown) to which the least-squares method should be applied. Don't compute the actual least-squares solution.