Linear Algebra 2: Tutorial 4

Todor Antić & Irena Penev

Summer 2024

Exercise 1. Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

Set $U := Span(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$. Compute an orthonormal basis of U and an orthonormal basis of U^{\perp} .

Exercise 2. Consider the scalar product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^2 defined by

 $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 2 x_2 y_2$

for all $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ in \mathbb{R}^2 . (You may assume that $\langle \cdot, \cdot \rangle$ really is a scalar product in \mathbb{R}^2 .) Set $U := Span(\begin{bmatrix} 1\\1 \end{bmatrix})$. Find an orthonormal basis of U and an orthonormal basis of U^{\perp} with respect to $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$.

Exercise 3. Let $|| \cdot ||$ be the norm induced by the standard scalar product \cdot on \mathbb{R}^n . Define $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by setting

$$\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x}||^2 - ||\mathbf{y}||^2 \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

Is $\langle \cdot, \cdot \rangle$ a scalar product in \mathbb{R}^n ? Justify your answer.

Exercise 4.

(a) Let V be a real vector space, equipped with the scalar product $\langle \cdot, \cdot \rangle$, and let $\mathcal{B} = {\mathbf{u}_1, \ldots, \mathbf{u}_n}$ be an orthonormal basis of V. Let \cdot be the standard scalar product in \mathbb{R}^n . Prove that for all $\mathbf{x}, \mathbf{y} \in V$, we have that

$$\langle \mathbf{x}, \mathbf{y}
angle = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} \cdot \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$$

Hint: The first thing you should do is find a formula for $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}}$ and $\begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}$ using the orthonormal basis \mathcal{B} and the scalar product $\langle \cdot, \cdot \rangle$ in V.

(b) Same question as in part (a), only for a complex vector space V.

Exercise 5. Let $\langle \cdot, \cdot \rangle$ be a scalar product in \mathbb{R}^n (not necessarily the standard one). Let V be a real vector space, and let $f: V \to \mathbb{R}^n$ be a linear transformation. We define $\langle \cdot, \cdot \rangle_f : V \times V \to \mathbb{R}$ by setting

$$\langle \mathbf{u}, \mathbf{v} \rangle_f = \langle f(\mathbf{u}), f(\mathbf{v}) \rangle$$

for all $\mathbf{u}, \mathbf{v} \in V$. Prove that $\langle \cdot, \cdot \rangle_f$ is a scalar product in V if and only if f is one-to-one.