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@ A formula for products of the form x Ay
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© Quadratic forms

@ Quadratic forms on R”
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@ A formula for products of the form x” Ay

Proposition 9.1.1
Let F be a field, let £, = {e1,...,e,} be the standard basis of F”,
and let A=[ a;; | bea matrix in F”*". Then both the

nxn

following hold:

@ for all vectors x = [ x ... x,,]Tandy:[yl y,,]T

in F", we have that
n n

xTAy = 33 ajxiy
i=1j=1
@ for all indices i,j € {1,...,n}, we have that e,-TAeJ- = &

Proof.



@ A formula for products of the form x” Ay

Proposition 9.1.1
Let F be a field, let £, = {e1,...,e,} be the standard basis of F”,
and let A=[ a;; | bea matrix in F”*". Then both the

nxn

following hold:

@ for all vectors x = [ x ... x,,]Tandy:[yl y,,]T

in F", we have that
n n

xTAy = 33 ajxiy
i=1j=1
@ for all indices i,j € {1,...,n}, we have that e,-TAeJ- = &

Proof. Obviously, (a) implies (b). So, let us prove (a).



Proof (continued).



. T
Proof (continued). For any vectors x=[ x; ... x, | and
T. .
y= [ Yi .- Yn ] in F”, we have the following:
a1 d12 ... din 341
- a1 a2 ... a.n ) 2)
x"Ay = [Xl Xo ... X,,] . .
| a1 3n2 .-+ ann Y
n
ZJ,',:I aLjyj
Zj:l a2,jYj
= [x x Xn |
n
L Zj:l an,jYj

This proves (a). O



Proposition 9.1.1

Let F be a field, let £, = {ey,...,
[ aij |,,, be amatrix in F™*". Then both the

and let A=
following hold:

@ for all vectors x = [ x
in ", we have that

xTAy =

@ for all indices i,j € {1,...,

en} be the standard basis of F”,

Tandy=[n o ]

% ]

Z Z aj jXiYj,

i=1j=1
TAa. — 5. .
n}, we have that e/ Ae; = a; ;.
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@ Bilinear forms

Definition

A bilinear form on a vector space V over a field IF is a function
f:V x V —F that satisfies the following four axioms:

b.1. Vx1,X2,y € Vi f(x1 + x2,y) = f(x1,y) + f(X2,Y);

b.2. Vx,y € V and a € F: f(ax,y) = af(x,y);

b.3. Vx,y1,y2 € V: f(x,y1 +¥2) = f(x,y1) + f(x,y2);

b.d. Vx,y € V,a € F: f(x,ay) = af(x,y).

The bilinear form f is said to be symmetric if it further satisfies the
property that f(x,y) = f(y,x) for all x,y € V.




@ Reminder:

Definition

A scalar product (also called inner product) in a real vector space
V is a function (-,-) : V x V — R that satisfies the following four
axioms:

r.l. Vx € V: (x,x) > 0, and equality holds iff x = 0;
r2. Vx,y,z€ V: (x+vy,z) = (x,2) + (y, z);

r3. Vx,y € V,a € R: (ax,y) = a(x,y);

r4. Vx,y € Vi (x,y) = (y,X).

r2. Vx,y,z €V, (x,y +2) = (x,y) + (x,2);
r3. Vx,y € Vand a € R, (x,ay) = a(x,y).



@ Reminder:

Definition

A scalar product (also called inner product) in a real vector space
V is a function (-,-) : V x V — R that satisfies the following four
axioms:

r.l. Vx € V: (x,x) > 0, and equality holds iff x = 0;
r2. Vx,y,z€ V: (x+vy,z) = (x,2) + (y, z);

r3. Vx,y € V,a € R: (ax,y) = a(x,y);

r4. Vx,y € Vi (x,y) = (y,X).

r2. Vx,y,z €V, (x,y +2) = (x,y) + (x,2);
r3. Vx,y € Vand a € R, (x,ay) = a(x,y).

e Remark: every scalar product (-,-) in a real vector space V is
a symmetric bilinear form.
e Indeed, r.2, r.3, r.2’, and r.3" are precisely the axioms b.1, b.2,
b.3, and b.4, respectively.
e Moreover, by r.4, scalar products in real vector spaces are
symmetric.



@ Reminder:

Definition

A scalar product (also called inner product) in a complex vector
space V is a function (-,-) : V x V — C that satisfies the
following four axioms:

c.l. Vx € V: (x,x) is a real number, (x,x) > 0, and equality
holds iff x = 0;

€2 Vx,y,z € Vi (x+y,2) = (x,2) + (y, 2)
c3. Vx,y € V,a e C: (ax,y) = a(x,y);
ch. Vx,y € Vi (x,y) = (y,x).

c2. Vx,y,ze V: (x,y+z) =
c3. Vx,ye V,a e C: (x,ay) =a(x,y).
@ Remark: scalar products in non-trivial complex vector spaces

are not bilinear forms, since c.1 and c.3' together contradict
axiom b.4 (next slide).



c.l. Vx € V: (x,x) is a real number, (x,x) > 0, and equality
holds iff x = 0;

c.3. Vx,y e V,a € C: (x,ay) = a(x,y).

@ Indeed, if (-,-) is a scalar product in a non-trivial complex
vector space V/, then for any x € V' \ {0}, c.1 guarantees that

{x,x) #0,



c.l. Vx € V: (x,x) is a real number, (x,x) > 0, and equality
holds iff x = 0;

c.3. Vx,y e V,a € C: (x,ay) = a(x,y).

@ Indeed, if (-,-) is a scalar product in a non-trivial complex
vector space V/, then for any x € V' \ {0}, c.1 guarantees that
(x,x) # 0, and so

(x, ix) =

ix,x) = —i(x,x) # i(x,x),

and we see that b.4 does not hold.



Proposition 9.2.1

Let V be a vector space over a field I, and let f be a bilinear form
on V. Then all the following hold:

@ Vxe V: f(x,0)=0;
@ VyeV: f(0,y)=0;
@ £(0,0) =0.

Proof.
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Let V be a vector space over a field I, and let f be a bilinear form
on V. Then all the following hold:

@ Vxe V: f(x,0)=0;
@ VyeV: f(0,y)=0;
@ £(0,0) =0.

Proof. For (a), we fix a vector x € V, and we compute:
f(x,0) = f(x,0+0) 2 f(x,0)+f(x,0).

By subtracting f(x,0) from both sides, we obtain 0 = f(x,0).
This proves (a).
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on V. Then all the following hold:
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Proof. For (a), we fix a vector x € V, and we compute:
f(x,0) = f(x,0+0) 2 f(x,0)+f(x,0).

By subtracting f(x,0) from both sides, we obtain 0 = f(x,0).
This proves (a).

The proof of (b) is similar.



Proposition 9.2.1

Let V be a vector space over a field I, and let f be a bilinear form
on V. Then all the following hold:

@ Vxe V: f(x,0)=0;
@ VyeV: f(0,y)=0;
@ f(0,0)=0.

Proof. For (a), we fix a vector x € V, and we compute:

f(x,0) = f(x,0+0) 2 f(x,0)+f(x,0).

By subtracting f(x,0) from both sides, we obtain 0 = f(x,0).
This proves (a).

The proof of (b) is similar. Finally, (c) is a special case of (a) for
x=0.0




@ Reminder:

Theorem 4.5.1

Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {by,...,bn,} be a basis of U, let
C={c1,...,c,} be abasisof V,and let f : U — V be a linear
function. Then exists a unique matrix in F"*™ denoted by

[ f ]B and called the matrix of f with respect to B and C, s.t.
fcor all u € U, we have that

C[f]B [“}B = [f(”)]C'

Moreover, the matrix ,[ f ], is given by

lflsg = [[fb) ] .. [flbm) ] ]




@ Reminder:

Theorem 4.5.1

Let U and V be non-trivial, finite-dimensional vector spaces over a
field F. Let B = {by,...,bn,} be a basis of U, let
C={c1,...,c,} be abasisof V,and let f : U — V be a linear
function. Then exists a unique matrix in F"*™ denoted by

[ f ]B and called the matrix of f with respect to B and C, s.t.
fcor all u € U, we have that

C[f]B [“}B = [f(”)]C'

Moreover, the matrix ,[ f ], is given by
el fls = [Lf®) ] oo [ Fbm) o ]

@ For bilinear forms, we have the following (next slide).




Theorem 9.2.2

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {by,...,b,} be a basis of V.

@ For every matrix A= | a;; in "7 the function
y J laxm

n

f:V xV —F given by
-

f(x,y) = [X}BA[y]B for all x,y € V
is a bilinear form on V/, and moreover, all the following hold:
(a.1) f(bj,bj) =a;jforalli,je{l,...,n}
(a-2) f(Z,-"zl cibi, 30 dj"j) =2 i1 2 aicid; for all

Cly--+sCnydi,...,d, €T,

(a.3) f is symmetric if and only if A is symmetric.

@ For every bilinear form f on V, there exists a unique matrix
A= ay |, , in F™" called the matrix of the bilinear form
f with respect to the basis B, that satisfies the property that

T
f(x,y) = [X]BA[y]B for all x,y € V.
Moreover, the entries of the matrix A are given by
ajj = f(bj, b;j) for all indices i,j € {1,...,n}.



Proof. (a) Fix a matrix A= [ a;; | __in F"*" and define
f:V xV —F by setting

nxn

flx,y) = [x]gAly]z forallxyeV.



Proof. (a) Fix a matrix A= [ a;; | __in F"*" and define
f:V xV —F by setting

nxn

flx,y) = [x]gAly]z forallxyeV.

Let us first check that f is bilinear.



Proof. (a) Fix a matrix A= [ a;; | __in F"*" and define
f:V xV —F by setting

nxn

flx,y) = [x]gAly]z forallxyeV.

Let us first check that f is bilinear. We must check that f
satisfies axioms b.1-b.4.



Proof. (a) Fix a matrix A= [ a;; | __in F"*" and define
f:V xV —F by setting

nxn

fx,y) = [x]pAly]s forallxyeV.

Let us first check that f is bilinear. We must check that f
satisfies axioms b.1-b.4. For b.1, we observe that for all vectors
x1,X2,Y € V, we have the following:

fatx,y) = [x+x |5 Ay,
D ([x s+ ]

= ([a i ALy L)+ (I iAly )

= f(xl7y)+ f(x27y)7

o
SN—
~
>
<
o

where (*) follows from the linearity of [ - ],. Thus, f satisfies b.1,
and similarly, it satisfies b.3.



Proof (continued). For b.2, we observe that for all vectors x,y € V
and scalars a € V, we have the following:

flaxy) = [ax ]y Ay,

= ()éf(X,y),

where (*) follows from the linearity of [ - ] .. Thus, f satisfies b.2,
and similarly, it satisfies b.4. This proves that f is indeed bilinear.



Proof (continued). Next, to prove (a.1), we fix indices

i,j€{l,...,n}, and we compute:
_ T _ oT *)
f(b,‘,bj) = [ b,' ]B A [ bj ]B = € Aej = ajj,

where (*) follows from Proposition 9.1.1(b).



Proof (continued). Next, to prove (a.1), we fix indices

i,j€{l,...,n}, and we compute:
_ T _ oT *)
f(b,‘,bj) = [ b,' ]B A [ bj ]B = € Aej = ajj,
where (*) follows from Proposition 9.1.1(b).
For (a.2), we fix scalars c1,...,¢n, d1,...,dy €F, and we
compute:

n n () L& @1 &K Z
f(-X:ICibi’z:ldij) = ZZ (bnb) = Zza C, s
i= j= i=1j=1

i=

,_.

-,
Il
—_

where (*) follows from the fact that f is bilinear.



Proof (continued). It remains to prove (a.3).



Proof (continued). It remains to prove (a.3). Suppose first that A
is symmetric. Then for all x,y € V, we have that

fey) = [xlpalyly 2 ([xlhalyvly)
= [yla AT [x]y, © [ylpAlx], = fx)

where (*) follows from the fact that | x } Alylgzisalxl
matrix (and is therefore symmetric), and ( *) follows from the fact
that A is symmetric. So, f is symmetric.



Proof (continued). It remains to prove (a.3). Suppose first that A
is symmetric. Then for all x,y € V, we have that

fey) = [xlpalyly 2 ([xlhalyvly)
= [yla AT [x]y, © [ylpAlx], = fx)

where (*) follows from the fact that | x } Alylgzisalxl
matrix (and is therefore symmetric), and ( *) follows from the fact
that A is symmetric. So, f is symmetric.

Suppose, conversely, that f is symmetric. Then for all indices
i,j €{1,...,n}, we have the following:

a2 rib) @by g

—
~

where (*) follows from the fact that f is symmetric. So, A is
symmetric.



Proof (continued). (b) Fix a bilinear form f on V.



Proof (continued). (b) Fix a bilinear form f on V.

First of all, if A= [ aj; ]nxn is any matrix in F"*" that satisfies the

property that f(x,y) = [ x ]; Ay ], forall x,y € V, then (a)
guarantees that a; ; = f(b;, bj) for all indices i,j € {1,..., n}.
This, in particular, proves the uniqueness part of (b).



Proof (continued). For existence, we must show that the matrix
A= a; |, given by the formula a;; = f(b;, bj) for all indices
i,j €{1,...,n}, does indeed satisfy the property that

fx,y) =[x ]z A[y],forallxye V.



Proof (continued). For existence, we must show that the matrix
A= a; |, given by the formula a;; = f(b;, bj) for all indices
i,j €{1,...,n}, does indeed satisfy the property that

fx,y) =[x ]z A[y],forallxye V.

So, fix vectors x,y € V. Since B = {by,...,b,} is a basis of V,

we know that there exist scalars c1,...,¢cp, d1,...,dy € F s.t.
x=73 " ¢cb;andy=73"",dbj, so that
[(x]z=[a .. c,,]Tand[y]B:[dl d,,}T.We

then compute:

—

f(x,y) = f(ic,b,-,idjbj) ST

i=1 Jj=1 i=1j=1 N——

Q-

-
—~~
&
o
~

Il
HM:

n (%)
;IJCI - [x};A[y]B’

where (*) follows from the fact that f is bilinear, and (**) follows
from Proposition 9.1.1(a). O



Theorem 9.2.2

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let B = {by,...,b,} be a basis of V.

@ For every matrix A= | a;; in "7 the function
y J laxm

n

f:V xV —F given by
-

f(x,y) = [X}BA[y]B for all x,y € V
is a bilinear form on V/, and moreover, all the following hold:
(a.1) f(bj,bj) =a;jforalli,je{l,...,n}
(a-2) f(Z,-"zl cibi, 30 dj"j) =2 i1 2 aicid; for all

Cly--+sCnydi,...,d, €T,

(a.3) f is symmetric if and only if A is symmetric.

@ For every bilinear form f on V, there exists a unique matrix
A= ay |, , in F™" called the matrix of the bilinear form
f with respect to the basis B, that satisfies the property that

T
f(x,y) = [X]BA[y]B for all x,y € V.
Moreover, the entries of the matrix A are given by
ajj = f(bj, b;j) for all indices i,j € {1,...,n}.



@ As a special case of Theorem 9.2.2 for the special case of
V =F" (where F is a field), and B = &, (the standard basis
of F™), we get the following corollary (next slide).



Corollary 9.2.3

Let F be a field, and let £, = {e1,...,e,} be the standard basis of
F".
@ For every matrix A= [ a;; | in F"™*", the function
f:F"xF" — F given by
f(x,y) = xTAy for all x,y € F"
is a bilinear form on F", and moreover, all the following hold:
(a.1) f(ej,e) = a,’J forall i,j € {1,...,n},

(a.2) f(x,y) = Z Z aijxy; forall vectors x = [ x1 ... X, ]T
i=1j=1
andy=[y ... y,,] in F",

(a.3) f is symmetric iff A is symmetric.

@ For every bilinear form f on [F”, there exists a unique matrix
A= ajj |, , in ™" that satisfies the property that
f(x,y) = xTAy for all x,y € F".
Moreover, the entries of the matrix A are given by
ajj = f(e;,ej) for all indices i,j € {1,...,n}.



@ Remark: Corollary 9.2.3 implies that, for a field IF, the
bilinear forms on [F" are precisely the functions
f:F"xF"— F given by

X1 Y1

aj j Xy for all x = : and y = : in F7,
1

f(x,y) =

n
i=

n
1j=
Xn Yn

where the a; ;'s are some scalars in F.



@ Remark: Corollary 9.2.3 implies that, for a field IF, the
bilinear forms on [F" are precisely the functions
f:F"xF"— F given by

f(x,y) =

I

aj j Xy for all x = : and y = : in F7,

1j

n n

1

where the a; ;'s are some scalars in F.

e Moreover, such a bilinear form is symmetric if and only if
ajj = aj; for all indices i,j € {1,...,n}.



@ Remark: Corollary 9.2.3 implies that, for a field IF, the
bilinear forms on [F" are precisely the functions
f:F"xF"— F given by

f(x,y) =

I

aj j Xy for all x = : and y = : in F7,
1

1j

n n

where the a; ;'s are some scalars in F.
e Moreover, such a bilinear form is symmetric if and only if
ajj = aj; for all indices i,j € {1,...,n}.
e The matrix of this bilinear form with respect to the standard
basis £, of R"is [ a;; | (so, the i, j-th entry of the matrix
is the coefficient in front of x;y; from the formula for f above).



@ For example, functions f;, f» : R? x R? — R given by the
formulas

o fAi(x,y) = x1y1 — 3x1y2 — 3xoy1 + TXo)0,

o fh(x,y) = x1y1 — 2x1y2 + 3x2)1 — 3x2y2,
forallx=[x x }T andy=[yn » ]T in R?, are bilinear
forms on R2.



@ For example, functions f;, f» : R? x R? — R given by the
formulas
o fi(x,y) = x1y1 — 3x1y2 — 3xay1 + Txay2,
o f(X,y) = x1y1 — 2x1y2 + 3xoy1 — 3x22,
forallx=[x x }T andy=[yn » ]T in R?, are bilinear
forms on R2.

e The bilinear form f; is symmetric, whereas the bilinear form f;
is not.



@ For example, functions f;, f» : R? x R? — R given by the
formulas
o fi(x,y) = x1y1 — 3x1y2 — 3xay1 + Txay2,
o f(X,y) = x1y1 — 2x1y2 + 3xoy1 — 3x22,
forallx=[x x }T andy=[yn » ]T in R?, are bilinear
forms on R2.

e The bilinear form f; is symmetric, whereas the bilinear form f;
is not.

e The matrices of the bilinear forms f; and £, with respect to the
standard basis & of R? are

1 -3 1 -2
A1|:_3 7:| and A2|:3 _3:|,

respectively.



@ For example, functions f;, f» : R? x R? — R given by the
formulas
o fi(x,y) = x1y1 — 3x1y2 — 3xoy1 + Tx2)2,
o H(x,y) = x1)1 — 2x12 + 3x1 — 3x2)2,
forallx=[x x }T andy=[yn » ]T in R?, are bilinear
forms on R2.
e The bilinear form f; is symmetric, whereas the bilinear form f;
is not.
e The matrices of the bilinear forms f; and £, with respect to the
standard basis & of R? are

1 -3 1 -2
A1|:_3 7:| and A2|:3 _3:|,

respectively.
o Note that A; is symmetric, whereas A, is not; this is
consistent with the fact that f; is symmetric, whereas £, is not.



@ Reminder:

Theorem 4.3.2

Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {uy,...,u,} be a basis of U, and let
Vi,...,Vp € V. Then there exists a unique linear function

f:U— Vst f(u) =vi,...,f(u,) = v,. Moreover, if the vector
space U is non-trivial (i.e. n # 0), then this unique linear function
f . U — V satisfies the following: for all u € U, we have that

flu) = aqvi+--+ apvp,
where | u ]B =[o ... an }T. On the other hand, if U is
trivial (i.e. U= {0}), then f : U — V is given by f(0) = 0.




@ Reminder:

Theorem 4.3.2

Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {uy,...,u,} be a basis of U, and let
Vi,...,Vp € V. Then there exists a unique linear function

f:U— Vst f(u) =vi,...,f(u,) = v,. Moreover, if the vector
space U is non-trivial (i.e. n # 0), then this unique linear function
f . U — V satisfies the following: for all u € U, we have that

flu) = aqvi+--+ apvp,
where | u ]B =[o ... an }T. On the other hand, if U is
trivial (i.e. U= {0}), then f : U — V is given by f(0) = 0.

@ Theorem 4.3.2 essentially states that a linear function can be
fully determined by specifying what the vectors of some basis
of the domain get mapped to.




@ Reminder:

Theorem 4.3.2

Let U and V be vector spaces over a field F, and assume that U is
finite-dimensional. Let B = {uy,...,u,} be a basis of U, and let
Vi,...,Vp € V. Then there exists a unique linear function

f:U— Vst f(u) =vi,...,f(u,) = v,. Moreover, if the vector
space U is non-trivial (i.e. n # 0), then this unique linear function
f . U — V satisfies the following: for all u € U, we have that

flu) = aqvi+--+ apvp,
where | u ]B =[o ... an }T. On the other hand, if U is
trivial (i.e. U= {0}), then f : U — V is given by f(0) = 0.

@ Theorem 4.3.2 essentially states that a linear function can be
fully determined by specifying what the vectors of some basis
of the domain get mapped to.

o For bilinear forms, Theorem 9.2.2 yields the following
analogous result.




Corollary 9.2.4

Let V be a non-trivial, finite-dimensional vector space over a field
F, let B = {by,...,b,} be a basis of V, and let A= a;; |  be
a matrix in F"*". Then there exists a unique bilinear form f on V
that satisfies the property that f(b;, b;) = a;; for all indices

i,j €{1,...,n}. Moreover, the matrix of this bilinear form with
respect to the basis B is precisely the matrix A.

Proof.



Corollary 9.2.4

Let V be a non-trivial, finite-dimensional vector space over a field
F, let B = {by,...,b,} be a basis of V, and let A= a;; |  be
a matrix in F"*". Then there exists a unique bilinear form f on V
that satisfies the property that f(b;, b;) = a;; for all indices

i,j €{1,...,n}. Moreover, the matrix of this bilinear form with
respect to the basis B is precisely the matrix A.

Proof. Existence. By Theorem 9.2.2(a), the function
f:V xV —TF given by

fx,y) = [x]gAly]; forallx,yeV

is bilinear, and moreover, part (a.1) of Theorem 9.2.2(a)
guarantees that f(b;, b;) = a;; for all indices i,j € {1,...,n}.
Clearly, A is the matrix of the bilinear form f with respect to the
basis B.



Corollary 9.2.4

Let V be a non-trivial, finite-dimensional vector space over a field
F, let B = {by,...,b,} be a basis of V, and let A=[ a;; |  be
a matrix in F"*". Then there exists a unique bilinear form f on V
that satisfies the property that f(b;,b;) = a;; for all indices

i,j € {1l,...,n}. Moreover, the matrix of this bilinear form with

respect to the basis B is precisely the matrix A.

Proof (continued). Uniqueness. Suppose that f’ is any bilinear
form on V that satisfies f'(b;, b;) = a;; for all i,j € {1,...,n}.
Then Theorem 9.2.2(b) guarantees that the matrix of the bilinear
form f’ with respect to the basis B is precisely the matrix

A=lay ] . ieflxy)=[x]sA[y],forallx,yeV.O

nxn



Theorem 9.2.5 [Change of basis for bilinear forms]

Let V be a non-trivial, finite-dimensional vector space over a field
IF, let f be a bilinear form on V, and let B and C be bases of V.

Further, let B be the matrix of f with respect to B, and let C be
the matrix of  with respect to C. Then

¢ = B[ldV ];—BB[IdV ]c‘

Proof.



Theorem 9.2.5 [Change of basis for bilinear forms]

Let V be a non-trivial, finite-dimensional vector space over a field
IF, let f be a bilinear form on V, and let B and C be bases of V.

Further, let B be the matrix of f with respect to B, and let C be
the matrix of  with respect to C. Then

¢ = B[ldV ];—BB[IdV ]c‘

Proof. For all x,y € V, we have that

—

*

fy) =2 [x]p B[y,

=

=[x 10 (sl 18 B [ 1av 1) [y e,

where (*) follows from the fact that B is the matrix of the bilinear
form f with respect to the basis B.




Theorem 9.2.5 [Change of basis for bilinear forms]
Let V be a non-trivial, finite-dimensional vector space over a field
IF, let f be a bilinear form on V, and let B and C be bases of V.

Further, let B be the matrix of  with respect to B, and let C be
the matrix of f with respect to C. Then

¢ = B[ldV ]CTBB[IdV ]C'

Proof (continued). Reminder:

fy) = [x]o (5[ 1dv ]l B 5[ ldv ] ) [y ]



Theorem 9.2.5 [Change of basis for bilinear forms]
Let V be a non-trivial, finite-dimensional vector space over a field
IF, let f be a bilinear form on V, and let B and C be bases of V.

Further, let B be the matrix of  with respect to B, and let C be
the matrix of f with respect to C. Then

¢ = B[ldV ]CTBB[IdV ]C'

Proof (continued). Reminder:
fy) = [0 (sl 1oy 108 sl 1oy I ) [y e

But now we have that

B[ Idy ]Z B B[ Idy ]c

is the matrix of the bilinear form f with respect to the basis C,
thatis, C= ,[ Idy |; B [ Idy ],. O



Definition

Let F be a field. A matrix A € F™" is said to be congruent to a
matrix B € F™" if there exists an invertible matrix P € F"*" s t.
B=PTAP.




Definition

Let F be a field. A matrix A € F™" is said to be congruent to a
matrix B € F™" if there exists an invertible matrix P € F"*" s t.
B=PTAP.

o Like matrix similarity (see Proposition 4.5.13), matrix
congruence is an equivalence relation on F™*",

Proposition 9.2.6
Let F be a field. Then all the following hold:
@ for all matrices A € F"*", A is congruent to A;

@ for all matrices A, B € F"*" if Ais congruent to B, then B is
congruent to A;

@ for all matrices A, B, C € F"™*" if A is congruent to B and B
is congruent to C, then A is congruent to C.

@ Proof: Lecture Notes (easy).



Definition

Let F be a field. A matrix A € F"*" is said to be congruent to a
matrix B € F™" if there exists an invertible matrix P € F"*" s.t.

B = PTAP.

@ Theorem 4.5.16 essentially states that two square matrices are
similar iff they represent the same linear function, but possibly
with respect to different bases.



Definition

Let F be a field. A matrix A € F"*" is said to be congruent to a
matrix B € F™" if there exists an invertible matrix P € F"*" s.t.
B=PTAP.

@ Theorem 4.5.16 essentially states that two square matrices are
similar iff they represent the same linear function, but possibly
with respect to different bases.

@ Theorem 9.2.7 (next slide) is an analog of Theorem 4.5.16 for
congruent matrices: it states that two square matrices are
congruent if and only if they represent the same bilinear form,
but possibly with respect to different bases.



Theorem 9.2.7

Let IF be a field, let B, C € F"*" be matrices, and let V be an
n-dimensional vector space over the field IF. Then the following are
equivalent:

@ B and C are congruent;

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof.



Theorem 9.2.7

Let IF be a field, let B, C € F"*" be matrices, and let V be an
n-dimensional vector space over the field IF. Then the following are
equivalent:

@ B and C are congruent;

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof. We will prove the implications
‘(@) = (b) = () = (a)”



Theorem 9.2.7

@ B and C are congruent;

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

Proof (continued). We first assume (a) and prove (b).



Theorem 9.2.7

@ B and C are congruent;

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

Proof (continued). We first assume (a) and prove (b). By (a),
there exists an invertible matrix P € F"™*" st. C = PTBP.



Theorem 9.2.7

@ B and C are congruent;

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

Proof (continued). We first assume (a) and prove (b). By (a),
there exists an invertible matrix P € F"™" st. C = PT BP. Now,
to prove (b), we fix a basis B of V and a bilinear form f on V such
that B is the matrix of f with respect to B.



Theorem 9.2.7

@ B and C are congruent;
@ for all bases B of V and bilinear forms f on V s.t. B is the

matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

Proof (continued). We first assume (a) and prove (b). By (a),
there exists an invertible matrix P € F"™" st. C = PT BP. Now,
to prove (b), we fix a basis B of V and a bilinear form f on V such
that B is the matrix of f with respect to B.

Since P is invertible, Proposition 4.5.12 guarantees that there
exists a basis C of V' s.t. P= [ ldy |,.



Theorem 9.2.7

@ B and C are congruent;

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

Proof (continued). We first assume (a) and prove (b). By (a),
there exists an invertible matrix P € F"™" st. C = PT BP. Now,
to prove (b), we fix a basis B of V and a bilinear form f on V such
that B is the matrix of f with respect to B.

Since P is invertible, Proposition 4.5.12 guarantees that there
exists a basis C of V' s.t. P= [ Idy |,. But then Theorem 9.2.5
guarantees that the matrix of the bilinear form f with respect to
the basis C is precisely the matrix

sldv ]l B [ldy], = PTBP = C.

This proves (b).



Theorem 9.2.7

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

@ there exist bases B and C of V and a bilinear form f on V s.t.

B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Next, we assume (b) and prove (c).




Theorem 9.2.7

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Next, we assume (b) and prove (c). Fix any
basis B of V, and define f : V x V — F by setting
fix,y) = x }; By ]B for all x,y € V.




Theorem 9.2.7

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

@ there exist bases B and C of V and a bilinear form f on V s.t.

B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Next, we assume (b) and prove (c). Fix any
basis B of V, and define f : V x V — F by setting

fix,y) = x }; B [y |,forallx,y € V. By Theorem 9.2.2, f is
a bilinear form on V/, and obviously, B is the matrix of f with
respect to the basis B.




Theorem 9.2.7

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Next, we assume (b) and prove (c). Fix any
basis B of V, and define f : V x V — F by setting

fix,y) = x }; B [y |,forallx,y € V. By Theorem 9.2.2, f is
a bilinear form on V/, and obviously, B is the matrix of f with
respect to the basis B.

Using (b), we now fix a basis C of V s.t. C is the matrix of the
bilinear form f with respect to C.



Theorem 9.2.7

@ for all bases B of V and bilinear forms f on V s.t. B is the
matrix of f with respect to B, there exists a basis C of V s.t.
C is the matrix of f with respect to C;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Next, we assume (b) and prove (c). Fix any
basis B of V, and define f : V x V — F by setting

fix,y) = x }; B [y |,forallx,y € V. By Theorem 9.2.2, f is
a bilinear form on V/, and obviously, B is the matrix of f with
respect to the basis B.

Using (b), we now fix a basis C of V s.t. C is the matrix of the
bilinear form f with respect to C. We have now constructed bases
B and C of V, and a bilinear form f on V, s.t. B is the matrix of f
with respect to B, and C is the matrix of f with respect to C. This
proves (c).



Theorem 9.2.7

@ B and C are congruent;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Finally, we assume (c) and prove (a).



Theorem 9.2.7

@ B and C are congruent;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Finally, we assume (c) and prove (a).

Using (c), we fix bases B and C and a bilinear form f on V s.t. B
is the matrix of f with respect to B, and C is the matrix of f with
respect to C.



Theorem 9.2.7

@ B and C are congruent;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Finally, we assume (c) and prove (a).

Using (c), we fix bases B and C and a bilinear form f on V s.t. B
is the matrix of f with respect to B, and C is the matrix of f with
respect to C.

Set P:= [ ldy |,



Theorem 9.2.7

@ B and C are congruent;

@ there exist bases B and C of V and a bilinear form f on V s.t.
B is the matrix of f with respect to B, and C is the matrix of
f with respect to C.

Proof (continued). Finally, we assume (c) and prove (a).
Using (c), we fix bases B and C and a bilinear form f on V s.t. B
is the matrix of f with respect to B, and C is the matrix of f with

respect to C.

Set P := B[ Idy }C. By Proposition 4.5.12, P is invertible, and by
Theorem 9.2.5, we have that C = PTBP. This proves (a). O



Definition

The characteristic of a field F is the smallest positive integer n (if
it exists) s.t. in the field F, we have that

14---41 = 0,
———

where the 1's and the 0 are understood to be in the field F. If no
such n exists, then char(F) := 0.

e Fields Q, R, and C all have characteristic 0.

@ On the other hand, for all prime numbers p, we have that
char(Zp) = p.

@ By Theorem 2.4.5, the characteristic of any field is either 0 or
a prime number.



Proposition 9.2.8

Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all

x € V, we have that f(x,x) = g(x,x). Then f = g.

@ Proof: next slide.
@ Remark: Proposition 9.2.8 applies to bilinear forms over
vector spaces of characteristic other than 2.
o In such fields, we can divide by 2:=141, since2=1+1# 0.
o The only field of characteristic 2 that we have seen is Z;, but
other fields of characteristic 2 do exist.
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Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all

x € V, we have that f(x,x) = g(x,x). Then f = g.

Proof.
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Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all

x € V, we have that f(x,x) = g(x,x). Then f = g.

Proof. Fix x,y € V. We must show that f(x,y) = g(x,y).



Proposition 9.2.8

Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all
x € V, we have that f(x,x) = g(x,x). Then f = g.

Proof. Fix x,y € V. We must show that f(x,y) = g(x,y). By
hypothesis, all the following hold:

@ f(xa X) = g(X, X);

@ f(y.y) =gy y);

@ f(x+yx+y) =gx+yx+y).



Proposition 9.2.8

Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all
x € V, we have that f(x,x) = g(x,x). Then f = g.

Proof. Fix x,y € V. We must show that f(x,y) = g(x,y). By
hypothesis, all the following hold:

@ f(x,x)=g(x,x);

@ f(y,y) =gy, y);

@ f(x+yx+y)=gx+yx+y).

On the other hand, since f and g are bilinear, we have that
(4) f(x+y,x+y)=f(x,x) + (x,y) + f(y,x) + f(y,y);

(5) glx+y,x+y)=g(x x)+ g(xy) + gy x) + gy y).



Proposition 9.2.8

Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all
x € V, we have that f(x,x) = g(x,x). Then f = g.

Proof. Fix x,y € V. We must show that f(x,y) = g(x,y). By
hypothesis, all the following hold:

@ f(xa X) = g(X, X);

@ f(y.y) =gy y);

@ f(x+yx+y)=gx+yx+y).

On the other hand, since f and g are bilinear, we have that
(4) f(x+y,x+y)="~f(x,x)+f(x,y)+ f(y,x)+ f(y,y);

(5) g(x+y,x+y) =g(x,x) + g(x,y) + &(y,x) + &(y,y)-

By (1)-(5), it follows that f(x,y) + f(y,x) = g(x,y) + g(y, x).



Proposition 9.2.8

Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all
x € V, we have that f(x,x) = g(x,x). Then f = g.

Proof. Fix x,y € V. We must show that f(x,y) = g(x,y). By
hypothesis, all the following hold:

@ f(xa X) = g(X, X);

@ f(y,y)=gly.y);

@ f(x+yx+y)=gx+yx+y).

On the other hand, since f and g are bilinear, we have that
(4) f(x+y,x+y)=f(x,x) + (x,y) + f(y,x) + f(y,y);

(5) glx+y,x+y)=g(x x)+ g(xy) + gy x) + gy y).

By (1)-(5), it follows that f(x,y) + f(y,x) = g(x,y) + g(y, x).
But since f and g are symmetric, we further have that

f(x,y) = f(y,x) and g(x,y) = g(y, x), and it follows that
2f(x,y) = 2g(x,y).



Proposition 9.2.8

Let f and g be symmetric bilinear forms on a vector space V over
a field F of characteristic other than 2, and assume that for all

x € V, we have that f(x,x) = g(x,x). Then f = g.

Proof. Fix x,y € V. We must show that f(x,y) = g(x,y). By
hypothesis, all the following hold:

Q@ f(xa X) = g(X, X);

@ f(y,y)=gly.y);

@ f(x+yx+y)=gx+yx+y).

On the other hand, since f and g are bilinear, we have that
(4) f(x+y,x+y)=f(x,x) + (x,y) + f(y,x) + f(y,y);

(5) glx+y,x+y)=g(x x)+ g(xy) + gy x) + gy y).

By (1)-(5), it follows that f(x,y) + f(y,x) = g(x,y) + g(y, x).
But since f and g are symmetric, we further have that

f(x,y) = f(y,x) and g(x,y) = g(y, x), and it follows that
2f(x,y) = 2g(x,y). Since char(FF) # 2 (and consequently,
2=1+1%#0in our field F), we deduce that f(x,y) = g(x,y). O



© Quadratic forms



© Quadratic forms

Definition

A quadratic form on a vector space V over a field F is any function
g : V — T for which there exists a bilinear form f: V x V — F
s.t. g(x) = f(x,x) for all x € V.




© Quadratic forms

Definition

A quadratic form on a vector space V over a field F is any function
g : V — T for which there exists a bilinear form f : V x V — F
s.t. g(x) = f(x,x) for all x € V.

@ Quadratic forms are defined for vector spaces over fields of
any characteristic.



© Quadratic forms

Definition

A quadratic form on a vector space V over a field F is any function
g : V — T for which there exists a bilinear form f : V x V — F
s.t. g(x) = f(x,x) for all x € V.

@ Quadratic forms are defined for vector spaces over fields of
any characteristic.

@ However, in all our results that follow, we assume that the
field in question is of characteristic other than 2, so that we

can divide by 2.



Theorem 9.3.1

Let g be a quadratic form on a vector space V over a field F of
characteristic other than 2. Then there exists a unique symmetric
bilinear form f on V s.t. for all x € V, we have that

q(x) = f(x,x). Furthermore, if the vector space V is non-trivial
and finite-dimensional, then for any basis B of V/, there exists a
unique symmetric matrix A € F"*" s t.

ax) = [x]zA[x]; forallxeV,

and moreover, this unique symmetric matrix A is precisely the
matrix of the symmetric bilinear form f with respect to the basis B. |




Theorem 9.3.1

Let g be a quadratic form on a vector space V over a field F of
characteristic other than 2. Then there exists a unique symmetric
bilinear form f on V s.t. for all x € V, we have that

q(x) = f(x,x). Furthermore, if the vector space V is non-trivial
and finite-dimensional, then for any basis B of V/, there exists a
unique symmetric matrix A € F"*" s t.

ax) = [x]zA[x]; forallxeV,

and moreover, this unique symmetric matrix A is precisely the
matrix of the symmetric bilinear form f with respect to the basis B. |

@ Terminology: The symmetric matrix A from the statement of
Theorem 9.3.1 is called the matrix of the quadratic form q
with respect to the basis B.

e For emphasis, we may optionally refer to A as the symmetric
matrix of the quadratic form q with respect to the basis BB.



Theorem 9.3.1

Let g be a quadratic form on a vector space V over a field F of
characteristic other than 2. Then there exists a unique symmetric
bilinear form f on V s.t. for all x € V, we have that

q(x) = f(x,x). Furthermore, if the vector space V is non-trivial
and finite-dimensional, then for any basis B of V/, there exists a
unique symmetric matrix A € F"<" s.t.

q(x) = [x];A[X]B for all x € V,

and moreover, this unique symmetric matrix A is precisely the
matrix of the symmetric bilinear form f with respect to the basis B. |

y

@ Warning: There may possibly exist more than one matrix
A € F™" that satisfies the property that
q(x):[x};A [ x |, forallxe V.
e However, only one such matrix is symmetric.
e This (unique) symmetric matrix is the one that we refer to as
the matrix of g with respect to B.



Theorem 9.3.1

Let g be a quadratic form on a vector space V over a field F of
characteristic other than 2. Then there exists a unique symmetric
bilinear form f on V s.t. for all x € V, we have that

q(x) = f(x,x). Furthermore, if the vector space V is non-trivial
and finite-dimensional, then for any basis B of V/, there exists a
unique symmetric matrix A € F"<" s.t.

q(x) = [X]BA[X]B for all x € V,

and moreover, this unique symmetric matrix A is precisely the
matrix of the symmetric bilinear form f with respect to the basis B. |

y

@ Warning: There may possibly exist more than one matrix
A € F™" that satisfies the property that
q(x):[x};A [ x |, forallxe V.
e However, only one such matrix is symmetric.
e This (unique) symmetric matrix is the one that we refer to as
the matrix of g with respect to B.

@ Now let's prove the theorem!



Proof. We first prove the existence and uniqueness of the
symmetric bilinear form f.
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that g(x) = h(x, x).



Proof. We first prove the existence and uniqueness of the
symmetric bilinear form f. By the definition of a quadratic form,
there exists some bilinear form h on V s.t. for all x € V/, we have
that g(x) = h(x,x). Now, using the fact that char(F) # 2, we
define f : V x V — FF by setting

f(x,y) = %(h(x,y) + h(y,x)) for all x € V.
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It is then straightforward to check that f is a symmetric bilinear
form on V (details?).
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form on V (details?). Moreover, for all x € V, we have that

g(x) = hix,x) = 3(h(xx)+h(x,x) = f(xx),

which is what we needed.



Proof. We first prove the existence and uniqueness of the
symmetric bilinear form f. By the definition of a quadratic form,
there exists some bilinear form h on V s.t. for all x € V/, we have
that g(x) = h(x,x). Now, using the fact that char(F) # 2, we
define f : V x V — FF by setting

f(x,y) = %(h(x,y) + h(y,x)) for all x € V.

It is then straightforward to check that f is a symmetric bilinear
form on V (details?). Moreover, for all x € V, we have that

g(x) = hix,x) = 3(h(xx)+h(x,x) = f(xx),

which is what we needed. This completes the proof of existence.



Proof. We first prove the existence and uniqueness of the
symmetric bilinear form f. By the definition of a quadratic form,
there exists some bilinear form h on V s.t. for all x € V/, we have
that g(x) = h(x,x). Now, using the fact that char(F) # 2, we
define f : V x V — FF by setting

f(x,y) = %(h(x,y) + h(y,x)) for all x € V.

It is then straightforward to check that f is a symmetric bilinear
form on V (details?). Moreover, for all x € V, we have that

g(x) = hix,x) = 3(h(xx)+h(x,x) = f(xx),

which is what we needed. This completes the proof of existence.
Uniqueness follows immediately from Proposition 9.2.8.

@ Indeed, suppose that f; and f» are symmetric bilinear forms on
V s.t. q(x) = fi(x,x) and g(x) = f1(x,x) for all x € V. Then
fi(x,x) = f(x,x) for all x € V. But then by
Proposition 9.2.8, we have that , = f.



Proof (continued). Let us now assume that the vector space V is
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For uniqueness, suppose that A" € F"*" is a symmetric matrix s.t.

q(x) = [x]; A [x], forallxeV.
WTS A’ = A. Define f': V x V — F by setting
fl(x,y) = [x}; Alyl, forallxyeV.

By Theorem 9.2.2(a), f’ is a symmetric bilinear form.
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non-trivial and finite-dimensional, and let B be a basis of V. Let
A € F"™" be the matrix of the bilinear form f with respect to the
basis B; by Theorem 9.2.2, the matrix A is symmetric. Obviously,
q(x) = f(x,x) = [ x ]; Al x|,forallxe V.

For uniqueness, suppose that A" € F"*" is a symmetric matrix s.t.

q(x) = [x]; A [x], forallxeV.
WTS A’ = A. Define f': V x V — F by setting
fl(x,y) = [x}; Alyl, forallxyeV.

By Theorem 9.2.2(a), f’ is a symmetric bilinear form. But then
for all x € V, we have that f/(x,x) = g(x) = f(x,x), and so by
Proposition 9.2.8, f' = f.



Proof (continued). Let us now assume that the vector space V is
non-trivial and finite-dimensional, and let B be a basis of V. Let

A € F"™" be the matrix of the bilinear form f with respect to the
basis B; by Theorem 9.2.2, the matrix A is symmetric. Obviously,
q(x) = f(x,x) = [ x ]; Al x|,forallxe V.

For uniqueness, suppose that A" € F"*" is a symmetric matrix s.t.

q(x) = [x]; A [x], forallxeV.
WTS A’ = A. Define f': V x V — F by setting
fl(x,y) = [x}; Alyl, forallxyeV.

By Theorem 9.2.2(a), f’ is a symmetric bilinear form. But then
for all x € V, we have that f'(x,x) = g(x) = f(x,x), and so by
Proposition 9.2.8, f' = f. The uniqueness part of
Theorem 9.2.2(b) now guarantees that A’ = A, and we are done. [J



Theorem 9.3.1

Let g be a quadratic form on a vector space V over a field F of
characteristic other than 2. Then there exists a unique symmetric
bilinear form f on V s.t. for all x € V, we have that

q(x) = f(x,x). Furthermore, if the vector space V is non-trivial
and finite-dimensional, then for any basis B of V/, there exists a
unique symmetric matrix A € F"<" s t.

q(x) = [X]BA[X]B for all x € V,

and moreover, this unique symmetric matrix A is precisely the
matrix of the symmetric bilinear form f with respect to the basis B. |




@ Remark: Let [F be a field. Then quadratic forms g on F" are
all of the form

q(x) = ZZb,_,X,XJ forallx=1x ... x,,}TinF”,
i=1j=1

where the b;;'s are some elements of FF.
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@ Remark: Let [F be a field. Then quadratic forms g on F" are
all of the form

q(x) = ZZb,_,X,XJ forallx=1x ... x,,}TinF”,
i=1j=1
where the b;;'s are some elements of FF.

o If char(IF) # 2, then the matrix of such a quadratic form g
with respect to the standard basis &, of F” is the matrix
A= [ aj j ]nxn whose entries are given by a; ; = %(bi,j + b i)
forall i,j e {1,...,n}.

o Indeed, by construction, A is symmetric, and we see that for all

vectors x = [ x1 ... X, ]T in F", we have the following:
() & 0o
xTAx = Z Z aj jXiX; = Z Z E(b’J + bj},‘)X,'Xj
’1: n " i= lj:nl ,
= 5( Z bijxix) + (22 32 b, ,x,xJ))
i=1j= i=1j=1
n n
= Z Z iXixi = q(x),

where (*) follows from Proposition 9.1.1(a).



Example 9.3.2
Consider the quadratic form g on R3 given by

g(x) = 3x¢+ 2x1x0 — 4x1x3 + 5x3 — 6xox3 + 253

for all vectors x=[ x1 x2 x3 ]T in R3. Then the matrix of g
with respect to the standard basis 3 of R3 is the matrix

3 1 -2
A = 1 5 -3 |.
-2 -3 2




Corollary 9.3.3 [Change of basis for quadratic forms]

Let V be a non-trivial, finite-dimensional vector space over a field
IF of characteristic other than 2, let g be a quadratic form on V/,
and let B and C be bases of V. Further, let B be the (symmetric)
matrix of g with respect to B, and let C be the (symmetric) matrix
of g with respect to C. Then

C = 1 ]{ B [ 1y .

Proof.
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form f on V s.t. for all x € V, we have that g(x) = f(x, x).
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Let V be a non-trivial, finite-dimensional vector space over a field
IF of characteristic other than 2, let g be a quadratic form on V/,
and let B and C be bases of V. Further, let B be the (symmetric)
matrix of g with respect to B, and let C be the (symmetric) matrix
of g with respect to C. Then

C = 1 ]{ B [ 1y .

Proof. By Theorem 9.3.1, there exists a unique symmetric bilinear
form f on V s.t. for all x € V, we have that g(x) = f(x, x).
Theorem 9.3.1 further guarantees that B (resp. C) is the matrix of
the bilinear form f with respect to the basis B (resp. C) of F".




Corollary 9.3.3 [Change of basis for quadratic forms]

Let V be a non-trivial, finite-dimensional vector space over a field
IF of characteristic other than 2, let g be a quadratic form on V/,
and let B and C be bases of V. Further, let B be the (symmetric)
matrix of g with respect to B, and let C be the (symmetric) matrix
of g with respect to C. Then

C = 1 ]{ B [ 1y .

Proof. By Theorem 9.3.1, there exists a unique symmetric bilinear
form f on V s.t. for all x € V, we have that g(x) = f(x, x).
Theorem 9.3.1 further guarantees that B (resp. C) is the matrix of
the bilinear form f with respect to the basis B (resp. C) of F". The
result now follows immediately from Theorem 9.5.2. [J




Theorem 9.3.4

Let IF be a field of characteristic other than 2, let B, C € F"™*" be
symmetric matrices, and let V be an n-dimensional vector space
over the field F. Then the following are equivalent:

@ B and C are congruent;

@ for all bases B of V and quadratic forms g on V s.t. B is the
matrix of g with respect to B, there exists a basis C of V s.t.
C is the matrix of g with respect to C;

@ there exist bases B and C of V and a quadratic form q on V
s.t. B is the matrix of g with respect to BB, and C is the
matrix of g with respect to C.

@ Proof: Lecture Notes
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eigenvalues (when algebraic multiplicities are taken into
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@ Quadratic forms on R”"

@ In what follows, orthogonality and orthonormality in R” are
assumed to be with respect to the standard scalar product -
and the induced norm || - ||.

e By Corollary 8.7.4, any symmetric matrix in R"*" has n real

eigenvalues (when algebraic multiplicities are taken into
account).

o With this in mind, we define the following (next slide).



The signature of a symmetric matrix A € R™" to be the ordered
triple (n4, n—, ng), where
@ n, is the number of positive eigenvalues of A (counting
algebraic multiplicities),
@ n_ is the number of negative eigenvalues of A (counting
algebraic multiplicities),

@ np:=n—ny—n_.
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the algebraic multiplicity of the eigenvalue 0 is precisely ng.



The signature of a symmetric matrix A € R™" to be the ordered
triple (n4, n—, ng), where
@ n, is the number of positive eigenvalues of A (counting
algebraic multiplicities),
@ n_ is the number of negative eigenvalues of A (counting
algebraic multiplicities),

@ np:=n—ny—n_.

@ Note that 0 is an eigenvalue of A iff ng > 0, and in this case,
the algebraic multiplicity of the eigenvalue 0 is precisely ng.

@ For example, if the spectrum of a symmetric matrix in R9%9 is
{0,0,1,1,—-2,—2,5,6,—7}, then the signature of that matrix
is (4,3,2).
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triple (n4, n—, ng), where
@ n, is the number of positive eigenvalues of A (counting
algebraic multiplicities),
@ n_ is the number of negative eigenvalues of A (counting
algebraic multiplicities),

@ np:i=n—ny—n_.

@ Our goal is to prove the following theorem.

Theorem 9.4.3

Two symmetric matrices in R"*" are congruent iff they have the
same signature.




The signature of a symmetric matrix A € R™" to be the ordered
triple (n4, n—, ng), where
@ n, is the number of positive eigenvalues of A (counting
algebraic multiplicities),
@ n_ is the number of negative eigenvalues of A (counting
algebraic multiplicities),

@ np:i=n—ny—n_.

@ Our goal is to prove the following theorem.

Theorem 9.4.3

Two symmetric matrices in R"*" are congruent iff they have the
same signature.

@ We begin with a proposition, which we will use to prove
Theorem 9.4.3



Proposition 9.4.1
Let A be a symmetric matrix in R"*" with signature (ny, n_, ng).
Then there exists an invertible matrix R € R"*" with pairwise
orthogonal columns s.t.
RTAR = D(1,...,1,-1,...,-1,0,...,0).
—_— Y

ny n_ no

Proof.
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Proof. By the spectral theorem for symmetric matrices, we know
that A is orthogonally diagonalizable.
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Proposition 9.4.1

Let A be a symmetric matrix in R"*" with signature (ny, n_, ng).
Then there exists an invertible matrix R € R"*" with pairwise
orthogonal columns s.t.
RTAR = D(1,...,1,-1,...,-1,0,...,0).
———— ——

———
ny n_ no

Proof. By the spectral theorem for symmetric matrices, we know
that A is orthogonally diagonalizable. So, let D = D(Aq, ..., Ap)

be a diagonal and @ an orthogonal matrix, both in R"™*" s.t.

D = QT AQ. By Proposition 8.5.12, {\1,...,\,} is the spectrum
of A.

After possibly permuting the A;'s and the corresponding columns
of the orthogonal matrix @, we may assume that the first n; many
Aj's are positive, the subsequent n_ many A;'s are negative, and
the final np many A;'s are 0 (justification: Lecture Notes).



Proof (continued). Reminder: D = QTAQ, D = D(\y,..., \n),
@ is orthogonal; the first ny many \;'s are positive, the subsequent
n_ many \;'s are negative, and the final ng many \;'s are 0.
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@ is orthogonal; the first ny many \;'s are positive, the subsequent
n_ many \;'s are negative, and the final ng many \;'s are 0.

1 if A\i#0
P v
1 if =0

for all indices i € {1,...,n}, and set L := D(¢1,...,¢,) and
R := QL.

Now, set




Proof (continued). Reminder: D = QTAQ, D = D(\y,..., \n),
@ is orthogonal; the first ny many \;'s are positive, the subsequent
n_ many \;'s are negative, and the final ng many \;'s are 0.

L if N #0
b = VIl | 7
1 if \y=0

for all indices i € {1,...,n}, and set L := D(¢1,...,¢,) and
R := QL. Since both @ and L are invertible, so is R.

@ Since Q is orthogonal, Theorem 6.8.1 guarantees that it is
invertible. On the other hand, L is a diagonal matrix, and all
its entries on the main diagonal are non-zero; so, by
Proposition 8.5.3(b), L is invertible.

Now, set




Proof (continued). Reminder: D = QTAQ, D = D(\y,..., \n),
@ is orthogonal; the first ny many \;'s are positive, the subsequent
n_ many \;'s are negative, and the final ng many \;'s are 0.

. { Tlx,»\ it A #0

Now, set
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for all indices i € {1,...,n}, and set L := D(¢1,...,¢,) and
R := QL. Since both @ and L are invertible, so is R.

@ Since Q is orthogonal, Theorem 6.8.1 guarantees that it is
invertible. On the other hand, L is a diagonal matrix, and all
its entries on the main diagonal are non-zero; so, by
Proposition 8.5.3(b), L is invertible.

Moreover, since L is diagonal, Proposition 8.5.1(b) guarantees that
the columns of R = QL are scalar multiples of the columns of Q;



Proof (continued). Reminder: D = QTAQ, D = D(\y,..., \n),
@ is orthogonal; the first ny many \;'s are positive, the subsequent
n_ many \;'s are negative, and the final ng many \;'s are 0.

L if N #0
b = VIl | 7
1 if \y=0

for all indices i € {1,...,n}, and set L := D(¢1,...,¢,) and
R := QL. Since both @ and L are invertible, so is R.

@ Since Q is orthogonal, Theorem 6.8.1 guarantees that it is
invertible. On the other hand, L is a diagonal matrix, and all
its entries on the main diagonal are non-zero; so, by
Proposition 8.5.3(b), L is invertible.

Moreover, since L is diagonal, Proposition 8.5.1(b) guarantees that
the columns of R = QL are scalar multiples of the columns of Q;
since the columns of @ are pairwise orthogonal (by

Theorem 6.8.1), Proposition 6.1.4(b) guarantees that the columns
of R are pairwise orthogonal.

Now, set




Proof (continued). Reminder: D = QTAQ, D = D(\y,..., \n),
@ is orthogonal; the first ny many \;'s are positive, the subsequent
n_ many \;'s are negative, and the final ng many \;'s are 0.

L if N #0
b = VIl | 7
1 if \y=0

for all indices i € {1,...,n}, and set L := D(¢1,...,¢,) and
R := QL. Since both @ and L are invertible, so is R.

@ Since Q is orthogonal, Theorem 6.8.1 guarantees that it is
invertible. On the other hand, L is a diagonal matrix, and all
its entries on the main diagonal are non-zero; so, by
Proposition 8.5.3(b), L is invertible.

Moreover, since L is diagonal, Proposition 8.5.1(b) guarantees that
the columns of R = QL are scalar multiples of the columns of Q;
since the columns of @ are pairwise orthogonal (by

Theorem 6.8.1), Proposition 6.1.4(b) guarantees that the columns
of R are pairwise orthogonal. Finally, we compute (next slide):

Now, set




Proof (continued).
RTAR = (QUTAWQL) = LTQTAQL ¥ iDL
—
= D(glw'-agn)D()\la"'v)\n)D(£17"'7£n)
(*:*) D(Algi B )‘nzi)a
“2 p(1,...,1,-1,...,-1,0,...,0),
—— N — N———
n, n_ no

where (*) follows from the fact that L is diagonal and therefore
symmetric, (**) follows from Proposition 8.5.2, and (***) follows
from the fact that, by construction,

1 if \>0
N2 o= {10 A <o
0 if \y=0

for all indices i € {1,..., n}, plus the fact that the first n, many
Aj's are positive, the subsequent n_ many \;'s are negative, and
the final ng many A;'s are zero. [
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Then there exists an invertible matrix R € R"*" with pairwise
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@ The proof of Proposition 9.4.1 is fully constructive (i.e. it
allows us to construct a suitable matrix R, as long as we are
able to factor the characteristic polynomial of A).



Proposition 9.4.1

Let A be a symmetric matrix in R"*" with signature (ny, n_, ng).
Then there exists an invertible matrix R € R"*" with pairwise
orthogonal columns s.t.
RTAR = D(1,...,1,-1,...,-1,0,...,0).
—_——— — —— — —

ny n_ no

@ The proof of Proposition 9.4.1 is fully constructive (i.e. it
allows us to construct a suitable matrix R, as long as we are
able to factor the characteristic polynomial of A).

@ For a numerical example, see the Lecture Notes.
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same signature.

Proof. Fix symmetric matrices B, C € R" ", and suppose first that
B and C both have the same signature, say (n4,n_, no).
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Theorem 9.4.3

Two symmetric matrices in R"*" are congruent iff they have the
same signature.

Proof. Fix symmetric matrices B, C € R" ", and suppose first that
B and C both have the same signature, say (n4,n_, no).
Proposition 9.4.1 then guarantees B and C are both congruent to
the diagonal matrix

D = D(1,...,1
——

Y

,—1,...,-1,0,...,0).
—_———— ——

ny n_ no
By Proposition 9.2.6, matrix congruence is an equivalence relation

on R™"M; so, since B and C are congruent to the same matrix D,
they are also congruent to each other.
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Theorem 9.4.3

Two symmetric matrices in R"*" are congruent iff they have the
same signature.

Proof (continued). Suppose, conversely, that B and C are
congruent. Let (p,q,n — p — q) be the signature of B, and let
(s,t,n —s — t) be the signature of C; WTS

(p,g,n—p—q) =(s,t,n—s—t). Clearly, it suffices to show that
p=sand p+qg=s+t.

First, by Proposition 9.4.1, B is congruent to the matrix

Dg = D(1,...,1,-1,...,-1,0,...,0),
Y
P q n—p—q

and C is congruent to the matrix
Dc = D(1,...,1,-1,...,-1,0,...,0).
—— ——— —
S t n—s—t

Proposition 9.2.6 then guarantees that Dg and D¢ are congruent
to each other.
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e Dg:=D(1,...,1,-1,...,-1,0,...,0)
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are congruent to each other, WIS p=sand p+g=s+t.
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Proof (continued). Reminder: Matrices

e Dg:=D(1,...,1,-1,...,-1,0,...,0)
—_—— ——
P q n—p—q
© Dc:=D(1,...,1,-1,...,-1,0,...,0)
s t n—s—t

are congruent to each other, WIS p=sand p+g=s+t.

By definition, this means that there exists an invertible matrix

P € R™" st. Dc = PT DgP; we will use this to prove that
p+q=r-+s.

On the other hand, by Theorem 9.4.1, there exist bases
B={bi,...,b,} and C = {cy,...,cp} of R", as well as a
quadratic form g on R", s.t. Dg is the matrix of g w.r.t. B, and
D¢ is the matrix of g w.r.t. C; we will use this to prove that p = s.
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rank(Dg) = rank(D¢).
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rank(D¢c) = s+ t, and so it is enough to show that
rank(Dg) = rank(D¢). Since the matrix P is invertible, the
Invertible Matrix Theorem guarantees that P is also inverible.
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Proof (continued). Reminder: D¢ = PT DgP, where

e Dg:=D(1,...,1,-1,...,-1,0,...,0),
N N——— N——
P q n—p—q
® Dc:=D(1,...,1,-1,...,-1,0,...,0),
t n—s—t

S
@ P is invertible.

We first show that p+ g = s + t. Clearly, rank(Dg) = p + g and
rank(D¢c) = s+ t, and so it is enough to show that
rank(Dg) = rank(D¢). Since the matrix P is invertible, the
Invertible Matrix Theorem guarantees that P is also inverible.
But then

rank(Dc) = rank(PTDgP) ) rank(Dg),
where (*) follows from Proposition 3.3.14 (since P and P are
both invertible).
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Proof (continued). Reminder:

® Dg:=D(1,...,1,-1,...,-1,0,...,0) is the matrix of q w.r.t.
N—— N——
P q n—p—q
B={by,...,b,},
® Dc:=D(1,...,1,-1,...,-1,0,...,0) is the matrix of g w.r.t.
S t n—s—t
C=A{ci,...,cp}.

It remains to show that p = s. Suppose otherwise. By symmetry,
we may assume that p > s. Now consider the subspaces

Ug := Span(by,...,by) and Uc := Span(cs41,...,cn) of R".
Then by Theorem 3.2.23, we have that

dim(Ug) + dim(Uc) = dim(Ug + Uc) + dim(Ug N Uc).
But note that
e dim(Ug) +dim(Uc) =p+(n—s)=n+(p—s)>n,
e dim(Ug + Uc) < dim(R") = n.

So, dim(Ug N Uc¢) > 0, and it follows that Ug N Uc contains some
non-zero vector u.
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Then at least one of xq,...,Xp is non-zero, Xp41 = -+ = x, =0,
and y; =--- = ys =0.
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e Dg:=D(1,...,1,-1,...,-1,0,...,0) is the matrix of g w.r.t.
—— ——— ——
p q n—p—gq
B ={by,...,by},
®© Dc:=D(1,...,1,—1,...,-1,0,...,0) is the matrix of g w.r.t.
S t n—s—t
C:{cl,...,cn},

e Ug :=Span(by,...,bp), Uc := Span(csy1,...,¢Cpn),
) UGUBﬂUc,U#O.

T T
Set [u]z,=[x ... x] and[u].=[n .. y] .
Then at least one of xq,...,Xp is non-zero, Xp41 = -+ = x, =0,
and y; = --- = ys = 0. We now have that

o quy=[ullDs[u], 22+ 4250
T ()
o qu)=[u]; Dc[u],=—y2y— =y, <0,
where for both instances of (*), we used the formula from
Proposition 9.1.1(a).



Proof (continued). Reminder:

e Dg:=D(1,...,1,-1,...,-1,0,...,0) is the matrix of g w.r.t.
—— ——— ——
p q n—p—gq
B ={by,...,by},
®© Dc:=D(1,...,1,—1,...,-1,0,...,0) is the matrix of g w.r.t.
S t n—s—t
C:{cl,...,cn},

e Ug :=Span(by,...,bp), Uc := Span(csy1,...,¢Cpn),
) UGUBﬂUc,U#O.

T T
Set [u]z,=[x ... x] and[u].=[n .. y] .
Then at least one of xq,...,Xp is non-zero, Xp41 = -+ = x, =0,
and y; = --- = ys = 0. We now have that

o quy=[ullDs[u], 22+ 4250
T ()
o qu)=[u]; Dc[u],=—y2y— =y, <0,
where for both instances of (*), we used the formula from
Proposition 9.1.1(a). We have now derived a contradiction, and it
follows that p = s. This completes the argument. [J



Proposition 9.4.1

Let A be a symmetric matrix in R"*" with signature (n4, n—, ng).
Then there exists an invertible matrix R € R"*" with pairwise
orthogonal columns s.t.

RTAR = D(1,...,1,-1,...,-1,0,...,0).

Theorem 9.4.3

Two symmetric matrices in R"*" are congruent iff they have the
same signature.

:
={
e{
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diagonal matrix in F"*",
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o Then for all vectors x = [ X1 ... Xp } in F", we have that
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as can be seen via routine computation, or by applying
Proposition 9.1.1(a).
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@ Suppose that F is a field and that D = D(a1,...,a,) is a
diagonal matrix in F"*",

T .
o Then for all vectors x = [ X1 ... Xp } in F", we have that
xTDx = apx?+-+ apx2,

as can be seen via routine computation, or by applying
Proposition 9.1.1(a).

e This is a particularly nice formula, and for this reason, if g is a
quadratic form over a field IF, it is helpful to have a basis BB
with respect to which the matrix of g is diagonal.

o Sylvester's law of inertia (in a couple of slides) states that
when V = R", such a basis B always exists.

o As we shall see, Sylvester's law of inertia is essentially a
“translation” of Proposition 9.4.1 and Theorem 9.4.3 into the
language of quadratic forms.

o Before formally stating and proving the law, we need a
definition.



Definition

The signature of a quadratic form g on R” is defined to be the
signature of the matrix of g with respect to any basis B of R”. A
polar basis of R" associated with the quadratic form g is any
orthogonal basis B of R” s.t. the matrix of g w.r.t. B is a
diagonal matrix with only 1's, —1's, and 0's on the main diagonal.

@ By Theorems 9.3.4 and 9.4.3, the signature of q is well
defined.
o Indeed, by Theorem 9.3.4, matrices of g with respect to all
possible bases of R"” are congruent to each other, and so by
Theorem 9.4.3, they all have the same signature.



Sylvester's law of inertia

Let g be a quadratic form on R”, and let (ny, n_, ng) be the
signature of g. Then R” has a polar basis B associated with g.
Moreover, for any basis C of R” s.t. the matrix C of g with respect
to C is diagonal, with only 1's, —1's, and 0’s on the main diagonal,
the following holds: the number of 1's, —1's, and 0’s on the main
diagonal of C is ny, n_, and ng, respectively.

@ Remark: The basis C from the second sentence of Sylvester’s
law of inertia is not assumed to be polar, i.e. it is possible that
it is not orthogonal.



Sylvester's law of inertia

Let g be a quadratic form on R”, and let (ny, n_, ng) be the
signature of g. Then R” has a polar basis B associated with g.
Moreover, for any basis C of R” s.t. the matrix C of g with respect
to C is diagonal, with only 1's, —1's, and 0’s on the main diagonal,
the following holds: the number of 1's, —1's, and 0’s on the main
diagonal of C is ny, n_, and ng, respectively.

@ Remark: The basis C from the second sentence of Sylvester’s
law of inertia is not assumed to be polar, i.e. it is possible that
it is not orthogonal.

@ Let's prove the theorem!
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By Proposition 9.4.1, there exists an invertible matrix R € R™*"
with pairwise orthogonal columns s.t. D = RT AR. Since R is
invertible, the Invertible Matrix Theorem guarantees that its
columns form a basis B of R"”; since the columns of R are pairwise
orthogonal, the basis B is orthogonal. Moreover, by Theorem 4.5.1
(or alternatively, by Lemma 4.5.8), we have that R = Sn[ Idy |
so that

B’

D = ,[ldy Jp A e[y ],

But now Theorem 9.3.3 guarantees that D is the matrix of g with
respect to B.



Proof. Let A be the matrix of the quadratic form g with respect to
the standard basis &, of R"; then the signature of Ais (ny, n_, ng).

We first prove the existence of the polar basis B. Set

D = D(1,...,1,-1,...,-1,0,...,0).
N—— ~——

ny n_ no

By Proposition 9.4.1, there exists an invertible matrix R € R™*"
with pairwise orthogonal columns s.t. D = RT AR. Since R is
invertible, the Invertible Matrix Theorem guarantees that its
columns form a basis B of R"”; since the columns of R are pairwise
orthogonal, the basis B is orthogonal. Moreover, by Theorem 4.5.1
(or alternatively, by Lemma 4.5.8), we have that R = Sn[ Idy |
so that

B’

D = ,[ldy Jp A e[y ],

But now Theorem 9.3.3 guarantees that D is the matrix of g with
respect to 3. We have already seen that the basis B is orthogonal,
and we deduce that B is a polar basis of R” associated with gq.



Sylvester's law of inertia

Let g be a quadratic form on R”, and let (ny, n—_, ng) be the
signature of g. Then R” has a polar basis B associated with g.
Moreover, for any basis C of R” s.t. the matrix C of g with respect
to C is diagonal, with only 1's, —1's, and Q’s on the main diagonal,
the following holds: the number of 1's, —1's, and 0's on the main
diagonal of C is ny, n_, and ng, respectively.

Proof (continued). Now, fix any basis C of R" such that the matrix
of g with respect to C is a diagonal matrix C with only 1's, —1's,
and Q’s on the main diagonal.
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signature, which is (ny, n_, ng). Since the matrix C is diagonal, we
know its entries on the main diagonal form its spectrum (this
follows from Proposition 8.2.7);



Sylvester's law of inertia

Let g be a quadratic form on R”, and let (ny, n—_, ng) be the
signature of g. Then R” has a polar basis B associated with g.
Moreover, for any basis C of R” s.t. the matrix C of g with respect
to C is diagonal, with only 1's, —1's, and Q’s on the main diagonal,
the following holds: the number of 1's, —1's, and 0's on the main
diagonal of C is ny, n_, and ng, respectively.

Proof (continued). Now, fix any basis C of R" such that the matrix
of g with respect to C is a diagonal matrix C with only 1's, —1's,
and 0’s on the main diagonal. By Theorem 9.3.4, matrices A and
C are congruent, and so by Theorem 9.4.3, they have the same
signature, which is (ny, n_, ng). Since the matrix C is diagonal, we
know its entries on the main diagonal form its spectrum (this
follows from Proposition 8.2.7); so, the number of 1's, —1's, and
0’s on the main diagonal of C is ny, n_, and ng, respectively. [



Sylvester's law of inertia

Let g be a quadratic form on R”, and let (ny, n—, ng) be the
signature of g. Then R” has a polar basis B associated with g.
Moreover, for any basis C of R” s.t. the matrix C of g with respect
to C is diagonal, with only 1's, —1's, and Q’s on the main diagonal,
the following holds: the number of 1's, —1's, and 0’s on the main
diagonal of C is ny, n_, and ng, respectively.

@ For a numerical example, see the Lecture Notes.



e For quadratic forms on R?, there exist only six possible
signatures (ny, n_, ng), namely, the following:
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e For quadratic forms on R?, there exist only six possible
signatures (ny, n_, ng), namely, the following:

(2,0,
(170a
(1,1
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@ Thus, the graph of any quadratic form g on R? has the same
general shape as one of the six graphs shown on the next slide
(the one that has the same signature as q).
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The graphs were generated by Milan Hladik, who kindly

shared them with me.



@ The actual graph of the quadratic form g would be obtained
by starting with one of the six graphs from the previous slide
(the one that has the same signature as g), and then possibly
stretching or shrinking the graph along the x;- and x»-axes
(the coordinate axes of the domain), and then possibly
rotating it about the vertical axis x3.

o This to account for the fact that a polar basis B of R?
associated with g is not necessarily equal to the standard basis
&> = {e1, ey}, but the vectors of B are indeed orthogonal to
each other (by the definition of a polar basis).



