Linear Algebra 2: Tutorial 3

Todor Antić \& Irena Penev

Summer 2024

Definition. Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle\cdot, \cdot\rangle$. For a non-zero vector $\mathbf{u} \in V$ and any vector $\mathbf{v} \in V$, the orthogonal projection of \mathbf{v} onto \mathbf{u} is the vector

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v}):=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u} .
$$

Exercise 1. Suppose that V is a real of complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$, and suppose that $\mathbf{u} \in V \backslash\{\mathbf{0}\}$.
(a) If $\mathbf{v} \in V$ is a scalar multiple of \mathbf{u}, what is $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$?
(b) If $\mathbf{w} \in V$ is orthogonal to \mathbf{u}, what is $\operatorname{proj}_{\mathbf{u}}(\mathbf{w})$?

In both parts, justify your answer formally (using the definition of orthogonal projection), and draw a picture to give the intuition behind your answer.

Exercise 2. Consider the following linearly independent vectors in \mathbb{R}^{4} :

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
0 \\
2 \\
1 \\
-1
\end{array}\right] .
$$

Compute an orthonormal basis of $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ in two different ways: using Gram-Schmidt orthogonalization (version 1) and using Gram-Schmidt orthogonalization (version 2).

Exercise 3. Suppose that V is a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent vectors in V. Now suppose that you perform the two versions of Gram-Schmidt orthogonalization on the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in order to obtain orthonormal bases of $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$. Under what circumstances will your two orthonormal bases be different? (Will they ever be different?) Justify your answer.

Exercise 4. Consider the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ from Exercise 2. How would you obtain an orthonormal basis for $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ that is different from the one(s) that you obtained in Exercise 2?

Remark: Your basis should differ from the one(s) from Exercise 2 not merely in the order in which the vectors appear in the basis, but also in terms of the actual vectors that the basis contains. Don't perform the whole calculation: just explain how you would compute.

Exercise 5. Suppose that V is a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Suppose that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal set of non-zero vectors in V. What do you obtain if you perform the Gram-Schmidt orthogonalization process (version 1) on $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ without normalizing at the end? And what happens if you do normalize at the end? What happens if you perform the Gram-Schmidt orthogonalization process (version 2) on $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$?

Exercise 6. Consider the following vectors in \mathbb{R}^{7} :

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
3 \\
9 \\
27 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{r}
-2 \\
4 \\
-6 \\
8 \\
0 \\
0 \\
0
\end{array}\right]
$$

Compute an orthonormal basis of $U:=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)$. Can you tell what the answer will be without actually performing Gram-Schmidt orthogonalization (either version)?

