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Definition
A symmetric matrix A ∈ Rn×n is said to be

positive definite if xT Ax > 0 for all x ∈ Rn \ {0};
positive semi-definite if xT Ax ≥ 0 for all x ∈ Rn;
negative definite if xT Ax < 0 for all x ∈ Rn \ {0};
negative semi-definite if xT Ax ≤ 0 for all x ∈ Rn;
indefinite if it is neither positive semi-definite nor negative
semi-definite.

Remark: Obviously, any positive definite matrix is positive
semi-definite, and any negative definite matrix if negative
semi-definite.



Remark: The definitions from the previous slide would also
make sense without the requirement that A be symmetric.

However, for any matrix A ∈ Rn×n, the matrix 1
2 (A + AT ) is

symmetric:( 1
2 (A + AT )

)T = 1
2 (AT + A) = 1

2 (A + AT ),

and for all vectors x ∈ Rn, we have that

xT ( 1
2 (A + AT )

)
x = 1

2 (xT Ax) + 1
2 (xT AT x)

(∗)= 1
2 (xT Ax) + 1

2 (xT AT x)T

= 1
2 (xT Ax) + 1

2 (xT Ax)

= xT Ax,

where (*) follows from the fact that xT Ax is a 1 × 1 matrix,
and is consequently symmetric.

So, instead of considering an arbitrary square matrix A, we can
consider the symmetric matrix 1

2 (A + AT ) instead.
This is important because some tests of definiteness only work
if we assume that the matrix in question is symmetric.
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Remark: Matrix definiteness plays an important role in
optimization, though we will not cover this.

Another reason for caring about positive definite matrices in
particular is the following theorem.

Theorem 10.4.1
Let V be a non-trivial, finite-dimensional real vector space, and let
⟨·, ·⟩ be a bilinear form on V . Then the following are equivalent:

(i) ⟨·, ·⟩ is a scalar product in V ;
(ii) for all bases B of V , the matrix B of the bilinear form ⟨·, ·⟩

w.r.t. the basis B is positive definite;
(iii) there exists a basis B of V s.t. the matrix B of the bilinear

form ⟨·, ·⟩ w.r.t. the basis B is positive definite.
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form ⟨·, ·⟩ w.r.t. the basis B is positive definite.

We start by proving Theorem 10.4.1 (plus an easy corollary).

After that, we prove a few results about matrix definiteness,
and finally, we present three methods of testing whether a
symmetric matrix is positive definite.
Before proving Theorem 10.4.1, we recall a couple of
definitions, plus Theorem 9.2.2 (from the previous lecture).
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Definition
A bilinear form on a vector space V over a field F is a function
f : V × V → F that satisfies the following four axioms:
b.1. ∀x1, x2, y ∈ V : f (x1 + x2, y) = f (x1, y) + f (x2, y);
b.2. ∀x, y ∈ V and α ∈ F: f (αx, y) = αf (x, y);
b.3. ∀x, y1, y2 ∈ V : f (x, y1 + y2) = f (x, y1) + f (x, y2);
b.4. ∀x, y ∈ V , α ∈ F: f (x, αy) = αf (x, y).
The bilinear form f is said to be symmetric if it further satisfies the
property that f (x, y) = f (y, x) for all x, y ∈ V .
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Definition
A scalar product (also called inner product) in a real vector space
V is a function ⟨·, ·⟩ : V × V → R that satisfies the following four
axioms:
r.1. ∀x ∈ V : ⟨x, x⟩ ≥ 0, and equality holds iff x = 0;
r.2. ∀x, y, z ∈ V : ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩;
r.3. ∀x, y ∈ V , α ∈ R: ⟨αx, y⟩ = α⟨x, y⟩;
r.4. ∀x, y ∈ V : ⟨x, y⟩ = ⟨y, x⟩.

r.2’. ∀x, y, z ∈ V , ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩;
r.3’. ∀x, y ∈ V and α ∈ R, ⟨x, αy⟩ = α⟨x, y⟩.

Remark: every scalar product ⟨·, ·⟩ in a real vector space V is
a symmetric bilinear form.

Indeed, r.2, r.3, r.2’, and r.3’ are precisely the axioms b.1, b.2,
b.3, and b.4, respectively.
Moreover, by r.4, scalar products in real vector spaces are
symmetric.
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Theorem 9.2.2
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {b1, . . . , bn} be a basis of V .

(a) For every matrix A =
[

ai,j
]

n×n in Fn×n, the function
f : V × V → F given by

f (x, y) =
[

x
]T

B A
[

y
]

B for all x, y ∈ V
is a bilinear form on V , and moreover, all the following hold:

(a.1) f (bi , bj) = ai,j for all i , j ∈ {1, . . . , n},
(a.2) f

( ∑n
i=1 cibi ,

∑n
j=1 djbj

)
=

∑n
i=1

∑n
j=1 ai,jcidj for all

c1, . . . , cn, d1, . . . , dn ∈ F,
(a.3) f is symmetric iff A is symmetric.

(b) For every bilinear form f on V , there exists a unique matrix
A =

[
ai,j

]
n×n in Fn×n, called the matrix of the bilinear form

f w.r.t. the basis B, that satisfies the property that
f (x, y) =

[
x

]T
B A

[
y

]
B for all x, y ∈ V .

Moreover, the entries of the matrix A are given by
ai ,j = f (bi , bj) for all indices i , j ∈ {1, . . . , n}.



Theorem 10.4.1
Let V be a non-trivial, finite-dimensional real vector space, and let
⟨·, ·⟩ be a bilinear form on V . Then the following are equivalent:

(i) ⟨·, ·⟩ is a scalar product in V ;
(ii) for all bases B of V , the matrix B of the bilinear form ⟨·, ·⟩

w.r.t. the basis B is positive definite;
(iii) there exists a basis B of V s.t. the matrix B of the bilinear

form ⟨·, ·⟩ w.r.t. the basis B is positive definite.

Proof.

It is enough to prove the following sequence of implications:
“(i) =⇒ (ii) =⇒ (iii) =⇒ (i).” The implication “(ii) =⇒ (iii)” is
obvious, and so in fact, we just need to prove the implications “(i)
=⇒ (ii)” and “(iii) =⇒ (i).”
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Theorem 10.4.1
(i) ⟨·, ·⟩ is a scalar product in V ;
(ii) for all bases B of V , the matrix B of the bilinear form ⟨·, ·⟩

w.r.t. the basis B is positive definite;

Proof (continued). We first assume (i) and prove (ii).

Fix any basis B = {b1, . . . , bn} of V , and let B be the matrix of
the bilinear form ⟨·, ·⟩ w.r.t. the basis B.

Since (i) holds, the bilinear form ⟨·, ·⟩ is symmetric, and so by
Theorem 9.2.2(a), the matrix B is also symmetric.
Now, fix any non-zero vector x =

[
x1 . . . xn

]T in Rn; WTS
xT Bx > 0. Set v := x1b1 + · · · + xnbn, so that

[
v

]
B = x. Since

x ̸= 0, and since
[

·
]

B is an isomorphism, we have that v ̸= 0.
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Proof (continued). Reminder: x ∈ Rn \ {0},
[

v
]

B = x,
v ∈ V \ {0}; WTS xT Bx > 0.

Then

xT Bx =
[

v
]T

B B
[

v
]

B
(∗)= ⟨v, v⟩

(∗∗)
> 0,

where (*) follows from the fact that B is the matrix of the bilinear
form ⟨·, ·⟩, and (**) follows from (i), and more precisely, from the
axiom r.1. This proves that B is positive definite, and (ii) follows.
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Theorem 10.4.1
(i) ⟨·, ·⟩ is a scalar product in V ;
(iii) there exists a basis B of V s.t. the matrix B of the bilinear

form ⟨·, ·⟩ w.r.t. the basis B is positive definite.

Proof (continued). We now assume (iii) and prove (i).

First of all, since ⟨·, ·⟩ is a bilinear form, it satisfies axioms r.2
and r.3 from the definition of a scalar product; it remains to show
that it satisfies axioms r.1 and r.4.

Using (iii), we fix a basis B of V s.t. the matrix B of the bilinear
form ⟨·, ·⟩ w.r.t. the basis B is positive definite. Since B is positive
definite, it is in particular symmetric, and so by Theorem 9.2.2(a),
the bilinear form ⟨·, ·⟩ is also symmetric, i.e. r.4 holds.

It remains to show that r.1 holds (next slide).
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It remains to show that r.1 holds (next slide).
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Proof (continued). First, we have that

⟨0, 0⟩ (∗)=
[

0
]T

B B
[

0
]

B = 0T B0 = 0,

where (*) follows from the fact that B is the matrix of the bilinear
form ⟨·, ·⟩ w.r.t. the basis B.

Now, fix any vector x ∈ V \ {0}. WTS ⟨x, x⟩ > 0. Since
[

·
]

B is
an isomorphism, we see that

[
x

]
B ̸= 0. We then have that

⟨x, x⟩ (∗)=
[

x
]

B B
[

x
]

B

(∗∗)
> 0,

where (*) follows from the fact that B is the matrix of the bilinear
form ⟨·, ·⟩, and (**) follows from the fact that B is positive definite
and

[
x

]
B ̸= 0. Thus, r.1 holds. This proves (i). □
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Theorem 10.4.1
Let V be a non-trivial, finite-dimensional real vector space, and let
⟨·, ·⟩ be a bilinear form on V . Then the following are equivalent:

(i) ⟨·, ·⟩ is a scalar product in V ;
(ii) for all bases B of V , the matrix B of the bilinear form ⟨·, ·⟩

w.r.t. the basis B is positive definite;
(iii) there exists a basis B of V s.t. the matrix B of the bilinear

form ⟨·, ·⟩ w.r.t. the basis B is positive definite.

Corollary 10.4.2
For any function ⟨·, ·⟩ : Rn × Rn → R, the following are equivalent:

(i) ⟨·, ·⟩ is a scalar product on Rn;
(ii) there exists a positive definite matrix A ∈ Rn×n s.t. for all

x, y ∈ Rn, we have ⟨x, y⟩ = xT Ay.

Proof: Lecture Notes (easily follows from Theorem 10.4.1).
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Let us now prove some basic results about matrix definiteness!

Proposition 10.1.1
For every symmetric matrix A ∈ Rn×n, both the following hold:

(a) A is positive definite iff −A is negative definite;
(b) A is positive semi-definite iff −A is negative semi-definite.

Proof. Fix a symmetric matrix A ∈ Rn×n. For (a), we have the
following sequence of equivalent statements:

A is positive definite ⇐⇒ xT Ax > 0 ∀x ∈ Rn \ {0}

⇐⇒ −xT Ax < 0 ∀x ∈ Rn \ {0}

⇐⇒ xT (−A)x < 0 ∀x ∈ Rn \ {0}

⇐⇒ −A is negative definite.

This proves (a). The proof of (b) is very similar. □
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Proposition 10.1.1
For every symmetric matrix A ∈ Rn×n, both the following hold:

(a) A is positive definite iff −A is negative definite;
(b) A is positive semi-definite iff −A is negative semi-definite.

Remark: In view of Proposition 10.1.1, results for positive
(semi-)definite matrices can easily be translated into
corresponding results for negative (semi-)definite matrices.

So, it makes sense to focus on positive (semi-)definite matrices.
In what follows, we will mostly (but not exclusively) focus on
positive definite matrices, which are somewhat easier to deal
with than the more general positive semi-definite ones.
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Reminder:

Corollary 8.7.4
Every symmetric matrix in Rn×n has n real eigenvalues (with
algebraic multiplicities taken into account). In other words, for
every symmetric matrix A ∈ Rn×n, the sum of algebraic
multiplicities of its distinct (real) eigenvalues is n.

Definition
The signature of a symmetric matrix A ∈ Rn×n to be the ordered
triple (n+, n−, n0), where

n+ is the number of positive eigenvalues of A (counting
algebraic multiplicities),
n− is the number of negative eigenvalues of A (counting
algebraic multiplicities),
n0 := n − n+ − n−.
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Theorem 10.1.2
Let A ∈ Rn×n be a symmetric matrix, and let (n+, n−, n0) be the
signature of A. Then all the following hold:

(a) A is positive definite iff n+ = n (i.e. all eigenvalues of A are
positive);

(b) A is positive semi-definite iff n+ + n0 = n (i.e. all eigenvalues
of A are non-negative);

(c) A is negative definite iff n− = n (i.e. all eigenvalues of A are
negative);

(d) A is negative semi-definite iff n− + n0 = n (i.e. all eigenvalues
of A are non-positive);

(e) A is indefinite iff n+ and n− are both non-zero (i.e. A has at
least one positive and at least one negative eigenvalue).

Proof.

Obviously, (b) and (d) together imply (e). So, we just need
to prove (a)-(d). Here, we prove (a). The proofs of (b)-(d) are
similar.
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Let A ∈ Rn×n be a symmetric matrix, and let (n+, n−, n0) be the
signature of A. Then all the following hold:

(a) A is positive definite iff n+ = n (i.e. all eigenvalues of A are
positive);

Proof (continued). Suppose first that A is positive definite.

Fix an
eigenvalue λ of A, and let x be an associated eigenvector of A;
after possibly normalizing the eigenvector x (i.e. replacing x by

x
||x||), we may assume that ||x|| = 1. Then

0
(∗)
< xT Ax (∗∗)= xT (λx) = λ(xT x) = λ(x · x) = λ||x||2 (∗∗∗)= λ,

where (*) follows from the fact that A is positive definite and
x ̸= 0, (**) follows from the fact that x is an eigenvector of A
associated with the eigenvalue λ, and (***) follows from the fact
that ||x|| = 1. We have now shown that λ > 0; since λ was an
arbitrarily chosen eigenvalue of A, we deduce that all eigenvalues
of A are positive, i.e. n+ = n.
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Theorem 10.1.2
Let A ∈ Rn×n be a symmetric matrix, and let (n+, n−, n0) be the
signature of A. Then all the following hold:

(a) A is positive definite iff n+ = n (i.e. all eigenvalues of A are
positive);

Proof (continued). Suppose conversely that n+ = n, i.e. that all
eigenvalues of A are positive. WTS A is positive definite.

Since A is symmetric, the spectral theorem for symmetric matrices
guarantees that Rn has an orthonormal eigenbasis
B = {x1, . . . , xn} associated with A. For each i ∈ {1, . . . , n}, let λi
be the eigenvalue of A associated with the eigenvector xi . Set
λ0 := min{λ1, . . . , λn}; since all eigenvalues of A are positive, we
see that λ0 > 0. Now, fix any x ∈ Rn \ {0}; WTS xT Ax > 0.
Since B is a basis of Rn, we know that there exist scalars
α1, . . . , αn ∈ R s.t. x = α1x1 + · · · + αnxn. Since x ̸= 0, at least
one of α1, . . . , αn is non-zero. We now compute (next two slides):
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Proof (continued). Reminder: WTS xT Ax > 0.

xT Ax =
( n∑

i=1
αixi

)T A
( n∑

j=1
αjxj

)
=

n∑
i=1

n∑
j=1

αiαjxT
i Axj

=
n∑

i=1

n∑
j=1

αiαjxT
i (λjxj)

because each xj is an
eigenvector of A associated
with the eigenvalue λj

=
n∑

i=1

n∑
j=1

λjαiαj(xT
i xj)

=
n∑

i=1

n∑
j=1

λjαiαj(xi · xj)

=
n∑

i=1
λiα

2
i (xi · xi)

because x1, . . . , xn are
pairwise orthogonal (by
the orthonormality of B)

=
n∑

i=1
λiα

2
i ||xi ||2

=
n∑

i=1
λiα

2
i

because x1, . . . , xn are
unit vectors (by the
orthonormality of B)

(continued on next slide)



Theorem 10.1.2
Let A ∈ Rn×n be a symmetric matrix, and let (n+, n−, n0) be the
signature of A. Then all the following hold:

(a) A is positive definite iff n+ = n (i.e. all eigenvalues of A are
positive);

xT Ax =
n∑

i=1
λiα

2
i from the previous slide

≥
n∑

i=1
λ0α2

i
because λ0 = min{λ1, . . . , λn}
and α2

1, . . . , α2
n ≥ 0

> 0 because λ0 > 0 and at least
one of α1, . . . , αn is non-zero.

Thus, A is positive definite. This proves (a). □



Theorem 10.1.2
Let A ∈ Rn×n be a symmetric matrix, and let (n+, n−, n0) be the
signature of A. Then all the following hold:

(a) A is positive definite iff n+ = n (i.e. all eigenvalues of A are
positive);

(b) A is positive semi-definite iff n+ + n0 = n (i.e. all eigenvalues
of A are non-negative);

(c) A is negative definite iff n− = n (i.e. all eigenvalues of A are
negative);

(d) A is negative semi-definite iff n− + n0 = n (i.e. all eigenvalues
of A are non-positive);

(e) A is indefinite iff n+ and n− are both non-zero (i.e. A has at
least one positive and at least one negative eigenvalue).



Reminder:

Theorem 8.2.10
Let F be a field, let A =

[
ai,j

]
n×n be a matrix in Fn×n, and

assume that {λ1, . . . , λn} is the spectrum of A. Then
(a) det(A) = λ1 . . . λn;
(b) trace(A) = λ1 + · · · + λn.

Theorem 10.1.2 (from the previous slide) and Theorem 8.2.10
together imply the following corollary.

Corollary 10.1.3
Let A ∈ Rn×n be a symmetric matrix.

(a) If A is positive definite, then det(A) and trace(A) are both
positive.

(b) If A is positive semi-definite, then det(A) and trace(A) are
both non-negative.
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Proof.

Since A is symmetric, Corollary 8.7.4 guarantees that it has
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By Theorem 10.1.2(a), all eigenvalues of a positive definite matrix
are positive, and it follows that (a) holds. Similarly, by
Theorem 10.1.2(b), all eigenvalues of a positive semi-definite
matrix are non-negative, and it follows that (b) holds. □
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The main diagonal of a square matrix A ∈ Rn×n is positive
(resp. non-negative, negative, non-positive) if all entries on
the main diagonal of A are positive (resp. non-negative,
negative, non-positive).

Proposition 10.1.4
The main diagonal of any positive definite (resp. positive
semi-definite, negative definite, negative semi-definite) matrix is
positive (resp. non-negative, negative, non-positive).

Proof. Fix a matrix A =
[

ai,j
]

n×n in Rn×n. Then for all indices
i ∈ {1, . . . , n}, we have that eT

i Aei = ai ,i . The result now follows
from the appropriate definitions. □
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The main diagonal of any positive definite (resp. positive
semi-definite, negative definite, negative semi-definite) matrix is
positive (resp. non-negative, negative, non-positive).

Proof. Fix a matrix A =
[

ai,j
]

n×n in Rn×n. Then for all indices
i ∈ {1, . . . , n}, we have that eT

i Aei = ai ,i . The result now follows
from the appropriate definitions.1 □

1Let us explain this in a bit more detail. Suppose that A is positive definite.
Then for each i ∈ {1, . . . , n}, we have that ai,i = eT

i Aei > 0, i.e. the main
diagonal of A is positive. Similar remarks apply for the cases of positive
semi-definiteness, negative definiteness, and negative semi-definiteness.



Proposition 10.1.5
Let A, B ∈ Rn×n and α ∈ R. Then all the following hold:

(a) if A and B are both positive definite (resp. positive semi-definite,
negative definite, negative semi-definite), then A + B is positive
definite (resp. positive semi-definite, negative definite, negative
semi-definite);

(b) if A is positive definite (resp. positive semi-definite, negative
definite, negative semi-definite) and α > 0, then αA is positive
definite (resp. positive semi-definite, negative definite, negative
semi-definite);

(c) if A is positive definite (resp. positive semi-definite, negative
definite, negative semi-definite) and α < 0, then αA is negative
definite (resp. negative semi-definite, positive definite, positive
semi-definite);

(d) if A ∈ Rn×n is positive definite (respectively: negative definite),
then A is invertible and its inverse A−1 is positive definite
(respectively: negative definite).

Parts (a)-(c) are trivial.
The proof of (d) is in the Lecture Notes.



We present three tests of positive definiteness:

the recursive test of positive definiteness (see Theorem 10.2.3);
the Gaussian elimination test of positive definiteness (see
Theorem 10.2.6);
Sylvester’s criterion of positive definiteness (see
Theorem 10.2.9.

Of these three tests, the first is arguably the least convenient
for computing (at least if we are computing by hand), but it is
important because we will rely on it to prove the correctness
of the other two tests.
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Theorem 10.2.3 [The recursive test of positive definiteness]

Let n be a positive integer, and let A =
[

α aT

a A′

]
(with α ∈ R,

a ∈ Rn, and A′ ∈ Rn×n) be a symmetric matrix in R(n+1)×(n+1).
Then A is positive-definite iff α > 0 and A′ − 1

αaaT is positive
definite.

Proof: Later! (We first prove a couple of technical
propositions).
Note that A is an (n + 1) × (n + 1) matrix, whereas A′ − 1

αaaT

is an n × n matrix. (This is why the test is called “recursive.”)

In what follows, for a matrix A ∈ Rn×n (n ≥ 2) and indices
i , j ∈ {1, . . . , n}, we will denote by Ai ,j the submatrix of A
obtained by deleting the i-th row and j-th column of A.
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Proposition 10.2.1
Let A =

[
ai,j

]
n×n (n ≥ 2) be a symmetric matrix in Rn×n, assume

that a1,1 ̸= 0, and set a :=
[

a2,1 . . . an,1
]T , so that

A =
[

a1,1 aT

a A1,1

]
.

Let Ã be the matrix obtained from A by (sequentially or
simultaneously) performing the following elementary row
operations on A:

R2 → R2 − a2,1
a1,1

R1;

R3 → R3 − a3,1
a1,1

R1;
...
Rn → Rn − an,1

a1,1
R1.

Then
Ã =

[ a1,1 aT

0 A1,1 − 1
a1,1

aaT

]
.



Schematically, Proposition 10.2.1 states the following:

[
a1,1 aT

a A1,1

]
︸ ︷︷ ︸

=A

R2→R2−
a2,1
a1,1

R1

R3→R3−
a3,1
a1,1

R1

...
Rn→Rn−

an,1
a1,1

R1

∼
[ a1,1 aT

0 A1,1 − 1
a1,1

aaT

]
︸ ︷︷ ︸

=Ã

Proof of Proposition 10.2.1.

Set A1,1 =

 rT
2
...

rT
n

. Since none of the

elementary row operations modified the first row of A, we see that
the first row of Ã is

[
a1,1 aT ]

. On the other hand, for each
i ∈ {2, . . . , n}, the i-th row of Ã is

[
0 rT

i − ai,1
a1,1

aT
]
, whereas the

(i − 1)-th row of the (n − 1) × (n − 1) matrix A1,1 − 1
a1,1

aaT is
rT
i − ai,1

a1,1
aT . The result is now immediate. □
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[
0 rT

i − ai,1
a1,1

aT
]
,

whereas the
(i − 1)-th row of the (n − 1) × (n − 1) matrix A1,1 − 1

a1,1
aaT is

rT
i − ai,1

a1,1
aT . The result is now immediate. □



Schematically, Proposition 10.2.1 states the following:
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=A
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a2,1
a1,1

R1
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R1

...
Rn→Rn−
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R1

∼
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=Ã

Proof of Proposition 10.2.1. Set A1,1 =

 rT
2
...

rT
n

. Since none of the

elementary row operations modified the first row of A, we see that
the first row of Ã is

[
a1,1 aT ]

. On the other hand, for each
i ∈ {2, . . . , n}, the i-th row of Ã is

[
0 rT

i − ai,1
a1,1

aT
]
, whereas the

(i − 1)-th row of the (n − 1) × (n − 1) matrix A1,1 − 1
a1,1

aaT is
rT
i − ai,1

a1,1
aT . The result is now immediate. □



Proposition 10.2.2
Let α ∈ R, a ∈ Rn, and A ∈ Rn×n. If A is symmetric, then
A − αaaT is also symmetric.

Proof.

Assume that A is symmetric. Then

(
A − αaaT )T = AT − α(aT )T aT (∗)= A − αaaT ,

where in (*), we used the fact that A is symmetric and so AT = A.
This proves that A − αaaT is indeed symmetric. □
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Theorem 10.2.3 [The recursive test of positive definiteness]

Let n be a positive integer, and let A =
[

α aT

a A′

]
(with α ∈ R,

a ∈ Rn, and A′ ∈ Rn×n) be a symmetric matrix in R(n+1)×(n+1).
Then A is positive-definite iff α > 0 and A′ − 1

αaaT is positive
definite.

Remark: If α ̸= 0, then Proposition 10.2.2 guarantees that
the matrix A′ − 1

αaaT is symmetric, and Proposition 10.2.1
guarantees that [

α aT

0 A′ − 1
αaaT

]
is the matrix obtained from A by (sequentially or
simultaneously) performing the elementary row operations of
the form “Ri → Ri + βiR1” (for i ∈ {2, . . . , n}), with the βi ’s
chosen so that, with the exception of the 1, 1-th entry, the
leftmost column becomes zero.
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definite.

Proof.

Suppose first that A is positive definite. By
Proposition 10.1.4, we have that α > 0, and in particular, the
matrix A′ − 1

αaaT is defined (i.e. we are not dividing by zero). We
must show that this matrix is positive definite. First of all, by
Proposition 10.2.2, the matrix A′ − 1

αaaT is symmetric. Now, fix
any x ∈ Rn \ {0}. Then (next slide):
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Proof (continued).

xT (A′ − 1
α aaT )x = xT A′x − 1

α (xT aaT x)

(∗)=
[

− 1
α aT x xT ] [

α aT

a A′

] [
− 1

α aT x
x

]
︸ ︷︷ ︸

:=y

= yT Ay
(∗∗)
> 0

where (**) follows from the fact that A is positive definite and
y ̸= 0 (because x ̸= 0), and (*) follows from the following
computation:[

− 1
α

aT x xT
][

α aT

a A′

][
− 1

α
aT x

x

]
=

[
− 1

α
aT x xT

][
−aT x + aT x

− 1
α

aaT x + A′x

]
=

[
− 1

α
aT x xT

][
0

A′x − 1
α

aaT x

]
= xT A′x − 1

α
xT aaT x.

This proves that A′ − 1
αaaT is indeed positive definite.



Theorem 10.2.3 [The recursive test of positive definiteness]

Let n be a positive integer, and let A =
[

α aT
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]
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a ∈ Rn, and A′ ∈ Rn×n) be a symmetric matrix in R(n+1)×(n+1).
Then A is positive-definite iff α > 0 and A′ − 1

αaaT is positive
definite.

Proof (continued). Suppose conversely that α > 0 and A′ − 1
αaaT

is positive definite. WTS A is positive definite.

By hypothesis, A is symmetric. Now, fix any x ∈ Rn+1; WTS

xT Ax ≥ 0, and “=” holds iff x = 0. Set x =
[

x0
z

]
, where x0 ∈ R

and z ∈ Rn. We now compute (next slide):
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Proof (continued). Reminder: x =
[

x0
z

]
, where x0 ∈ R, z ∈ Rn.

xT Ax =
[

x0 zT ] [
α aT

a A′

] [
x0
z

]
= αx2

0 + x0aT z + x0zT a + zT A′z
(∗)= αx2

0 + 2x0aT z + zT A′z

= zT (A′ − 1
α aaT )z + 1

α zT aaT z + 2x0aT z + αx2
0

= zT (A′ − 1
α aaT )z + ( 1√

α
aT z)2 + 2x0aT z + (

√
αx0)2

= zT (A′ − 1
α aaT )z +

(
1√
α

aT z +
√

αx0

)2 (∗∗)
≥ 0,

where in (*), we used the fact that x0zT a is a 1 × 1 (and
consequently symmetric) matrix, and so
x0zT a = (x0zT a)T = x0aT z; and where for the inequality (**), we
used the fact that zT (A′ − 1

αaaT )z ≥ 0, since A′ − 1
αaaT is

positive definite.

It remains to show that the inequality (**) is an
equality iff x = 0.
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Proof (continued). Reminder: x =
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]
, where x0 ∈ R, z ∈ Rn;

zT (A′ − 1
αaaT )z ≥ 0;

xT Ax = zT (A′ − 1
α aaT )z +

(
1√
α

aT z +
√

αx0

)2 (∗∗)
≥ 0;

WTS the inequality (**) is an equality iff x = 0.

If x = 0, then x0 = 0 and z = 0, and it is obvious that the
inequality (**) is an equality.

Suppose now that the inequality (**) is an equality. Then
zT (A′ − 1

αaaT )z = 0 and 1√
α

aT z +
√

αx0 = 0. The former implies
that z = 0 (since A′ − 1

αaaT is positive definite). But now since
1√
α

aT z +
√

αx0 = 0, we deduce that x0 = 0. So, x =
[

x0
z

]
= 0.

This proves that A is positive definite. □
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Theorem 10.2.3 [The recursive test of positive definiteness]

Let n be a positive integer, and let A =
[

α aT

a A′

]
(with α ∈ R,

a ∈ Rn, and A′ ∈ Rn×n) be a symmetric matrix in R(n+1)×(n+1).
Then A is positive-definite iff α > 0 and A′ − 1

αaaT is positive
definite.

There are a couple of numerical examples in the Lecture
Notes.
However, Theorem 10.2.3 is not the most convenient for
computational purposes.
Instead, we will use Theorem 10.2.3 to prove the correctness
of two more convenient tests: the Gaussian elimination test of
positive definiteness (Theorem 10.2.6) and Sylvester’s
criterion of positive definiteness (Theorem 10.2.9).



Theorem 10.2.3 [The recursive test of positive definiteness]

Let n be a positive integer, and let A =
[

α aT

a A′

]
(with α ∈ R,

a ∈ Rn, and A′ ∈ Rn×n) be a symmetric matrix in R(n+1)×(n+1).
Then A is positive-definite iff α > 0 and A′ − 1

αaaT is positive
definite.

There are a couple of numerical examples in the Lecture
Notes.

However, Theorem 10.2.3 is not the most convenient for
computational purposes.
Instead, we will use Theorem 10.2.3 to prove the correctness
of two more convenient tests: the Gaussian elimination test of
positive definiteness (Theorem 10.2.6) and Sylvester’s
criterion of positive definiteness (Theorem 10.2.9).



Theorem 10.2.3 [The recursive test of positive definiteness]

Let n be a positive integer, and let A =
[

α aT

a A′

]
(with α ∈ R,

a ∈ Rn, and A′ ∈ Rn×n) be a symmetric matrix in R(n+1)×(n+1).
Then A is positive-definite iff α > 0 and A′ − 1

αaaT is positive
definite.

There are a couple of numerical examples in the Lecture
Notes.
However, Theorem 10.2.3 is not the most convenient for
computational purposes.

Instead, we will use Theorem 10.2.3 to prove the correctness
of two more convenient tests: the Gaussian elimination test of
positive definiteness (Theorem 10.2.6) and Sylvester’s
criterion of positive definiteness (Theorem 10.2.9).



Theorem 10.2.3 [The recursive test of positive definiteness]

Let n be a positive integer, and let A =
[

α aT

a A′

]
(with α ∈ R,

a ∈ Rn, and A′ ∈ Rn×n) be a symmetric matrix in R(n+1)×(n+1).
Then A is positive-definite iff α > 0 and A′ − 1

αaaT is positive
definite.

There are a couple of numerical examples in the Lecture
Notes.
However, Theorem 10.2.3 is not the most convenient for
computational purposes.
Instead, we will use Theorem 10.2.3 to prove the correctness
of two more convenient tests: the Gaussian elimination test of
positive definiteness (Theorem 10.2.6) and Sylvester’s
criterion of positive definiteness (Theorem 10.2.9).



Theorem 10.2.6 [The Gaussian elim. test of positive definiteness]
Let A ∈ Rn×n be a symmetric matrix. Then the following
algorithm correctly determines whether A is positive definite.

Step 0: Set A1 := A, and go to Step 1.
For j ∈ {1, . . . , n}, and assuming the matrix Aj has already
been generated, we proceed as follows.
Step j:

If the main diagonal of Aj is not positive, then the algorithm
returns the answer that A is not positive definite and
terminates.
If the main diagonal of Aj is positive and j = n, then the
algorithm returns the answer that A is positive definite and
terminates.
If the main diagonal of Aj is positive and j ≤ n − 1, then for
each index i ∈ {j + 1, . . . , n}, we add a suitable scalar multiple
of the j-th row of Aj to the i-th row of Aj so that the i , j-th
entry of the matrix becomes zero; we call the resulting matrix
Aj+1, and we go to Step j + 1.



Remark: The algorithm performs a modified version of the
“forward” part of the row reduction algorithm.

It only performs elementary row operations of the form
“Ri → Ri + αRj ,” where i > j (i.e. row i is below row j), and
where α is chosen so that the i , j-th entry of the matrix
becomes zero; moreover, these operations (which add scalar
multiples of row j to the rows below it) are performed only in
Step j .

Essentially, we use the j, j-th entry of the matrix Aj to “clean
up” the j-th column below the main diagonal, i.e. to turn all
entries of the j-th column below the main diagonal into zeros.
Note that at the start of Step j, the leftmost j − 1 many
columns have already been processed, so that they have all
zeros below the main diagonal.

We keep modifying our matrix until we either obtain a zero or
a negative number on the main diagonal (in this case, our
input matrix is not positive definite), or until we transform our
matrix into an upper triangular matrix with a positive main
diagonal (in this case, our input matrix is positive definite).

Before proving the theorem, we take a look at a couple of
examples.
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Example 10.2.7
Using Theorem 10.2.6, determine whether the matrix

A :=

 4 −2 4
−2 10 1

4 1 6


is positive definite.

Solution.

The matrix A is symmetric, and so Theorem 10.2.6
applies. We perform the modified version of the “forward” part of
the row reduction algorithm described in Theorem 10.2.6, as
follows (the dotted lines isolate the submatrix in the lower right
corner that is still being processed):
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Solution (continued).

A =

 4 −2 4
−2 10 1

4 1 6


︸ ︷︷ ︸

=:A1

Step 0

R2→R2+ 1
2 R1

R3→R3−R1∼

 4 −2 4
0 9 3
0 3 2


︸ ︷︷ ︸

=:A2

Step 1

R3→R3− 1
3 R2∼

 4 −2 4
0 9 3
0 0 1


︸ ︷︷ ︸

=:A3

Step 2.

We have now obtained an upper triangular matrix with a positive
main diagonal. So, by Theorem 10.2.6, A is positive definite. (This
answer is returned by Step 3 of the algorithm from
Theorem 10.2.6, at which point the algorithm terminates.) □



Example 10.2.7
Using Theorem 10.2.6, determine whether the matrix

A :=

 4 −2 4
−2 10 1

4 1 6


is positive definite.

Remark: Normally, we do not actually number our steps, and
we do not name the matrices Ai ; here, we did it for the sake
of extra clarity. The horizontal and vertical dotted lines are
also optional, but they are useful for visually keeping track of
the submatrix being processed, and so it is not a bad idea to
include them.



Example 10.2.8
Using Theorem 10.2.6, determine whether the matrix

A :=


2 −2 2 0

−2 3 0 1
2 0 6 0
0 1 0 2


is positive definite.

Solution.

The matrix A is symmetric, and so Theorem 10.2.6
applies. We perform the modified version of the “forward” part of
the row reduction algorithm described in Theorem 10.2.6, as
follows (next slide):



Example 10.2.8
Using Theorem 10.2.6, determine whether the matrix

A :=


2 −2 2 0

−2 3 0 1
2 0 6 0
0 1 0 2


is positive definite.

Solution. The matrix A is symmetric, and so Theorem 10.2.6
applies. We perform the modified version of the “forward” part of
the row reduction algorithm described in Theorem 10.2.6, as
follows (next slide):



Solution (continued).

A =


2 −2 2 0

−2 3 0 1
2 0 6 0
0 1 0 2


R2→R2+R1
R3→R3−R1∼


2 −2 2 0
0 1 2 1
0 2 4 0
0 1 0 2


R3→R3−2R2
R4→R4−R2∼


2 −2 2 0
0 1 2 1
0 0 0 −2
0 0 −2 1

 .

We have now obtained a zero on the main diagonal of our matrix,
and so by Theorem 10.2.6, the matrix A is not positive definite. □



Theorem 10.2.6 [The Gaussian elim. test of positive definiteness]
Let A ∈ Rn×n be a symmetric matrix. Then the following
algorithm correctly determines whether A is positive definite.

Step 0: Set A1 := A, and go to Step 1.
For j ∈ {1, . . . , n}, and assuming the matrix Aj has already
been generated, we proceed as follows.
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Proof (continued). From now on, we may assume that the main
diagonal of A1 is positive, and in particular, a1,1 > 0.

In this case,
Step 1 performs the following elementary row operations on the
matrix A1 = A:

R2 → R2 − a2,1
a1,1

R1;
R3 → R3 − a3,1

a1,1
R1;

...
Rn → Rn − an,1

a1,1
R1.

This transforms entries 2, . . . , n − 1 of the first column into 0. The
resulting matrix is A2. But note that our matrix A1 = A is of the
form

A1 = A =
[

a1,1 aT

a A1,1

]
,

where a =
[

a2,1 . . . an,1
]T , and A1,1 is the matrix obtained

from A by deleting the first row and first column. So, by
Proposition 10.2.2, the matrix A2 that we obtain after the Step 1
is precisely the matrix (next slide):
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Proof (continued).

A2 =
[ a1,1 aT

0 A1,1 − 1
a1,1

aaT

]
.

By Proposition 10.2.2, A1,1 − 1
a1,1

aaT is symmetric, and the
remainder of our algorithm only manipulates the (n − 1) × (n − 1)
submatrix A1,1 − 1

a1,1
aaT of A2 (while leaving the top row and

leftmost column of A2 unchanged). Moreover, by Theorem 10.2.3,
A is positive definite iff A1,1 − 1

a1,1
aaT is positive definite. The

result now readily follows from the induction hypothesis. □
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Theorem 10.2.6 [The Gaussian elim. test of positive definiteness]
Let A ∈ Rn×n be a symmetric matrix. Then the following
algorithm correctly determines whether A is positive definite.

Step 0: Set A1 := A, and go to Step 1.
For j ∈ {1, . . . , n}, and assuming the matrix Aj has already
been generated, we proceed as follows.
Step j:

If the main diagonal of Aj is not positive, then the algorithm
returns the answer that A is not positive definite and
terminates.
If the main diagonal of Aj is positive and j = n, then the
algorithm returns the answer that A is positive definite and
terminates.
If the main diagonal of Aj is positive and j ≤ n − 1, then for
each index i ∈ {j + 1, . . . , n}, we add a suitable scalar multiple
of the j-th row of Aj to the i-th row of Aj so that the i , j-th
entry of the matrix becomes zero; we call the resulting matrix
Aj+1, and we go to Step j + 1.



Given any n × n matrix A, and any index k ∈ {1, . . . , n}, we
let A(k) be the k × k matrix in the upper left corner of A.
For example, if

A =

 1 2 3
4 5 6
7 8 9

 ,

then we have that

A(1) =
[

1
]

, A(2) =
[

1 2
4 5

]
, A(3) =

 1 2 3
4 5 6
7 8 9

 .

Clearly, for any n × n matrix A, we have that A(n) = A.



Reminder:

Corollary 10.1.3
Let A ∈ Rn×n be a symmetric matrix.

(a) If A is positive definite, then det(A) and trace(A) are both
positive.

(b) If A is positive semi-definite, then det(A) and trace(A) are
both non-negative.



Theorem 10.2.9 [Sylvester’s criterion of positive definiteness]
For all symmetric matrices A ∈ Rn×n, the following are equivalent:

(i) A is positive definite;
(ii) det

(
A(1)), . . . , det

(
A(n)) > 0.

Proof.

We first assume (i) and prove (ii). In view of
Corollary 10.1.3(a), it suffices to show that the matrices
A(1), . . . , A(n) are all positive definite. Obviously, these n matrices
are all symmetric (because A is symmetric). Now, fix an index
k ∈ {1, . . . , n} and a vector xk =

[
x1 . . . xk

]T in Rk \ {0};
WTS xT

k A(k)xk > 0. Set x :=
[

x1 . . . xk 0 . . . 0
]T (with

n − k zeros to the right of the vertical dotted line, so that
x ∈ Rn \ {0}). Then

xT
k A(k)xk = xT Ax

(∗)
> 0,

where (*) follows from the fact that A is positive definite and
x ̸= 0 (because xk ̸= 0). So, A(k) is positive definite, and we
deduce that (ii) holds.
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Proof (continued). We now assume (ii) and prove (i).

We may
assume inductively that the statement is true for smaller matrices.
More precisely, we assume that the following holds.

Induction hypothesis: For all n′ ∈ {1, . . . , n − 1}, and all
symmetric matrices B ∈ Rn′×n′ , if det

(
B(1)), . . . , det

(
B(n′)) >

0, then B is positive definite.

Set A =
[

ai,j
]

n×n. Then a1,1 = det
(
A(1)) > 0. If n = 1, so that

A =
[

a1,1
]
, then it is clear that A is positive definite, and we are

done. So, from now, we assume that n ≥ 2.
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Proof (continued). Let Ã be the matrix obtained from A by
(sequentially or simultaneously) performing the following
elementary row operations on A:

R2 → R2 − a2,1
a1,1

R1;
R3 → R3 − a3,1

a1,1
R1;

...
Rn → Rn − an,1

a1,1
R1.

Set B := A1,1 − 1
a1,1

aaT ; obviously, B ∈ R(n−1)×(n−1), and by
Proposition 10.2.2, B is symmetric. By Proposition 10.2.1, we
have that

Ã =
[ a1,1 aT

0 A1,1 − 1
a1,1

aaT

]
=

[
a1,1 aT

0 B

]
,

and since we have already checked that a1,1 > 0, Theorem 10.2.3
guarantees that A is positive definite iff B is positive definite.
Thus, it is enough to show that the symmetric matrix
B ∈ R(n−1)×(n−1) is positive definite. By the induction hypothesis,
it suffices to show that det

(
B(1)), . . . , det

(
B(n−1)) > 0.
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Proof (continued). Reminder:
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(
A(k+1)) (∗)

> 0,

where (*) follows from the fact that a1,1 > 0 and det
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We now conclude that (ii) holds, and we are done. □
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Theorem 10.2.9 [Sylvester’s criterion of positive definiteness]
For all symmetric matrices A ∈ Rn×n, the following are equivalent:

(i) A is positive definite;
(ii) det

(
A(1)), . . . , det

(
A(n)) > 0.



Proposition 10.3.1
Let L ∈ Rn×n be a lower triangular matrix with a positive main
diagonal. Then the matrix A := LLT is positive definite.

Proof: Lecture Notes (easy).

Theorem 10.3.2 [Cholesky decomposition]
For every positive definite matrix A ∈ Rn×n, there exists a unique
lower triangular matrix L ∈ Rn×n with a positive main diagonal
and satisfying A = LLT .

Proof: Next slide.
Remark: The main reason for interest in the Cholesky
decomposition for positive definite matrices is that it allows us
to solve equations of the form Ax = b (where A is positive
definite) faster, as well as to compute the inverse of A faster.
We omit the details.
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Theorem 10.3.2 [Cholesky decomposition]
For every positive definite matrix A ∈ Rn×n, there exists a unique
lower triangular matrix L ∈ Rn×n with a positive main diagonal
and satisfying A = LLT .

Proof.

We proceed by induction on n.
For n = 1, we fix a positive definite matrix A =

[
a

]
in R1×1, and

we note that a > 0 (because A is positive definite). We set
L :=

[ √
a

]
, and we observe that A = LLT . The uniqueness of L is

obvious.
Now, fix a positive integer n, and assume the theorem is true for
positive definite matrices in Rn×n. Fix a positive definite matrix
A ∈ R(n+1)×(n+1), and set

A =
[

α aT

a A′

]
,

where α ∈ R, a ∈ Rn, and A′ ∈ Rn×n.
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Proof (continued). Reminder: A =
[

α aT

a A′

]
(n+1)×(n+1)

.

By Theorem 10.2.3, we have that α > 0 and that the matrix
A′ − 1

αaaT is positive definite. By the induction hypothesis, there
exists a unique lower triangular matrix L′ ∈ Rn×n with a positive
main diagonal and s.t. A′ − 1

αaaT = L′L′T . We now set

L :=
[ √

α 0
1√
α

a L′

]
n×n

.

Clearly, L is lower triangular with a positive main diagonal.
Moreover, we have that

LLT =
[ √

α 0T

1√
α

a L′

] [ √
α 1√

α
aT

0 L′T

]

=
[

α aT

a 1
α aaT + L′L′T

]

=
[

α aT

a A′

]
= A.
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Proof (continued). We have now proven existence: A = LLT .

It remains to show that L is unique. So far, our set-up is the
following:

A =
[

α aT

a A′

]
(n+1)×(n+1)

, L =
[ √

α 0
1√
α

a L′

]
n×n

,

where L′ is the unique lower triangular matrix L′ ∈ Rn×n with a
positive main diagonal and s.t. A′ − 1

αaaT = L′L′T (equivalently:
1
αaaT + L′L′T = A′).
Suppose that L1 ∈ R(n+1)×(n+1) is a lower triangular matrix with a
positive main diagonal and satisfying A = L1LT

1 ; WTS L1 = L. Set

L1 =
[

β 0T

b L′
1

]
,

where β is some positive real number, b is some vector in Rn, and
L′

1 is some lower triangular matrix in Rn×n with a positive main
diagonal. Then

A = L1LT
1 =

[
β 0T

b L′
1

] [
β bT

0 L′T
1

]
=

[
β2 βbT

βb bbT + L′
1L′T

1

]
.
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Theorem 10.3.2 [Cholesky decomposition]
For every positive definite matrix A ∈ Rn×n, there exists a unique
lower triangular matrix L ∈ Rn×n with a positive main diagonal
and satisfying A = LLT .

There is also an algorithm that, for a positive definite matrix
A =

[
ai,j

]
n×n in Rn×n, computes the Cholesky decomposition

of A, i.e. computes the (unique) lower triangular matrix
L =

[
ℓi,j

]
n×n in Rn×n with a positive main diagonal and

satisfying A = LLT .
We construct the matrix L column by column, from left to
right. Each column is constructed from top to bottom.

Algorithm: next slide.



1 We construct the first (i.e. leftmost) column of L as follows:
ℓ1,1 := √a1,1,
ℓi,1 := ai,1√a1,1

for all i ∈ {2, . . . , n}.
2 For all j ∈ {2, . . . , n}, assuming we have constructed the first

(i.e. leftmost) j − 1 columns of L, we construct the j-th
column of L as follows (from top to bottom):

ℓi,j := 0 for all i ∈ {1, . . . , j − 1},

ℓj,j :=

√
aj,j −

j−1∑
k=1

ℓ2
j,k ,

ℓi,j := 1
ℓj,j

(
ai,j −

j−1∑
k=1

ℓi,kℓj,k

)
for all i ∈ {j + 1, . . . , n}.

We omit the proof of correctness of the construction above,
but it essentially follows from Theorem 10.2.3 and from the
proof of Theorem 10.3.2.
Numerical example: Lecture Notes.
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