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Exercise 1. Compute the angle θ between the following two vectors in R4:

u =


1

−1
2

−2

 and v =


2
3
4
5

 .

What kind of angle (acute, right, or obtuse) do you get?

Exercise 2. Compute the angle θ between the following two vectors in Rn:

u =


1
1
...
1

 and v =


1
0
...
0

 .

What values do you get for θ when n = 2, 3, 4? (When do you get a nice
angle and when do you need to settle for an expression involving an inverse
trigonometric function?) Find the limit of θ as n approaches infinity.

Exercise 3. Find the set of all vectors that are (simultaneously) orthogonal
to the following three vectors in R4 (where orthogonality is assumed to be
with respect to the standard scalar product · in R4):

u1 =


1/2
1/2
1/2
1/2

 , u2 =


1/2
1/2

−1/2
−1/2

 , u3 =


1/2

−1/2
1/2

−1/2

 .

Exercise 4. Generalize your answer to Exercise 3. More precisely, suppose
that you are given vectors a1, . . . , ak in Rn. How would you compute the set
of all vectors in Rn that are simultaneously orthogonal (with respect to the
standard scalar product ·) to the vectors a1, . . . ,ak? Must the set that you
obtain be a subspace of Rn?
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Exercise 5. By carefully examining the proof of the Cauchy-Schwarz in-
equality (copied and pasted from the Lecture Notes below), determine when
that inequality becomes an equality.

The Cauchy–Schwarz inequality. Let V be a real or complex vector space,
equipped with a scalar product ⟨·, ·⟩ and the induced norm || · ||. Then

|⟨x,y⟩| ≤ ||x|| ||y||

for all x,y ∈ V .

Proof. Fix x,y ∈ V . We may assume that ⟨x,y⟩ ̸= 0, for otherwise, the
result is immediate. Note that this implies that x,y ̸= 0, and consequently,
||x||, ||y|| ≠ 0. We set

z := ⟨y,y⟩
⟨x,y⟩x− y,

and we compute

⟨z,y⟩ = ⟨ ⟨y,y⟩⟨x,y⟩x− y,y⟩ (∗)
= ⟨y,y⟩

⟨x,y⟩⟨x,y⟩ − ⟨y,y⟩ = 0,

where (*) follows from r.2 and r.3 if V is a real vector space, or from c.2 and
c.3 if V is a complex vector space. We have now shown that z ⊥ y, and so
by the Pythagorean theorem, we have that

||z+ y||2 = ||z||2 + ||y||2.

But by construction, z+ y = ⟨y,y⟩
⟨x,y⟩x, and consequently:

||z+ y|| = || ⟨y,y⟩⟨x,y⟩x||
(∗)
= | ⟨y,y⟩⟨x,y⟩ | ||x|| = |⟨y,y⟩|

|⟨x,y⟩| ||x|| = ||y||2
|⟨x,y⟩| ||x||,

where (*) follows from Proposition 6.2.1. So,

||y||4
|⟨x,y⟩|2 ||x||2 = ||z+ y||2 = ||z||2 + ||y||2 ≥ ||y||2,

which yields
||y||4

|⟨x,y⟩|2 ||x||2 ≥ ||y||2.

Since ⟨x,y⟩ and ||y|| are both non-zero, we have that |⟨x,y⟩|2
||y||2 is defined and

positive. So, we may multiply both sides of the inequality above by |⟨x,y⟩|2
||y||2

to obtain
||x||2||y||2 ≥ |⟨x,y⟩|2.

By taking the square root of both sides, we get

||x|| ||y|| ≥ |⟨x,y⟩|,

which is what we needed to show.
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Definition. A scalar product (also called inner product) in a real vector
space V is a function ⟨·, ·⟩ : V × V → R that satisfies the following four
axioms:

r.1. for all x ∈ V , ⟨x,x⟩ ≥ 0, and equality holds if and only if x = 0;

r.2. for all x,y, z ∈ V , ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩;

r.3. for all x,y ∈ V and α ∈ R, ⟨αx,y⟩ = α⟨x,y⟩;

r.4. for all x,y ∈ V , ⟨x,y⟩ = ⟨y,x⟩.

Exercise 6. Which (if any) of the following functions ⟨·, ·⟩ : R2 × R2 → R
are scalar products in R2?

(a) ⟨x,y⟩ = x1y1 − x2y2 for all x =

[
x1
x2

]
and y =

[
y1
y2

]
in R2;

(b) ⟨x,y⟩ = x1y1 + 2x2y2 for all x =

[
x1
x2

]
and y =

[
y1
y2

]
in R2;

(c) ⟨x,y⟩ = x1x2 + y1y2 for all x =

[
x1
x2

]
and y =

[
y1
y2

]
in R2.

Make sure you justify your answer in each case. You should refer to the
definition of the scalar product in a real vector space (above).
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