Linear Algebra 2: Tutorial 5

Todor Antić \& Irena Penev

Summer 2024

Theorem 6.6.3. Let $A \in \mathbb{R}^{n \times m}$ be a matrix of rank m (i.e. A is a matrix of full column rank). Then the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the standard matrix of orthogonal projection onto $\operatorname{Col}(A)$, that is, for all $\mathbf{x} \in \mathbb{R}^{n}$, the orthogonal projection of x onto $C:=\operatorname{Col}(A)$ is given by

$$
\mathbf{x}_{C}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{x}
$$

Theorem 6.7.1. Let $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^{n}$. Then the matrix-vector equation

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

is consistent, and moreover, its solution set is precisely the set of vectors \mathbf{x} in \mathbb{R}^{m} that minimize the expression

$$
\|A \mathbf{x}-\mathbf{b}\| .
$$

The Interpolation Theorem. For all pairwise distinct $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{R}$ and all (not necessarily distinct) $y_{0}, y_{1}, \ldots, y_{n} \in \mathbb{R}$, there exists a unique polynomial $p(x)$ of degree at most n such that $p\left(x_{i}\right)=y_{i}$ for all $i=0,1, \ldots, n$.

Remark: This theorem essentially states that if we are given $n+1$ data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ (with $x_{0}, x_{1}, \ldots, x_{n}$ pairwise distinct), then there is a unique polynomial of degree at most n whose graph passes through those data points.

Proof. Omitted.

Exercise 1. Compute the matrices of the following permutations in S_{4} :
(a) $\sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$;
(b) $\pi=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)$.

Exercise 2. Determine which of the following matrices are permutation matrices, and for those that are, find the permutations that correspond to them.
(a) $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$;
(b) $B=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$;
(c) $C=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$.

Exercise 3. In what follows, we assume that \mathbb{R}^{3} is equipped with the standard scalar product \cdot. Consider the following vectors in \mathbb{R}^{3} :

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$\operatorname{Set} C:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$.
(a) Compute the standard matrix P of the orthogonal projection proj_{C} : $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ onto C.

Warning: The matrix $\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$ does not have rank 3. So, you cannot use Theorem 6.6.3 directly.
(b) Using the matrix P from part (a), compute the vector \mathbf{x}_{C} (the projection of \mathbf{x} onto C). Does \mathbf{x} belong to C ?

Exercise 4. Find a polynomial of degree at most 3 that passes through the points $(1,3),(-1,13),(2,1),(-2,33)$.

Exercise 5. Fit a linear function of the the form $f(t)=c_{0}+c_{1} t$ to the data points $(0,0),(0,1),(1,1)$ using least squares.

Exercise 6. The following table gives world population in 10-year intervals, starting with 1950 and ending with 2000.

year	population $\left(\right.$ in $\left.10^{9}\right)$
1950	2.519
1960	2.982
1970	3.692
1980	4.435
1990	5.263
2000	6.070

We would like to use the least-squares method to find the linear function that best fits these data. Set up the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ to which we need to apply the least-squares method.

Exercise 7. Using the least-squares method, fit a quadratic function to the four data points $\left(a_{1}, b_{1}\right)=(-1,8),\left(a_{2}, b_{2}\right)=(0,8),\left(a_{3}, b_{3}\right)=(1,4)$, and $\left(a_{4}, b_{4}\right)=(2,16)$.

Exercise 8. Explain how one would a trigonometric function of the form $f(t)=c_{0}+c_{1} \sin t+c_{2} \cos t$ that best fits the data points $(0,0),(1,1),(2,2)$, $(3,3)$.

Remark: Here, you should set up the matrix-vector equation $A \mathbf{c}=\mathbf{b}$ (where A and \mathbf{b} are known and \mathbf{c} is the unknown) to which the least-squares method should be applied. Don't compute the actual least-squares solution.

