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1 A formula for products of the form xT Ay

Proposition 9.1.1
Let F be a field, let En = {e1, . . . , en} be the standard basis of Fn,
and let A =

[
ai,j

]
n×n be a matrix in Fn×n. Then both the

following hold:
(a) for all vectors x =

[
x1 . . . xn

]T and y =
[

y1 . . . yn
]T

in Fn, we have that

xT Ay =
n∑

i=1

n∑
j=1

ai ,jxiyj ;

(b) for all indices i , j ∈ {1, . . . , n}, we have that eT
i Aej = ai ,j .

Proof. Obviously, (a) implies (b). So, let us prove (a).
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Proof (continued).

For any vectors x =
[

x1 . . . xn
]T and

y =
[

y1 . . . yn
]T in Fn, we have the following:

xT Ay =
[

x1 x2 . . . xn
]


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n




y1
y2
...

yn



=
[

x1 x2 . . . xn
]


∑n

j=1 a1,jyj∑n
j=1 a2,jyj

...∑n
j=1 an,jyj


=

n∑
i=1

xi

( n∑
j=1

ai,jyj

)
=

n∑
i=1

n∑
j=1

ai,jxiyj .

This proves (a). □
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2 Bilinear forms

Definition
A bilinear form on a vector space V over a field F is a function
f : V × V → F that satisfies the following four axioms:
b.1. ∀x1, x2, y ∈ V : f (x1 + x2, y) = f (x1, y) + f (x2, y);
b.2. ∀x, y ∈ V and α ∈ F: f (αx, y) = αf (x, y);
b.3. ∀x, y1, y2 ∈ V : f (x, y1 + y2) = f (x, y1) + f (x, y2);
b.4. ∀x, y ∈ V , α ∈ F: f (x, αy) = αf (x, y).
The bilinear form f is said to be symmetric if it further satisfies the
property that f (x, y) = f (y, x) for all x, y ∈ V .
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Reminder:
Definition
A scalar product (also called inner product) in a real vector space
V is a function ⟨·, ·⟩ : V × V → R that satisfies the following four
axioms:
r.1. ∀x ∈ V : ⟨x, x⟩ ≥ 0, and equality holds iff x = 0;
r.2. ∀x, y, z ∈ V : ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩;
r.3. ∀x, y ∈ V , α ∈ R: ⟨αx, y⟩ = α⟨x, y⟩;
r.4. ∀x, y ∈ V : ⟨x, y⟩ = ⟨y, x⟩.

r.2’. ∀x, y, z ∈ V , ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩;
r.3’. ∀x, y ∈ V and α ∈ R, ⟨x, αy⟩ = α⟨x, y⟩.

Remark: every scalar product ⟨·, ·⟩ in a real vector space V is
a symmetric bilinear form.

Indeed, r.2, r.3, r.2’, and r.3’ are precisely the axioms b.1, b.2,
b.3, and b.4, respectively.
Moreover, by r.4, scalar products in real vector spaces are
symmetric.
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Reminder:

Definition
A scalar product (also called inner product) in a complex vector
space V is a function ⟨·, ·⟩ : V × V → C that satisfies the
following four axioms:
c.1. ∀x ∈ V : ⟨x, x⟩ is a real number, ⟨x, x⟩ ≥ 0 , and equality

holds iff x = 0;
c.2. ∀x, y, z ∈ V : ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩;
c.3. ∀x, y ∈ V , α ∈ C: ⟨αx, y⟩ = α⟨x, y⟩;
c.4. ∀x, y ∈ V : ⟨x, y⟩ = ⟨y, x⟩.

c.2’. ∀x, y, z ∈ V : ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩;
c.3’. ∀x, y ∈ V , α ∈ C: ⟨x, αy⟩ = α⟨x, y⟩.

Remark: scalar products in non-trivial complex vector spaces
are not bilinear forms, since c.1 and c.3’ together contradict
axiom b.4 (next slide).



c.1. ∀x ∈ V : ⟨x, x⟩ is a real number, ⟨x, x⟩ ≥ 0 , and equality
holds iff x = 0;

c.3’. ∀x, y ∈ V , α ∈ C: ⟨x, αy⟩ = α⟨x, y⟩.

Indeed, if ⟨·, ·⟩ is a scalar product in a non-trivial complex
vector space V , then for any x ∈ V \ {0}, c.1 guarantees that
⟨x, x⟩ ≠ 0,

and so

⟨x, ix⟩ c.3’= i⟨x, x⟩ = −i⟨x, x⟩ ̸= i⟨x, x⟩,

and we see that b.4 does not hold.
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Proposition 9.2.1
Let V be a vector space over a field F, and let f be a bilinear form
on V . Then all the following hold:

(a) ∀x ∈ V : f (x, 0) = 0;
(b) ∀y ∈ V : f (0, y) = 0;
(c) f (0, 0) = 0.

Proof.

For (a), we fix a vector x ∈ V , and we compute:

f (x, 0) = f (x, 0 + 0) b.3= f (x, 0) + f (x, 0).

By subtracting f (x, 0) from both sides, we obtain 0 = f (x, 0).
This proves (a).

The proof of (b) is similar. Finally, (c) is a special case of (a) for
x = 0. □
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Reminder:

Theorem 4.5.1
Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {b1, . . . , bm} be a basis of U, let
C = {c1, . . . , cn} be a basis of V , and let f : U → V be a linear
function. Then exists a unique matrix in Fn×m, denoted by
C

[
f

]
B and called the matrix of f with respect to B and C, s.t.

for all u ∈ U, we have that

C

[
f

]
B

[
u

]
B =

[
f (u)

]
C .

Moreover, the matrix C

[
f

]
B is given by

C

[
f

]
B =

[ [
f (b1)

]
C . . .

[
f (bm)

]
C

]
.

For bilinear forms, we have the following (next slide).
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Theorem 9.2.2
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {b1, . . . , bn} be a basis of V .

(a) For every matrix A =
[

ai,j
]

n×n in Fn×n, the function
f : V × V → F given by

f (x, y) =
[

x
]T

B A
[

y
]

B for all x, y ∈ V
is a bilinear form on V , and moreover, all the following hold:

(a.1) f (bi , bj) = ai,j for all i , j ∈ {1, . . . , n},
(a.2) f

( ∑n
i=1 cibi ,

∑n
j=1 djbj

)
=

∑n
i=1

∑n
j=1 ai,jcidj for all

c1, . . . , cn, d1, . . . , dn ∈ F,
(a.3) f is symmetric if and only if A is symmetric.

(b) For every bilinear form f on V , there exists a unique matrix
A =

[
ai,j

]
n×n in Fn×n, called the matrix of the bilinear form

f with respect to the basis B, that satisfies the property that
f (x, y) =

[
x

]T
B A

[
y

]
B for all x, y ∈ V .

Moreover, the entries of the matrix A are given by
ai ,j = f (bi , bj) for all indices i , j ∈ {1, . . . , n}.



Proof. (a) Fix a matrix A =
[

ai,j
]

n×n in Fn×n, and define
f : V × V → F by setting

f (x, y) =
[

x
]T

B A
[

y
]

B for all x, y ∈ V .

Let us first check that f is bilinear. We must check that f
satisfies axioms b.1-b.4. For b.1, we observe that for all vectors
x1, x2, y ∈ V , we have the following:

f (x1 + x2, y) =
[

x1 + x2
]T

B A
[

y
]

B

(∗)=
( [

x1
]

B +
[

x2
]

B

)T
A

[
y

]
B

=
( [

x1
]T

B A
[

y
]

B

)
+

( [
x2

]T
B A

[
y

]
B

)
= f (x1, y) + f (x2, y),

where (*) follows from the linearity of
[

·
]

B. Thus, f satisfies b.1,
and similarly, it satisfies b.3.
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Proof (continued). For b.2, we observe that for all vectors x, y ∈ V
and scalars α ∈ V , we have the following:

f (αx, y) =
[

αx
]T

B A
[

y
]

B

(∗)=
(

α
[

x
]

B

)T
A

[
y

]
B

= α
( [

x
]T

B A
[

y
]

B

)
= αf (x, y),

where (*) follows from the linearity of
[

·
]

B. Thus, f satisfies b.2,
and similarly, it satisfies b.4. This proves that f is indeed bilinear.



Proof (continued). Next, to prove (a.1), we fix indices
i , j ∈ {1, . . . , n}, and we compute:

f (bi , bj) =
[

bi
]T

B A
[

bj
]

B = eT
i Aej

(∗)= ai,j ,

where (*) follows from Proposition 9.1.1(b).

For (a.2), we fix scalars c1, . . . , cn, d1, . . . , dn ∈ F, and we
compute:

f
( n∑

i=1
cibi ,

n∑
j=1

djbj

) (∗)=
n∑

i=1

n∑
j=1

cidj f (bi , bj)
(a.1)=

n∑
i=1

n∑
j=1

ai,jcidj ,

where (*) follows from the fact that f is bilinear.
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Proof (continued). It remains to prove (a.3).

Suppose first that A
is symmetric. Then for all x, y ∈ V , we have that

f (x, y) =
[

x
]T

B A
[

y
]

B
(∗)=

( [
x

]T
B A

[
y

]
B

)T

=
[

y
]T

B AT [
x

]
B

(∗∗)=
[

y
]T

B A
[

x
]

B = f (y, x),

where (*) follows from the fact that
[

x
]T

B A
[

y
]

B is a 1 × 1
matrix (and is therefore symmetric), and (**) follows from the fact
that A is symmetric. So, f is symmetric.

Suppose, conversely, that f is symmetric. Then for all indices
i , j ∈ {1, . . . , n}, we have the following:
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Proof (continued). (b) Fix a bilinear form f on V .

First of all, if A =
[

ai,j
]

n×n is any matrix in Fn×n that satisfies the
property that f (x, y) =

[
x

]T
B A

[
y

]
B for all x, y ∈ V , then (a)

guarantees that ai ,j = f (bi , bj) for all indices i , j ∈ {1, . . . , n}.
This, in particular, proves the uniqueness part of (b).
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Proof (continued). For existence, we must show that the matrix
A =
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x

]T
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[
y

]
B for all x, y ∈ V .

So, fix vectors x, y ∈ V . Since B = {b1, . . . , bn} is a basis of V ,
we know that there exist scalars c1, . . . , cn, d1, . . . , dn ∈ F s.t.
x =

∑n
i=1 cibi and y =

∑n
j=1 djbj , so that[

x
]

B =
[

c1 . . . cn
]T and

[
y

]
B =

[
d1 . . . dn

]T . We
then compute:

f (x, y) = f
( n∑

i=1
cibi ,

n∑
j=1

djbj

) (∗)=
n∑

i=1

n∑
j=1

cidj f (bi , bj)︸ ︷︷ ︸
=ai,j

=
n∑

i=1

n∑
j=1

ai,jcidj
(∗∗)=

[
x

]T
B A

[
y

]
B ,

where (*) follows from the fact that f is bilinear, and (**) follows
from Proposition 9.1.1(a). □
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Theorem 9.2.2
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {b1, . . . , bn} be a basis of V .

(a) For every matrix A =
[

ai,j
]

n×n in Fn×n, the function
f : V × V → F given by

f (x, y) =
[

x
]T

B A
[

y
]

B for all x, y ∈ V
is a bilinear form on V , and moreover, all the following hold:

(a.1) f (bi , bj) = ai,j for all i , j ∈ {1, . . . , n},
(a.2) f

( ∑n
i=1 cibi ,

∑n
j=1 djbj

)
=

∑n
i=1

∑n
j=1 ai,jcidj for all

c1, . . . , cn, d1, . . . , dn ∈ F,
(a.3) f is symmetric if and only if A is symmetric.

(b) For every bilinear form f on V , there exists a unique matrix
A =

[
ai,j

]
n×n in Fn×n, called the matrix of the bilinear form

f with respect to the basis B, that satisfies the property that
f (x, y) =

[
x

]T
B A

[
y

]
B for all x, y ∈ V .

Moreover, the entries of the matrix A are given by
ai ,j = f (bi , bj) for all indices i , j ∈ {1, . . . , n}.



As a special case of Theorem 9.2.2 for the special case of
V = Fn (where F is a field), and B = En (the standard basis
of Fn), we get the following corollary (next slide).



Corollary 9.2.3
Let F be a field, and let En = {e1, . . . , en} be the standard basis of
Fn.

(a) For every matrix A =
[

ai,j
]

n×n in Fn×n, the function
f : Fn × Fn → F given by

f (x, y) = xT Ay for all x, y ∈ Fn

is a bilinear form on Fn, and moreover, all the following hold:
(a.1) f (ei , ej) = ai,j for all i , j ∈ {1, . . . , n},

(a.2) f (x, y) =
n∑

i=1

n∑
j=1

ai,jxiyj for all vectors x =
[

x1 . . . xn
]T

and y =
[

y1 . . . yn
]T in Fn,

(a.3) f is symmetric iff A is symmetric.
(b) For every bilinear form f on Fn, there exists a unique matrix

A =
[

ai,j
]

n×n in Fn×n that satisfies the property that
f (x, y) = xT Ay for all x, y ∈ Fn.

Moreover, the entries of the matrix A are given by
ai ,j = f (ei , ej) for all indices i , j ∈ {1, . . . , n}.



Remark: Corollary 9.2.3 implies that, for a field F, the
bilinear forms on Fn are precisely the functions
f : Fn × Fn → F given by

f (x, y) =
n∑

i=1

n∑
j=1

ai,jxiyj for all x =

 x1
...

xn

 and y =

 y1
...

yn

 in Fn,

where the ai ,j ’s are some scalars in F.

Moreover, such a bilinear form is symmetric if and only if
ai,j = aj,i for all indices i , j ∈ {1, . . . , n}.
The matrix of this bilinear form with respect to the standard
basis En of Rn is

[
ai,j

]
n×n (so, the i , j-th entry of the matrix

is the coefficient in front of xiyj from the formula for f above).
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For example, functions f1, f2 : R2 × R2 → R given by the
formulas

f1(x, y) = x1y1 − 3x1y2 − 3x2y1 + 7x2y2,
f2(x, y) = x1y1 − 2x1y2 + 3x2y1 − 3x2y2,

for all x =
[

x1 x2
]T and y =

[
y1 y2

]T in R2, are bilinear
forms on R2.

The bilinear form f1 is symmetric, whereas the bilinear form f2
is not.
The matrices of the bilinear forms f1 and f2 with respect to the
standard basis E2 of R2 are

A1 =
[

1 −3
−3 7

]
and A2 =

[
1 −2
3 −3

]
,

respectively.
Note that A1 is symmetric, whereas A2 is not; this is
consistent with the fact that f1 is symmetric, whereas f2 is not.
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Reminder:

Theorem 4.3.2
Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {u1, . . . , un} be a basis of U, and let
v1, . . . , vn ∈ V . Then there exists a unique linear function
f : U → V s.t. f (u1) = v1, . . . , f (un) = vn. Moreover, if the vector
space U is non-trivial (i.e. n ̸= 0), then this unique linear function
f : U → V satisfies the following: for all u ∈ U, we have that

f (u) = α1v1 + · · · + αnvn,

where
[

u
]

B =
[

α1 . . . αn
]T . On the other hand, if U is

trivial (i.e. U = {0}), then f : U → V is given by f (0) = 0.

Theorem 4.3.2 essentially states that a linear function can be
fully determined by specifying what the vectors of some basis
of the domain get mapped to.
For bilinear forms, Theorem 9.2.2 yields the following
analogous result.
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Corollary 9.2.4
Let V be a non-trivial, finite-dimensional vector space over a field
F, let B = {b1, . . . , bn} be a basis of V , and let A =

[
ai,j

]
n×n be

a matrix in Fn×n. Then there exists a unique bilinear form f on V
that satisfies the property that f (bi , bj) = ai ,j for all indices
i , j ∈ {1, . . . , n}. Moreover, the matrix of this bilinear form with
respect to the basis B is precisely the matrix A.

Proof.

Existence. By Theorem 9.2.2(a), the function
f : V × V → F given by

f (x, y) =
[

x
]T

B A
[

y
]

B for all x, y ∈ V

is bilinear, and moreover, part (a.1) of Theorem 9.2.2(a)
guarantees that f (bi , bj) = ai ,j for all indices i , j ∈ {1, . . . , n}.
Clearly, A is the matrix of the bilinear form f with respect to the
basis B.
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Let V be a non-trivial, finite-dimensional vector space over a field
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[
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a matrix in Fn×n. Then there exists a unique bilinear form f on V
that satisfies the property that f (bi , bj) = ai ,j for all indices
i , j ∈ {1, . . . , n}. Moreover, the matrix of this bilinear form with
respect to the basis B is precisely the matrix A.

Proof (continued). Uniqueness. Suppose that f ′ is any bilinear
form on V that satisfies f ′(bi , bj) = ai ,j for all i , j ∈ {1, . . . , n}.
Then Theorem 9.2.2(b) guarantees that the matrix of the bilinear
form f ′ with respect to the basis B is precisely the matrix
A =

[
ai,j

]
n×n, i.e. f ′(x, y) =

[
x

]T
B A

[
y

]
B for all x, y ∈ V . □



Theorem 9.2.5 [Change of basis for bilinear forms]
Let V be a non-trivial, finite-dimensional vector space over a field
F, let f be a bilinear form on V , and let B and C be bases of V .
Further, let B be the matrix of f with respect to B, and let C be
the matrix of f with respect to C. Then

C = B

[
IdV

]T
C B B

[
IdV

]
C .

Proof.

For all x, y ∈ V , we have that

f (x, y) (∗)=
[

x
]T

B B
[

y
]

B

=
(

B

[
IdV

]
C

[
x

]
C

)T
B

(
B

[
IdV

]
C

[
y

]
C

)
=

[
x

]T
C

(
B

[
IdV

]T
C B B

[
IdV

]
C

) [
y

]
C ,

where (*) follows from the fact that B is the matrix of the bilinear
form f with respect to the basis B.
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Definition
Let F be a field. A matrix A ∈ Fn×n is said to be congruent to a
matrix B ∈ Fn×n if there exists an invertible matrix P ∈ Fn×n s.t.
B = PT AP.

Like matrix similarity (see Proposition 4.5.13), matrix
congruence is an equivalence relation on Fn×n.

Proposition 9.2.6
Let F be a field. Then all the following hold:

(a) for all matrices A ∈ Fn×n, A is congruent to A;
(b) for all matrices A, B ∈ Fn×n, if A is congruent to B, then B is

congruent to A;
(c) for all matrices A, B, C ∈ Fn×n, if A is congruent to B and B

is congruent to C , then A is congruent to C .

Proof: Lecture Notes (easy).
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Proof: Lecture Notes (easy).



Definition
Let F be a field. A matrix A ∈ Fn×n is said to be congruent to a
matrix B ∈ Fn×n if there exists an invertible matrix P ∈ Fn×n s.t.
B = PT AP.

Theorem 4.5.16 essentially states that two square matrices are
similar iff they represent the same linear function, but possibly
with respect to different bases.

Theorem 9.2.7 (next slide) is an analog of Theorem 4.5.16 for
congruent matrices: it states that two square matrices are
congruent if and only if they represent the same bilinear form,
but possibly with respect to different bases.
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Theorem 9.2.7
Let F be a field, let B, C ∈ Fn×n be matrices, and let V be an
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) B and C are congruent;
(b) for all bases B of V and bilinear forms f on V s.t. B is the

matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

(c) there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof.

We will prove the implications
“(a) =⇒ (b) =⇒ (c) =⇒ (a).”
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(b) for all bases B of V and bilinear forms f on V s.t. B is the

matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

Proof (continued). We first assume (a) and prove (b).

By (a),
there exists an invertible matrix P ∈ Fn×n s.t. C = PT BP. Now,
to prove (b), we fix a basis B of V and a bilinear form f on V such
that B is the matrix of f with respect to B.
Since P is invertible, Proposition 4.5.12 guarantees that there
exists a basis C of V s.t. P = B

[
IdV

]
C. But then Theorem 9.2.5

guarantees that the matrix of the bilinear form f with respect to
the basis C is precisely the matrix

B

[
IdV

]T
C B B

[
IdV

]
C = PT BP = C .

This proves (b).
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Theorem 9.2.7
(b) for all bases B of V and bilinear forms f on V s.t. B is the

matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

(c) there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Next, we assume (b) and prove (c).

Fix any
basis B of V , and define f : V × V → F by setting
f (x, y) =

[
x

]T
B B

[
y

]
B for all x, y ∈ V . By Theorem 9.2.2, f is

a bilinear form on V , and obviously, B is the matrix of f with
respect to the basis B.
Using (b), we now fix a basis C of V s.t. C is the matrix of the
bilinear form f with respect to C. We have now constructed bases
B and C of V , and a bilinear form f on V , s.t. B is the matrix of f
with respect to B, and C is the matrix of f with respect to C. This
proves (c).
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f with respect to C.

Proof (continued). Finally, we assume (c) and prove (a).

Using (c), we fix bases B and C and a bilinear form f on V s.t. B
is the matrix of f with respect to B, and C is the matrix of f with
respect to C.

Set P := B

[
IdV

]
C. By Proposition 4.5.12, P is invertible, and by

Theorem 9.2.5, we have that C = PT BP. This proves (a). □
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Definition
The characteristic of a field F is the smallest positive integer n (if
it exists) s.t. in the field F, we have that

1 + · · · + 1︸ ︷︷ ︸
n

= 0,

where the 1’s and the 0 are understood to be in the field F. If no
such n exists, then char(F) := 0.

Fields Q, R, and C all have characteristic 0.
On the other hand, for all prime numbers p, we have that
char(Zp) = p.
By Theorem 2.4.5, the characteristic of any field is either 0 or
a prime number.



Proposition 9.2.8
Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all
x ∈ V , we have that f (x, x) = g(x, x). Then f = g .

Proof: next slide.
Remark: Proposition 9.2.8 applies to bilinear forms over
vector spaces of characteristic other than 2.

In such fields, we can divide by 2 := 1 + 1, since 2 = 1 + 1 ̸= 0.
The only field of characteristic 2 that we have seen is Z2, but
other fields of characteristic 2 do exist.



Proposition 9.2.8
Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all
x ∈ V , we have that f (x, x) = g(x, x). Then f = g .

Proof.

Fix x, y ∈ V . We must show that f (x, y) = g(x, y). By
hypothesis, all the following hold:

(1) f (x, x) = g(x, x);
(2) f (y, y) = g(y, y);
(3) f (x + y, x + y) = g(x + y, x + y).

On the other hand, since f and g are bilinear, we have that
(4) f (x + y, x + y) = f (x, x) + f (x, y) + f (y, x) + f (y, y);
(5) g(x + y, x + y) = g(x, x) + g(x, y) + g(y, x) + g(y, y).
By (1)-(5), it follows that f (x, y) + f (y, x) = g(x, y) + g(y, x).
But since f and g are symmetric, we further have that
f (x, y) = f (y, x) and g(x, y) = g(y, x), and it follows that
2f (x, y) = 2g(x, y). Since char(F) ̸= 2 (and consequently,
2 = 1 + 1 ̸= 0 in our field F), we deduce that f (x, y) = g(x, y). □
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3 Quadratic forms

Definition
A quadratic form on a vector space V over a field F is any function
q : V → F for which there exists a bilinear form f : V × V → F
s.t. q(x) = f (x, x) for all x ∈ V .

Quadratic forms are defined for vector spaces over fields of
any characteristic.
However, in all our results that follow, we assume that the
field in question is of characteristic other than 2, so that we
can divide by 2.
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Theorem 9.3.1
Let q be a quadratic form on a vector space V over a field F of
characteristic other than 2. Then there exists a unique symmetric
bilinear form f on V s.t. for all x ∈ V , we have that
q(x) = f (x, x). Furthermore, if the vector space V is non-trivial
and finite-dimensional, then for any basis B of V , there exists a
unique symmetric matrix A ∈ Fn×n s.t.

q(x) =
[

x
]T

B A
[

x
]

B for all x ∈ V ,

and moreover, this unique symmetric matrix A is precisely the
matrix of the symmetric bilinear form f with respect to the basis B.

Terminology: The symmetric matrix A from the statement of
Theorem 9.3.1 is called the matrix of the quadratic form q
with respect to the basis B.

For emphasis, we may optionally refer to A as the symmetric
matrix of the quadratic form q with respect to the basis B.
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However, only one such matrix is symmetric.
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the matrix of q with respect to B.

Now let’s prove the theorem!
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Proof. We first prove the existence and uniqueness of the
symmetric bilinear form f .

By the definition of a quadratic form,
there exists some bilinear form h on V s.t. for all x ∈ V , we have
that q(x) = h(x, x). Now, using the fact that char(F) ̸= 2, we
define f : V × V → F by setting

f (x, y) = 1
2

(
h(x, y) + h(y, x)

)
for all x ∈ V .

It is then straightforward to check that f is a symmetric bilinear
form on V (details?). Moreover, for all x ∈ V , we have that

q(x) = h(x, x) = 1
2

(
h(x, x) + h(x, x)

)
= f (x, x),

which is what we needed. This completes the proof of existence.
Uniqueness follows immediately from Proposition 9.2.8.

Indeed, suppose that f1 and f2 are symmetric bilinear forms on
V s.t. q(x) = f1(x, x) and q(x) = f1(x, x) for all x ∈ V . Then
f1(x, x) = f2(x, x) for all x ∈ V . But then by
Proposition 9.2.8, we have that f1 = f2.
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Proof (continued). Let us now assume that the vector space V is
non-trivial and finite-dimensional, and let B be a basis of V .

Let
A ∈ Fn×n be the matrix of the bilinear form f with respect to the
basis B; by Theorem 9.2.2, the matrix A is symmetric. Obviously,
q(x) = f (x, x) =

[
x

]T
B A

[
x

]
B for all x ∈ V .

For uniqueness, suppose that A′ ∈ Fn×n is a symmetric matrix s.t.

q(x) =
[

x
]T

B A′ [
x

]
B for all x ∈ V .

WTS A′ = A. Define f ′ : V × V → F by setting

f ′(x, y) =
[

x
]T

B A′ [
y

]
B for all x, y ∈ V .

By Theorem 9.2.2(a), f ′ is a symmetric bilinear form. But then
for all x ∈ V , we have that f ′(x, x) = q(x) = f (x, x), and so by
Proposition 9.2.8, f ′ = f . The uniqueness part of
Theorem 9.2.2(b) now guarantees that A′ = A, and we are done. □
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Theorem 9.3.1
Let q be a quadratic form on a vector space V over a field F of
characteristic other than 2. Then there exists a unique symmetric
bilinear form f on V s.t. for all x ∈ V , we have that
q(x) = f (x, x). Furthermore, if the vector space V is non-trivial
and finite-dimensional, then for any basis B of V , there exists a
unique symmetric matrix A ∈ Fn×n s.t.

q(x) =
[

x
]T

B A
[

x
]

B for all x ∈ V ,

and moreover, this unique symmetric matrix A is precisely the
matrix of the symmetric bilinear form f with respect to the basis B.



Remark: Let F be a field. Then quadratic forms q on Fn are
all of the form

q(x) =
n∑

i=1

n∑
j=1

bi ,jxixj for all x =
[

x1 . . . xn
]T in Fn,

where the bi ,j ’s are some elements of F.

If char(F) ̸= 2, then the matrix of such a quadratic form q
with respect to the standard basis En of Fn is the matrix
A =

[
ai,j

]
n×n whose entries are given by ai,j = 1

2 (bi,j + bj,i)
for all i , j ∈ {1, . . . , n}.
Indeed, by construction, A is symmetric, and we see that for all
vectors x =

[
x1 . . . xn

]T in Fn, we have the following:

xT Ax (∗)=
n∑

i=1

n∑
j=1

ai,jxixj =
n∑

i=1

n∑
j=1

1
2 (bi,j + bj,i)xixj

= 1
2

(( n∑
i=1

n∑
j=1

bi,jxixj
)

+
( n∑

i=1

n∑
j=1

bj,ixixj
))

=
n∑

i=1

n∑
j=1

bi,jxixj = q(x),

where (*) follows from Proposition 9.1.1(a).
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Example 9.3.2
Consider the quadratic form q on R3 given by

q(x) = 3x2
1 + 2x1x2 − 4x1x3 + 5x2

2 − 6x2x3 + 2x3
3

for all vectors x =
[

x1 x2 x3
]T in R3. Then the matrix of q

with respect to the standard basis E3 of R3 is the matrix

A :=

 3 1 −2
1 5 −3

−2 −3 2

 .



Corollary 9.3.3 [Change of basis for quadratic forms]
Let V be a non-trivial, finite-dimensional vector space over a field
F of characteristic other than 2, let q be a quadratic form on V ,
and let B and C be bases of V . Further, let B be the (symmetric)
matrix of q with respect to B, and let C be the (symmetric) matrix
of q with respect to C. Then

C = B

[
IdV

]T
C B B

[
IdV

]
C .

Proof.

By Theorem 9.3.1, there exists a unique symmetric bilinear
form f on V s.t. for all x ∈ V , we have that q(x) = f (x, x).
Theorem 9.3.1 further guarantees that B (resp. C) is the matrix of
the bilinear form f with respect to the basis B (resp. C) of Fn. The
result now follows immediately from Theorem 9.5.2. □
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Theorem 9.3.4
Let F be a field of characteristic other than 2, let B, C ∈ Fn×n be
symmetric matrices, and let V be an n-dimensional vector space
over the field F. Then the following are equivalent:

(a) B and C are congruent;
(b) for all bases B of V and quadratic forms q on V s.t. B is the

matrix of q with respect to B, there exists a basis C of V s.t.
C is the matrix of q with respect to C;

(c) there exist bases B and C of V and a quadratic form q on V
s.t. B is the matrix of q with respect to B, and C is the
matrix of q with respect to C.

Proof: Lecture Notes



4 Quadratic forms on Rn

In what follows, orthogonality and orthonormality in Rn are
assumed to be with respect to the standard scalar product ·
and the induced norm || · ||.
By Corollary 8.7.4, any symmetric matrix in Rn×n has n real
eigenvalues (when algebraic multiplicities are taken into
account).

With this in mind, we define the following (next slide).
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Definition
The signature of a symmetric matrix A ∈ Rn×n to be the ordered
triple (n+, n−, n0), where

n+ is the number of positive eigenvalues of A (counting
algebraic multiplicities),
n− is the number of negative eigenvalues of A (counting
algebraic multiplicities),
n0 := n − n+ − n−.

Note that 0 is an eigenvalue of A iff n0 > 0, and in this case,
the algebraic multiplicity of the eigenvalue 0 is precisely n0.
For example, if the spectrum of a symmetric matrix in R9×9 is
{0, 0, 1, 1, −2, −2, 5, 6, −7}, then the signature of that matrix
is (4, 3, 2).
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n− is the number of negative eigenvalues of A (counting
algebraic multiplicities),
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Our goal is to prove the following theorem.

Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.

We begin with a proposition, which we will use to prove
Theorem 9.4.3
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Proposition 9.4.1
Let A be a symmetric matrix in Rn×n with signature (n+, n−, n0).
Then there exists an invertible matrix R ∈ Rn×n with pairwise
orthogonal columns s.t.

RT AR = D
(

1, . . . , 1︸ ︷︷ ︸
n+

, −1, . . . , −1︸ ︷︷ ︸
n−

, 0, . . . , 0︸ ︷︷ ︸
n0

)
.

Proof.

By the spectral theorem for symmetric matrices, we know
that A is orthogonally diagonalizable. So, let D = D(λ1, . . . , λn)
be a diagonal and Q an orthogonal matrix, both in Rn×n, s.t.
D = QT AQ. By Proposition 8.5.12, {λ1, . . . , λn} is the spectrum
of A.

After possibly permuting the λi ’s and the corresponding columns
of the orthogonal matrix Q, we may assume that the first n+ many
λi ’s are positive, the subsequent n− many λi ’s are negative, and
the final n0 many λi ’s are 0 (justification: Lecture Notes).
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Proof (continued). Reminder: D = QT AQ, D = D(λ1, . . . , λn),
Q is orthogonal; the first n+ many λi ’s are positive, the subsequent
n− many λi ’s are negative, and the final n0 many λi ’s are 0.

Now, set

ℓi :=


1√
|λi |

if λi ̸= 0

1 if λi = 0
for all indices i ∈ {1, . . . , n}, and set L := D(ℓ1, . . . , ℓn) and
R := QL. Since both Q and L are invertible, so is R.

Since Q is orthogonal, Theorem 6.8.1 guarantees that it is
invertible. On the other hand, L is a diagonal matrix, and all
its entries on the main diagonal are non-zero; so, by
Proposition 8.5.3(b), L is invertible.

Moreover, since L is diagonal, Proposition 8.5.1(b) guarantees that
the columns of R = QL are scalar multiples of the columns of Q;
since the columns of Q are pairwise orthogonal (by
Theorem 6.8.1), Proposition 6.1.4(b) guarantees that the columns
of R are pairwise orthogonal. Finally, we compute (next slide):
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Proof (continued).

RT AR = (QL)T A(QL) = LT QT AQ︸ ︷︷ ︸
=D

L (∗)= LDL

= D(ℓ1, . . . , ℓn) D(λ1, . . . , λn) D(ℓ1, . . . , ℓn)
(∗∗)= D(λ1ℓ2

1, . . . , λnℓ2
n),

(∗∗∗)= D
(

1, . . . , 1︸ ︷︷ ︸
n+

, −1, . . . , −1︸ ︷︷ ︸
n−

, 0, . . . , 0︸ ︷︷ ︸
n0

)
,

where (*) follows from the fact that L is diagonal and therefore
symmetric, (**) follows from Proposition 8.5.2, and (***) follows
from the fact that, by construction,

λiℓ
2
i =

 1 if λi > 0
−1 if λi < 0

0 if λi = 0

for all indices i ∈ {1, . . . , n}, plus the fact that the first n+ many
λi ’s are positive, the subsequent n− many λi ’s are negative, and
the final n0 many λi ’s are zero. □



Proposition 9.4.1
Let A be a symmetric matrix in Rn×n with signature (n+, n−, n0).
Then there exists an invertible matrix R ∈ Rn×n with pairwise
orthogonal columns s.t.

RT AR = D
(

1, . . . , 1︸ ︷︷ ︸
n+

, −1, . . . , −1︸ ︷︷ ︸
n−

, 0, . . . , 0︸ ︷︷ ︸
n0

)
.

The proof of Proposition 9.4.1 is fully constructive (i.e. it
allows us to construct a suitable matrix R, as long as we are
able to factor the characteristic polynomial of A).
For a numerical example, see the Lecture Notes.
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Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.

Proof. Fix symmetric matrices B, C ∈ Rn×n, and suppose first that
B and C both have the same signature, say (n+, n−, n0).

Proposition 9.4.1 then guarantees B and C are both congruent to
the diagonal matrix

D := D
(

1, . . . , 1︸ ︷︷ ︸
n+

, −1, . . . , −1︸ ︷︷ ︸
n−

, 0, . . . , 0︸ ︷︷ ︸
n0

)
.

By Proposition 9.2.6, matrix congruence is an equivalence relation
on Rn×n; so, since B and C are congruent to the same matrix D,
they are also congruent to each other.
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Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.

Proof (continued). Suppose, conversely, that B and C are
congruent.

Let (p, q, n − p − q) be the signature of B, and let
(s, t, n − s − t) be the signature of C ; WTS
(p, q, n − p − q) = (s, t, n − s − t). Clearly, it suffices to show that
p = s and p + q = s + t.
First, by Proposition 9.4.1, B is congruent to the matrix

DB := D
(

1, . . . , 1︸ ︷︷ ︸
p

, −1, . . . , −1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
n−p−q

)
,

and C is congruent to the matrix
DC := D

(
1, . . . , 1︸ ︷︷ ︸

s

, −1, . . . , −1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
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Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.

Proof (continued). Reminder: Matrices
DB := D
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are congruent to each other; WTS p = s and p + q = s + t.

By definition, this means that there exists an invertible matrix
P ∈ Rn×n s.t. DC = PT DBP; we will use this to prove that
p + q = r + s.

On the other hand, by Theorem 9.4.1, there exist bases
B = {b1, . . . , bn} and C = {c1, . . . , cn} of Rn, as well as a
quadratic form q on Rn, s.t. DB is the matrix of q w.r.t. B, and
DC is the matrix of q w.r.t. C; we will use this to prove that p = s.
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Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.

Proof (continued). Reminder: DC = PT DBP, where
DB := D

(
1, . . . , 1︸ ︷︷ ︸
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)
,

P is invertible.
We first show that p + q = s + t.

Clearly, rank(DB) = p + q and
rank(DC ) = s + t, and so it is enough to show that
rank(DB) = rank(DC ). Since the matrix P is invertible, the
Invertible Matrix Theorem guarantees that PT is also inverible.
But then

rank(DC ) = rank(PT DBP) (∗)= rank(DB),
where (*) follows from Proposition 3.3.14 (since PT and P are
both invertible).



Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.

Proof (continued). Reminder: DC = PT DBP, where
DB := D

(
1, . . . , 1︸ ︷︷ ︸

p

, −1, . . . , −1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
n−p−q

)
,

DC := D
(

1, . . . , 1︸ ︷︷ ︸
s

, −1, . . . , −1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
n−s−t

)
,

P is invertible.
We first show that p + q = s + t. Clearly, rank(DB) = p + q and
rank(DC ) = s + t, and so it is enough to show that
rank(DB) = rank(DC ).

Since the matrix P is invertible, the
Invertible Matrix Theorem guarantees that PT is also inverible.
But then

rank(DC ) = rank(PT DBP) (∗)= rank(DB),
where (*) follows from Proposition 3.3.14 (since PT and P are
both invertible).



Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.

Proof (continued). Reminder: DC = PT DBP, where
DB := D

(
1, . . . , 1︸ ︷︷ ︸

p

, −1, . . . , −1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
n−p−q

)
,

DC := D
(

1, . . . , 1︸ ︷︷ ︸
s

, −1, . . . , −1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
n−s−t

)
,

P is invertible.
We first show that p + q = s + t. Clearly, rank(DB) = p + q and
rank(DC ) = s + t, and so it is enough to show that
rank(DB) = rank(DC ). Since the matrix P is invertible, the
Invertible Matrix Theorem guarantees that PT is also inverible.

But then
rank(DC ) = rank(PT DBP) (∗)= rank(DB),

where (*) follows from Proposition 3.3.14 (since PT and P are
both invertible).



Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.

Proof (continued). Reminder: DC = PT DBP, where
DB := D

(
1, . . . , 1︸ ︷︷ ︸

p

, −1, . . . , −1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
n−p−q

)
,

DC := D
(

1, . . . , 1︸ ︷︷ ︸
s

, −1, . . . , −1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
n−s−t

)
,

P is invertible.
We first show that p + q = s + t. Clearly, rank(DB) = p + q and
rank(DC ) = s + t, and so it is enough to show that
rank(DB) = rank(DC ). Since the matrix P is invertible, the
Invertible Matrix Theorem guarantees that PT is also inverible.
But then

rank(DC ) = rank(PT DBP) (∗)= rank(DB),
where (*) follows from Proposition 3.3.14 (since PT and P are
both invertible).



Proof (continued). Reminder:
DB := D

(
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q
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)
is the matrix of q w.r.t.

B = {b1, . . . , bn},
DC := D

(
1, . . . , 1︸ ︷︷ ︸

s

, −1, . . . , −1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
n−s−t
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is the matrix of q w.r.t.

C = {c1, . . . , cn}.

It remains to show that p = s. Suppose otherwise. By symmetry,
we may assume that p > s. Now consider the subspaces
UB := Span(b1, . . . , bp) and UC := Span(cs+1, . . . , cn) of Rn.
Then by Theorem 3.2.23, we have that

dim(UB) + dim(UC ) = dim(UB + UC ) + dim(UB ∩ UC ).

But note that
dim(UB) + dim(UC ) = p + (n − s) = n + (p − s) > n,
dim(UB + UC ) ≤ dim(Rn) = n.

So, dim(UB ∩ UC ) > 0, and it follows that UB ∩ UC contains some
non-zero vector u.
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C = {c1, . . . , cn},
UB := Span(b1, . . . , bp), UC := Span(cs+1, . . . , cn),
u ∈ UB ∩ UC , u ̸= 0.

Set
[

u
]

B =
[

x1 . . . xn
]T and

[
u

]
C =

[
y1 . . . yn

]T .
Then at least one of x1, . . . , xp is non-zero, xp+1 = · · · = xn = 0,
and y1 = · · · = ys = 0. We now have that

q(u) =
[

u
]T

B DB
[

u
]

B
(∗)= x2

1 + · · · + x2
p > 0,

q(u) =
[

u
]T

C DC
[

u
]

C
(∗)= −y2

s+1 − · · · − y2
s+t ≤ 0,

where for both instances of (*), we used the formula from
Proposition 9.1.1(a). We have now derived a contradiction, and it
follows that p = s. This completes the argument. □
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Proposition 9.4.1
Let A be a symmetric matrix in Rn×n with signature (n+, n−, n0).
Then there exists an invertible matrix R ∈ Rn×n with pairwise
orthogonal columns s.t.

RT AR = D
(

1, . . . , 1︸ ︷︷ ︸
n+

, −1, . . . , −1︸ ︷︷ ︸
n−

, 0, . . . , 0︸ ︷︷ ︸
n0

)
.

Theorem 9.4.3
Two symmetric matrices in Rn×n are congruent iff they have the
same signature.



Suppose that F is a field and that D = D(a1, . . . , an) is a
diagonal matrix in Fn×n.

Then for all vectors x =
[

x1 . . . xn
]T in Fn, we have that

xT Dx = a1x2
1 + · · · + anx2

n ,

as can be seen via routine computation, or by applying
Proposition 9.1.1(a).
This is a particularly nice formula, and for this reason, if q is a
quadratic form over a field F, it is helpful to have a basis B
with respect to which the matrix of q is diagonal.
Sylvester’s law of inertia (in a couple of slides) states that
when V = Rn, such a basis B always exists.
As we shall see, Sylvester’s law of inertia is essentially a
“translation” of Proposition 9.4.1 and Theorem 9.4.3 into the
language of quadratic forms.
Before formally stating and proving the law, we need a
definition.
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Definition
The signature of a quadratic form q on Rn is defined to be the
signature of the matrix of q with respect to any basis B of Rn. A
polar basis of Rn associated with the quadratic form q is any
orthogonal basis B of Rn s.t. the matrix of q w.r.t. B is a
diagonal matrix with only 1’s, −1’s, and 0’s on the main diagonal.

By Theorems 9.3.4 and 9.4.3, the signature of q is well
defined.

Indeed, by Theorem 9.3.4, matrices of q with respect to all
possible bases of Rn are congruent to each other, and so by
Theorem 9.4.3, they all have the same signature.



Sylvester’s law of inertia
Let q be a quadratic form on Rn, and let (n+, n−, n0) be the
signature of q. Then Rn has a polar basis B associated with q.
Moreover, for any basis C of Rn s.t. the matrix C of q with respect
to C is diagonal, with only 1’s, −1’s, and 0’s on the main diagonal,
the following holds: the number of 1’s, −1’s, and 0’s on the main
diagonal of C is n+, n−, and n0, respectively.

Remark: The basis C from the second sentence of Sylvester’s
law of inertia is not assumed to be polar, i.e. it is possible that
it is not orthogonal.

Let’s prove the theorem!
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Proof. Let A be the matrix of the quadratic form q with respect to
the standard basis En of Rn; then the signature of A is (n+, n−, n0).

We first prove the existence of the polar basis B. Set

D := D
(

1, . . . , 1︸ ︷︷ ︸
n+

, −1, . . . , −1︸ ︷︷ ︸
n−

, 0, . . . , 0︸ ︷︷ ︸
n0

)
.

By Proposition 9.4.1, there exists an invertible matrix R ∈ Rn×n

with pairwise orthogonal columns s.t. D = RT AR. Since R is
invertible, the Invertible Matrix Theorem guarantees that its
columns form a basis B of Rn; since the columns of R are pairwise
orthogonal, the basis B is orthogonal. Moreover, by Theorem 4.5.1
(or alternatively, by Lemma 4.5.8), we have that R = En

[
IdV

]
B,

so that
D = En

[
IdV

]T
B A En

[
IdV

]
B .

But now Theorem 9.3.3 guarantees that D is the matrix of q with
respect to B. We have already seen that the basis B is orthogonal,
and we deduce that B is a polar basis of Rn associated with q.
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Sylvester’s law of inertia
Let q be a quadratic form on Rn, and let (n+, n−, n0) be the
signature of q. Then Rn has a polar basis B associated with q.
Moreover, for any basis C of Rn s.t. the matrix C of q with respect
to C is diagonal, with only 1’s, −1’s, and 0’s on the main diagonal,
the following holds: the number of 1’s, −1’s, and 0’s on the main
diagonal of C is n+, n−, and n0, respectively.

Proof (continued). Now, fix any basis C of Rn such that the matrix
of q with respect to C is a diagonal matrix C with only 1’s, −1’s,
and 0’s on the main diagonal.

By Theorem 9.3.4, matrices A and
C are congruent, and so by Theorem 9.4.3, they have the same
signature, which is (n+, n−, n0). Since the matrix C is diagonal, we
know its entries on the main diagonal form its spectrum (this
follows from Proposition 8.2.7); so, the number of 1’s, −1’s, and
0’s on the main diagonal of C is n+, n−, and n0, respectively. □
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For a numerical example, see the Lecture Notes.



For quadratic forms on R2, there exist only six possible
signatures (n+, n−, n0), namely, the following:

(2, 0, 0);
(1, 0, 1);
(1, 1, 0);

(0, 2, 0);
(0, 1, 1);
(0, 0, 2).

Thus, the graph of any quadratic form q on R2 has the same
general shape as one of the six graphs shown on the next slide
(the one that has the same signature as q).
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První nechť odpovídá bázi B = {w1, . . . , wn} a druhá bázi B′ = {w′
1, . . . , w

′
n}. Buď u ∈ Rn libovolné a

nechť má souřadnice y = [u]B , z = [u]B′ . Pak podle věty 12.7

f(u) = [u]TBD[u]B = yTDy = y21 + . . . + y2p − y2p+1 − . . . − y2q + 0y2q+1 + . . .+ 0y2n,

f(u) = [u]TB′D[u]B′ = zTD′z = z21 + . . .+ z2s − z2s+1 − . . .− z2t + 0z2t+1 + . . .+ 0z2n.

Nejprve si povšimneme, že q = t. Protože D = STD′S pro nějakou regulární S, konkrétně pro S = B′ [id]B ,
tak matice D,D′ mají stejnou hodnost. Tudíž musí q = t. Nyní zbývá ukázat, že nutně p = s. Bez újmy na
obecnosti předpokládejme p > s. Definujme prostory P = span{w1, . . . , wp} a R = span{w′

s+1, . . . , w
′
n}.

Pak
dimP ∩R = dimP + dimR− dim(P +R) ≥ p+ (n− s)− n = p− s ≥ 1.

Tedy existuje nenulový vektor u ∈ P∩R a pro něj máme u =
∑p

i=1 yiwi =
∑n

j=s+1 zjw
′
j, z čehož dostáváme

f(u) =

{

y21 + . . . + y2p > 0,

−z2s+1 − . . .− z2t ≤ 0.

To je spor.

Poznamenejme, že báze, vůči níž matice kvadratické formy je diagonální, se nazývá polární báze. Tedy
báze z věty 12.13 je příkladem polární báze, ale typicky existují i další. Dá se také ukázat, že polární báze
existuje nejen pro reálné prostory, ale i pro prostory nad libovolným tělesem charakteristiky různé od 2.

Geometrický význam Sylvestrova zákona setrvačnosti spočívá v tom najít vhodný souřadný systém (tj.
bázi), ve kterém má kvadratická forma jednoduchý diagonální tvar. Algebraický pohled na věc je ten, že
danou symetrickou matici A transformujeme na diagonální tvar pomocí úprav STAS, kde S je regulární.

Příklad 12.14 (Kvadratické formy v R2). Podle Sylvestrova zákona mají kvadratické formy v R2 v pod-
statě jeden z následujících tvarů v souřadném systému vhodné báze.
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The graphs were generated by Milan Hlad́ık, who kindly
shared them with me.



The actual graph of the quadratic form q would be obtained
by starting with one of the six graphs from the previous slide
(the one that has the same signature as q), and then possibly
stretching or shrinking the graph along the x1- and x2-axes
(the coordinate axes of the domain), and then possibly
rotating it about the vertical axis x3.

This to account for the fact that a polar basis B of R2

associated with q is not necessarily equal to the standard basis
E2 = {e1, e2}, but the vectors of B are indeed orthogonal to
each other (by the definition of a polar basis).


