Linear Algebra 2: Tutorial 3

Todor Antić & Irena Penev

Summer 2024

Definition. Suppose we are given a real or complex vector space V, equipped with a scalar product $\langle \cdot, \cdot \rangle$. For a **non-zero** vector $\mathbf{u} \in V$ and any vector $\mathbf{v} \in V$, the orthogonal projection of \mathbf{v} onto \mathbf{u} is the vector

$$proj_{\mathbf{u}}(\mathbf{v}) := \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

Exercise 1. Suppose that V is a real of complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$, and suppose that $\mathbf{u} \in V \setminus \{\mathbf{0}\}$.

(a) If $\mathbf{v} \in V$ is a scalar multiple of \mathbf{u} , what is $proj_{\mathbf{u}}(\mathbf{v})$?

(b) If $\mathbf{w} \in V$ is orthogonal to \mathbf{u} , what is $proj_{\mathbf{u}}(\mathbf{w})$?

In both parts, justify your answer formally (using the definition of orthogonal projection), and draw a picture to give the intuition behind your answer.

Exercise 2. Consider the following linearly independent vectors in \mathbb{R}^4 :

$\mathbf{v}_1 =$	1 1 1	,	$\mathbf{v}_2 = $	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$,	$\mathbf{v}_3 =$	$\begin{array}{c} 0 \\ 2 \\ 1 \end{array}$	
				1			$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	

Compute an orthonormal basis of $U := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ in two different ways: using Gram-Schmidt orthogonalization (version 1) and using Gram-Schmidt orthogonalization (version 2).

Exercise 3. Suppose that V is a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $||\cdot||$, and suppose that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent vectors in V. Now suppose that you perform the two versions of Gram-Schmidt orthogonalization on the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in order to obtain orthonormal bases of $U := Span(\mathbf{v}_1, \ldots, \mathbf{v}_k)$. Under what circumstances will your two orthonormal bases be different? (Will they ever be different?) Justify your answer.

Exercise 4. Consider the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ from Exercise 2. How would you obtain an orthonormal basis for $U := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ that is different from the one(s) that you obtained in Exercise 2?

Remark: Your basis should differ from the one(s) from Exercise 2 not merely in the order in which the vectors appear in the basis, but also in terms of the actual vectors that the basis contains. Don't perform the whole calculation: just explain how you would compute.

Exercise 5. Suppose that V is a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $||\cdot||$. Suppose that $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is an orthogonal set of non-zero vectors in V. What do you obtain if you perform the Gram-Schmidt orthogonalization process (version 1) on $\mathbf{v}_1, \ldots, \mathbf{v}_k$ without normalizing at the end? And what happens if you do normalize at the end? What happens if you perform the Gram-Schmidt orthogonalization process (version 2) on $\mathbf{v}_1, \ldots, \mathbf{v}_k$?

Exercise 6. Consider the following vectors in \mathbb{R}^7 :

	[2]	1		[-1]		[3]		[-2]	
	0			1			9			4	
	0			0			27			-6	
$\mathbf{v}_1 =$	0	,	$\mathbf{v}_2 =$	0	,	$\mathbf{v}_3 = $	0	,	$\mathbf{v}_4 =$	8	.
	0			0			0			0	
	0			0			0			0	
				0			0				

Compute an orthonormal basis of $U := Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$. Can you tell what the answer will be without actually performing Gram-Schmidt orthogonalization (either version)?