Linear Algebra 2: Tutorial 4

Todor Antić \& Irena Penev

Summer 2024

Exercise 1. Consider the following vectors in \mathbb{R}^{3} :

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right], \quad \mathbf{a}_{4}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Set $U:=\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)$. Compute an orthonormal basis of U and an orthonormal basis of U^{\perp}.

Exercise 2. Consider the scalar product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{2} defined by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+2 x_{2} y_{2}
$$

for all $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ in \mathbb{R}^{2}. (You may assume that $\langle\cdot, \cdot\rangle$ really is a scalar product in \mathbb{R}^{2}.) Set $U:=\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$. Find an orthonormal basis of U and an orthonormal basis of U^{\perp} with respect to $\langle\cdot, \cdot\rangle$ and the induced norm \|. \|.

Exercise 3. Let $\|\cdot\|$ be the norm induced by the standard scalar product • on \mathbb{R}^{n}. Define $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by setting

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\|\mathbf{x}+\mathbf{y}\|^{2}-\|\mathbf{x}\|^{2}-\|\mathbf{y}\|^{2} \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Is $\langle\cdot, \cdot\rangle$ a scalar product in \mathbb{R}^{n} ? Justify your answer.

Exercise 4.

(a) Let V be a real vector space, equipped with the scalar product $\langle\cdot, \cdot\rangle$, and let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthonormal basis of V. Let \cdot be the standard scalar product in \mathbb{R}^{n}. Prove that for all $\mathbf{x}, \mathbf{y} \in V$, we have that

$$
\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}} \cdot[\mathbf{y}]_{\mathcal{B}} .
$$

Hint: The first thing you should do is find a formula for $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{y}]_{\mathcal{B}}$ using the orthonormal basis \mathcal{B} and the scalar product $\langle\cdot, \cdot\rangle$ in V.
(b) Same question as in part (a), only for a complex vector space V.

Exercise 5. Let $\langle\cdot, \cdot\rangle$ be a scalar product in \mathbb{R}^{n} (not necessarily the standard one). Let V be a real vector space, and let $f: V \rightarrow \mathbb{R}^{n}$ be a linear transformation. We define $\langle\cdot, \cdot\rangle_{f}: V \times V \rightarrow \mathbb{R}$ by setting

$$
\langle\mathbf{u}, \mathbf{v}\rangle_{f}=\langle f(\mathbf{u}), f(\mathbf{v})\rangle
$$

for all $\mathbf{u}, \mathbf{v} \in V$. Prove that $\langle\cdot, \cdot\rangle_{f}$ is a scalar product in V if and only if f is one-to-one.

