Linear Algebra 2: Tutorial 2

Todor Antić & Irena Penev

Summer 2024

Exercise 1. Compute the angle θ between the following two vectors in \mathbb{R}^4 :

$$\mathbf{u} = \begin{bmatrix} 1\\ -1\\ 2\\ -2 \end{bmatrix} \quad and \quad \mathbf{v} = \begin{bmatrix} 2\\ 3\\ 4\\ 5 \end{bmatrix}.$$

What kind of angle (acute, right, or obtuse) do you get?

Exercise 2. Compute the angle θ between the following two vectors in \mathbb{R}^n :

$$\mathbf{u} = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} \quad and \quad \mathbf{v} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}.$$

What values do you get for θ when n = 2, 3, 4? (When do you get a nice angle and when do you need to settle for an expression involving an inverse trigonometric function?) Find the limit of θ as n approaches infinity.

Exercise 3. Find the set of all vectors that are (simultaneously) orthogonal to the following three vectors in \mathbb{R}^4 (where orthogonality is assumed to be with respect to the standard scalar product \cdot in \mathbb{R}^4):

$\mathbf{u}_1 = \begin{bmatrix} 1\\ 1\\ 1\\ 1\end{bmatrix}$	$\begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix},$	$\mathbf{u}_2 =$	$\begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \\ -1/2 \end{bmatrix},$	$\mathbf{u}_3 =$	$\begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$	•
---	--	------------------	---	------------------	--	---

Exercise 4. Generalize your answer to Exercise 3. More precisely, suppose that you are given vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$ in \mathbb{R}^n . How would you compute the set of all vectors in \mathbb{R}^n that are simultaneously orthogonal (with respect to the standard scalar product \cdot) to the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$? Must the set that you obtain be a subspace of \mathbb{R}^n ?

Exercise 5. By carefully examining the proof of the Cauchy-Schwarz inequality (copied and pasted from the Lecture Notes below), determine when that inequality becomes an equality.

The Cauchy–Schwarz inequality. Let V be a real or complex vector space, equipped with a scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $|| \cdot ||$. Then

$$|\langle \mathbf{x}, \mathbf{y}
angle| \le ||\mathbf{x}|| ||\mathbf{y}||$$

for all $\mathbf{x}, \mathbf{y} \in V$.

Proof. Fix $\mathbf{x}, \mathbf{y} \in V$. We may assume that $\langle \mathbf{x}, \mathbf{y} \rangle \neq 0$, for otherwise, the result is immediate. Note that this implies that $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, and consequently, $||\mathbf{x}||, ||\mathbf{y}|| \neq 0$. We set

$$\mathbf{z} := \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y},$$

and we compute

$$\langle \mathbf{z}, \mathbf{y} \rangle = \langle \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x} - \mathbf{y}, \mathbf{y} \rangle \stackrel{(*)}{=} \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle = 0,$$

where (*) follows from r.2 and r.3 if V is a real vector space, or from c.2 and c.3 if V is a complex vector space. We have now shown that $\mathbf{z} \perp \mathbf{y}$, and so by the Pythagorean theorem, we have that

$$||\mathbf{z} + \mathbf{y}||^2 = ||\mathbf{z}||^2 + ||\mathbf{y}||^2.$$

But by construction, $\mathbf{z} + \mathbf{y} = \frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x}$, and consequently:

$$||\mathbf{z} + \mathbf{y}|| = ||\frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle} \mathbf{x}|| \stackrel{(*)}{=} |\frac{\langle \mathbf{y}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{y} \rangle}| ||\mathbf{x}|| = \frac{|\langle \mathbf{y}, \mathbf{y} \rangle|}{|\langle \mathbf{x}, \mathbf{y} \rangle|} ||\mathbf{x}|| = \frac{||\mathbf{y}||^2}{|\langle \mathbf{x}, \mathbf{y} \rangle|} ||\mathbf{x}||,$$

where (*) follows from Proposition 6.2.1. So,

$$\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} ||\mathbf{x}||^2 = ||\mathbf{z} + \mathbf{y}||^2 = ||\mathbf{z}||^2 + ||\mathbf{y}||^2 \ge ||\mathbf{y}||^2,$$

which yields

$$\frac{||\mathbf{y}||^4}{|\langle \mathbf{x}, \mathbf{y} \rangle|^2} ||\mathbf{x}||^2 \geq ||\mathbf{y}||^2.$$

Since $\langle \mathbf{x}, \mathbf{y} \rangle$ and $||\mathbf{y}||$ are both non-zero, we have that $\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{||\mathbf{y}||^2}$ is defined and positive. So, we may multiply both sides of the inequality above by $\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{||\mathbf{y}||^2}$ to obtain

 $||\mathbf{x}||^2 ||\mathbf{y}||^2 \geq |\langle \mathbf{x}, \mathbf{y} \rangle|^2.$

By taking the square root of both sides, we get

$$||\mathbf{x}|| ||\mathbf{y}|| \geq |\langle \mathbf{x}, \mathbf{y} \rangle|,$$

which is what we needed to show.

Definition. A scalar product (also called inner product) in a real vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four axioms:

r.1. for all $\mathbf{x} \in V$, $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, and equality holds if and only if $\mathbf{x} = \mathbf{0}$; r.2. for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$; r.3. for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{R}$, $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$; r.4. for all $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.

Exercise 6. Which (if any) of the following functions $\langle \cdot, \cdot \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ are scalar products in \mathbb{R}^2 ?

(a)
$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 - x_2 y_2$$
 for all $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ in \mathbb{R}^2 ;
(b) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 2x_2 y_2$ for all $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ in \mathbb{R}^2 ;
(c) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 x_2 + y_1 y_2$ for all $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ in \mathbb{R}^2 .

Make sure you justify your answer in each case. You should refer to the definition of the scalar product in a real vector space (above).