Linear Algebra 2: Tutorial 2

Todor Antić \& Irena Penev

Summer 2024

Exercise 1. Compute the angle θ between the following two vectors in \mathbb{R}^{4} :

$$
\mathbf{u}=\left[\begin{array}{r}
1 \\
-1 \\
2 \\
-2
\end{array}\right] \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

What kind of angle (acute, right, or obtuse) do you get?

Exercise 2. Compute the angle θ between the following two vectors in \mathbb{R}^{n} :

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

What values do you get for θ when $n=2,3,4$? (When do you get a nice angle and when do you need to settle for an expression involving an inverse trigonometric function?) Find the limit of θ as n approaches infinity.

Exercise 3. Find the set of all vectors that are (simultaneously) orthogonal to the following three vectors in \mathbb{R}^{4} (where orthogonality is assumed to be with respect to the standard scalar product \cdot in \mathbb{R}^{4}):

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{r}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] .
$$

Exercise 4. Generalize your answer to Exercise 3. More precisely, suppose that you are given vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ in \mathbb{R}^{n}. How would you compute the set of all vectors in \mathbb{R}^{n} that are simultaneously orthogonal (with respect to the standard scalar product $\cdot)$ to the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$? Must the set that you obtain be a subspace of \mathbb{R}^{n} ?

Exercise 5. By carefully examining the proof of the Cauchy-Schwarz inequality (copied and pasted from the Lecture Notes below), determine when that inequality becomes an equality.

The Cauchy-Schwarz inequality. Let V be a real or complex vector space, equipped with a scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

for all $\mathbf{x}, \mathbf{y} \in V$.
Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. We may assume that $\langle\mathbf{x}, \mathbf{y}\rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $\|\mathbf{x}\|,\|\mathbf{y}\| \neq 0$. We set

$$
\mathbf{z}:=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y}
$$

and we compute

$$
\langle\mathbf{z}, \mathbf{y}\rangle=\left\langle\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}-\mathbf{y}, \mathbf{y}\right\rangle \stackrel{\left.()^{*}\right)}{=} \frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle}\langle\mathbf{x}, \mathbf{y}\rangle-\langle\mathbf{y}, \mathbf{y}\rangle=0,
$$

where $\left({ }^{*}\right)$ follows from r. 2 and r. 3 if V is a real vector space, or from c. 2 and c. 3 if V is a complex vector space. We have now shown that $\mathbf{z} \perp \mathbf{y}$, and so by the Pythagorean theorem, we have that

$$
\|\mathbf{z}+\mathbf{y}\|^{2}=\|\mathbf{z}\|^{2}+\|\mathbf{y}\|^{2}
$$

But by construction, $\mathbf{z}+\mathbf{y}=\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}$, and consequently:

$$
\|\mathbf{z}+\mathbf{y}\|=\left\|\frac{\langle\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle} \mathbf{x}\right\| \stackrel{(*)}{=} \left\lvert\, \frac{|\mathbf{y}, \mathbf{y}\rangle}{\langle\mathbf{x}, \mathbf{y}\rangle}\|\mathbf{x}\|=\frac{|\langle\mathbf{y}, \mathbf{y}\rangle|}{|\langle\mathbf{x}, \mathbf{y}\rangle|}\|\mathbf{x}\|=\frac{\|\mathbf{y}\|^{2}}{\langle\mathbf{x}, \mathbf{y}\rangle \mid}\|\mathbf{x}\|\right.,
$$

where $\left({ }^{*}\right)$ follows from Proposition 6.2.1. So,

$$
\frac{\|\mathbf{y}\|^{4}}{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}\|\mathbf{x}\|^{2}=\|\mathbf{z}+\mathbf{y}\|^{2}=\|\mathbf{z}\|^{2}+\|\mathbf{y}\|^{2} \geq\|\mathbf{y}\|^{2}
$$

which yields

$$
\frac{\|\mathbf{y}\|^{4}}{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}\|\mathbf{x}\|^{2} \geq\|\mathbf{y}\|^{2}
$$

Since $\langle\mathbf{x}, \mathbf{y}\rangle$ and $\|\mathbf{y}\|$ are both non-zero, we have that $\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}}{\|\mathbf{y}\|^{2}}$ is defined and positive. So, we may multiply both sides of the inequality above by $\frac{\|(\mathbf{x}, \mathbf{y}\rangle\|^{2}}{\|\mathbf{y}\|^{2}}$ to obtain

$$
\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2} \geq|\langle\mathbf{x}, \mathbf{y}\rangle|^{2}
$$

By taking the square root of both sides, we get

$$
\|\mathbf{x}\|\|\mathbf{y}\| \geq|\langle\mathbf{x}, \mathbf{y}\rangle|
$$

which is what we needed to show.

Definition. A scalar product (also called inner product) in a real vector space V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following four axioms:
r.1. for all $\mathbf{x} \in V,\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$, and equality holds if and only if $\mathbf{x}=\mathbf{0}$;
r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$;
r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R},\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$;
r.4. for all $\mathbf{x}, \mathbf{y} \in V,\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.

Exercise 6. Which (if any) of the following functions $\langle\cdot, \cdot\rangle: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are scalar products in \mathbb{R}^{2} ?
(a) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}-x_{2} y_{2}$ for all $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ in \mathbb{R}^{2};
(b) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+2 x_{2} y_{2}$ for all $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ in \mathbb{R}^{2};
(c) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} x_{2}+y_{1} y_{2}$ for all $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ in \mathbb{R}^{2}.

Make sure you justify your answer in each case. You should refer to the definition of the scalar product in a real vector space (above).

