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1 The Jordan normal form

This topic is by far the most technical part of this course.
For this reason, we skip the proofs, and we merely state the
main theorems, with some examples.

We will cover subsections 8.6.1 and 8.6.2 from the Lecture
Notes.
An outline of the omitted proofs is given in subsection 8.6.3
(please read this).
For the intrepid: the full proof of the main results is given in
subsections 8.6.4-8.6.6 of the Lecture Notes (long, technical,
and strictly optional!).
Subsection 8.6.7 of the Lecture Notes contains some more
advanced computation, and it is also left as optional reading.
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As we shall see, our main results involving the Jordan normal
form work only for algebraically closed fields.

Reminder:

Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

Any polynomial with coefficients in an algebraically closed
field can be factored into linear terms.
The only algebraically closed field that we have seen in this
course is the field C of complex numbers, although other
algebraically closed fields exist.

Fields Q, R, and Zp (where p is a prime number) are not
algebraically closed.
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Definition
Suppose that F is a field and A ∈ Fn1×n1 and B ∈ Fn2×n2 are
square matrices. Then the direct sum of A and B is the
(n1 + n2) × (n1 + n2) matrix

A ⊕ B :=
[

A On1×n2

On2×n1 B

]
.

More generally, for square matrices
A1 ∈ Fn1×n1 , A2 ∈ Fn2×n2 , . . . , Ak ∈ Fnk×nk , we define the direct
sum of A1, A2 . . . , Ak to be the
(n1 + n2 + · · · + nk) × (n1 + n2 + · · · + nk) matrix

A1 ⊕ A2 ⊕ · · · ⊕ Ak :=


A1 On1×n2 . . . On1×nk

On2×n1 A2 . . . On2×nk
...

...
. . .

...
Onk ×n1 Onk ×n2 . . . Ak

 .



For example:

[
1 2
3 4

]
⊕

 1 2 3
4 5 6
7 8 9

⊕
[

1
]

=



1 2 0 0 0 0
3 4 0 0 0 0
0 0 1 2 3 0
0 0 4 5 6 0
0 0 7 8 9 0
0 0 0 0 0 1


.



Definition
For a field F, a scalar λ0 ∈ F, and a positive integer t, the Jordan
block Jt(λ0) is defined to be following t × t matrix (with entries
understood to be in F):

Jt(λ0) =


λ0 1 0 . . . 0 0
0 λ0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ0 1
0 0 0 . . . 0 λ0


t×t

.



For example:

J1(λ0) =
[

λ0
]
;

J2(λ0) =
[

λ0 1
0 λ0

]
;

J3(λ0) =

 λ0 1 0
0 λ0 1
0 0 λ0

;

J4(λ0) =


λ0 1 0 0
0 λ0 1 0
0 0 λ0 1
0 0 0 λ0

;

J5(λ0) =


λ0 1 0 0 0
0 λ0 1 0 0
0 0 λ0 1 0
0 0 0 λ0 1
0 0 0 0 λ0

.



Definition
A Jordan matrix (also called a matrix in Jordan normal form) is
any matrix that is a direct sum of one or more Jordan blocks.

Thus, a Jordan matrix is a matrix of the form

Jt1 (λ1) ⊕ Jt2 (λ2) ⊕ · · · ⊕ Jtℓ (λℓ) =


Jt1 (λ1) O . . . O

O Jt2 (λ2) . . . O
...

...
. . .

...
O O . . . Jtℓ (λℓ)

 ,

where λ1, . . . , λℓ are scalars in F, t1, . . . , tℓ are positive
integers, and the O’s are zero matrices of appropriate sizes.



For instance, the following is a Jordan matrix with four Jordan
blocks, namely J3(5), J2(2), J1(2), and J3(5):

J3(5) ⊕ J2(2) ⊕ J1(2) ⊕ J3(5) =



5 1 0 0 0 0 0 0 0
0 5 1 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0
0 0 0 2 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 5 1 0
0 0 0 0 0 0 0 5 1
0 0 0 0 0 0 0 0 5


.



Remark: Every diagonal matrix is a Jordan matrix.

Moreover, note that a Jordan matrix is diagonal iff all its
Jordan blocks are of size 1 × 1.
On the other hand, if some Jordan block of a Jordan matrix J
is of larger size (i.e. is of size t × t for some t ≥ 2), then J will
have at least one 1 on the diagonal right above the main
diagonal.

Remark: Not all matrices that have an arbitrary main
diagonal, all 0’s and 1’s on the diagonal right above the main
one, and 0’s everywhere else, are Jordan matrices.

For example, the matrix [
2 1
0 3

]
is not a Jordan matrix (because it is not a direct sum of
Jordan blocks).
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Theorem 8.6.1
Let F be a field, and let J1, J2 ∈ Fn×n be Jordan matrices. Then
J1 and J2 are similar iff they have exactly the same Jordan blocks
(counting repetitions, but not counting the order in which the
blocks appear in the two matrices).

The full proof of Theorem 8.6.1 is given in the Lecture Notes
(optional reading).

The “=⇒” requires relatively serious work.
The “⇐=” part (“if two Jordan matrices have the same Jordan
blocks, then they are similar”) is easier, and here is the idea.
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By Theorem 4.5.16, similar matrices represent the same linear
function, only with respect to (possibly) different bases.

Theorem 4.5.16 (abridged)
Let F be a field, let B, C ∈ Fn×n be matrices, and let V be an
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) B and C are similar;
(d) there exist bases B and C of V and a linear function

f : V → V s.t. B =
B

[
f
]

B
and C =

C

[
f
]

C
.

A change in the order of Jordan blocks corresponds to a
change in the order of basis vectors.
Let’s take a look at an example.
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Suppose that V is a finite-dimensional vector space over a
field F, that f : V → V is a linear function, and that
B = {a1, . . . , at1 , b1, . . . , bt2 , c1, . . . , ct3 , d1, . . . , dt4} (with
t1, t2, t3, t4 ≥ 1) is a basis of V s.t.

B

[
f
]

B =


Jt1(λ1) O O O

O Jt2(λ2) O O
O O Jt3(λ3) O
O O O Jt4(λ4)

 .

Then for the basis
C = {b1, . . . , bt2 , d1, . . . , dt4 , a1, . . . , at1 , c1, . . . , ct3} of V , we
have the following:

C

[
f
]

C =


Jt2(λ2) O O O

O Jt4(λ4) O O
O O Jt1(λ1) O
O O O Jt3(λ3)

 .

By Theorem 4.5.16, matrices B

[
f
]

B and C

[
f
]

C are similar,
and so the two Jordan matrices above are similar.
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We have two main theorems concerning the Jordan normal
form.

The first (Theorem 8.6.2) concerns matrices.
The second (Theorem 8.6.4) concerns linear functions.

The two theorems are equivalent in the sense that either one
readily implies the other.

Theorem 8.6.2
Assume that F is an algebraically closed field, and let A ∈ Fn×n

be a square matrix. Then A is similar to a matrix J in Jordan
normal form. Moreover, this matrix J is unique up to a reordering
of the Jordan blocks.
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Terminology/Remark: Suppose that A ∈ Fn×n is a matrix,
where F is some algebraically closed field.

Then any Jordan matrix that is similar to A is called a Jordan
normal form of A.
As we have seen, reordering the Jordan blocks of a Jordan
matrix produces a Jordan matrix that is similar to the original
one.
So, if J is a Jordan normal form of A, then any Jordan matrix
obtained from J by merely rearranging the order in which the
Jordan blocks appear along the main diagonal is also a Jordan
normal form of A.
However, by the uniqueness part of Theorem 8.6.2, this
exhausts the possibilities for different Jordan normal forms of
A: any two Jordan normal forms of A have exactly the same
Jordan blocks (with repetitions taken into account).
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Corollary 8.6.3
Let F be an algebraically closed field, and let A, B ∈ Fn×n. Then
A and B are similar iff they have the same Jordan normal form.
More precisely, the following are equivalent:

(a) A and B are similar;
(b) there exists a Jordan matrix J ∈ Fn×n s.t. both A and B are

similar to J ;
(c) there exist Jordan matrices JA, JB ∈ Fn×n s.t. A is similar to

JA, B is similar to JB, and the Jordan matrices JA and JB can
be obtained from each other by possibly rearranging the order
of the Jordan blocks.

Proof: This follows more or less immediately from
Theorems 8.6.1 and 8.6.2 (details: Lecture Notes).
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be obtained from each other by possibly rearranging the order
of the Jordan blocks.

As we know, the field C is algebraically closed, and so
Corollary 8.6.3 applies to matrices in Cn×n.

On the other hand, R is not algebraically closed, and so we
cannot apply Corollary 8.6.4 to matrices in Rn×n, or at least
not directly.

However, there is a way around this (later!).
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Theorem 8.6.4
Let V be a non-trivial, finite-dimensional vector space over an
algebraically closed field F, and let f : V → V be a linear
function. Then there exists a basis B s.t. the matrix B

[
f
]

B is in
Jordan normal form. Moreover, this matrix is unique in the
following sense: if B1 and B2 are bases of V s.t. both B1

[
f
]

B1
and B2

[
f
]

B2
are in Jordan normal form, then these two matrices

are the same up to a reordering of the Jordan blocks.



Remarks:
1 Theorems 8.6.2 and 8.6.4 only hold for

algebraically closed fields. The only algebraically closed field
that we have seen is C, but others do exist.

2 Theorem 4.5.16 essentially states that two n × n matrices are
similar iff they represent the same linear function from an
n-dimensional vector space to itself, only possibly with respect
to different bases.

It is then easy to show that Theorems 8.6.2 and
Theorems 8.6.4 are equivalent in the sense that either one of
them (combined with Theorem 4.5.16) readily implies the
other. The details are left as an exercise.



Remarks:
3 As we saw in the previous lecture, not all square matrices are

diagonalizable, i.e. there are square matrices that are not
similar to any diagonal matrix.

However, as long as we are working over an
algebraically closed field, Theorem 8.6.2 guarantees that any
square matrix is similar to a matrix that is “almost diagonal,”
namely to its Jordan normal form.
However, in the special case when a square matrix A is
diagonalizable, the Jordan normal form of A is any diagonal
matrix D that is similar to A.



Remarks:
4 Since every Jordan matrix is upper triangular, its eigenvalues,

together with their algebraic multiplicities, can easily be read
off from the Jordan matrix itself: the eigenvalues are precisely
the entries along the main diagonal of the Jordan matrix, and
the algebraic multiplicity of each eigenvalue is the number of
times that it appears on the main diagonal. For instance, the
eigenvalues of the Jordan matrix

J3(5) ⊕ J2(2) ⊕ J1(2) ⊕ J3(5) =



5 1 0 0 0 0 0 0 0
0 5 1 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0
0 0 0 2 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 5 1 0
0 0 0 0 0 0 0 5 1
0 0 0 0 0 0 0 0 5


are 5 (with algebraic multiplicity 6) and 2 (with algebraic

multiplicity 3).



Remarks:
5 Perhaps more interestingly, the geometric multiplicity of each

eigenvalue of a Jordan matrix J can also be read off quite
easily: the geometric multiplicity of each eigenvalue λ is
precisely the number of Jordan blocks of the form Jt(λ) that
appear along the main diagonal of J . For instance, for the
Jordan matrix

J3(5) ⊕ J2(2) ⊕ J1(2) ⊕ J3(5) =



5 1 0 0 0 0 0 0 0
0 5 1 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0
0 0 0 2 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 5 1 0
0 0 0 0 0 0 0 5 1
0 0 0 0 0 0 0 0 5


the geometric multiplicity of the eigenvalue 5 is 2, and the

geometric multiplicity of the eigenvalue 2 is also 2.



Remarks:
6 By Theorem 8.2.9, similar matrices have the same eigenvalues,

with the same corresponding algebraic multiplicities, and the
same corresponding geometric multiplicities.

So, if we know the Jordan normal form of a matrix A, then we
can easily read off the eigenvalues of A, together with their
algebraic and geometric multiplicities.
However, two square matrices of the same size, and with
exactly the same eigenvalues, with the same corresponding
algebraic and geometric multiplicities, need not be similar.
Indeed, it is easy to construct two Jordan matrices that have
different Jordan blocks, but have the same eigenvalues with
the same corresponding algebraic and geometric multiplicities.
By Theorem 6.8.1, such matrices are not similar.
For a concrete example, consider the Jordan matrices
J2(λ) ⊕ J2(λ) and J3(λ) ⊕ J1(λ), where λ is an arbitrary
scalar from the field in question; these two matrices have only
one eigenvalue, namely λ, with algebraic multiplicity 4 and
geometric multiplicity 2, but they have different Jordan blocks
and are therefore not similar.
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Example 8.6.5
Let A1, A2, A3 ∈ C7×7 be matrices whose Jordan normal forms are
J1, J2, J3, respectively, as follows:

J1 =


0 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

;

J2 =


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

;

J3 =


0 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

.

Determine which (if any) of A1, A2, A3 are similar. Then, for each
i ∈ {1, 2, 3}, compute its characteristic polynomial and spectrum,
and find all the eigenvalues of Ai , along with their algebraic and
geometric multiplicities.



Solution. We first identify the Jordan blocks of the the three
Jordan matrices. In each matrix, we use colors to indicate the
Jordan blocks.

J1 =


0 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 = J1(0) ⊕ J3(1) ⊕ J1(1) ⊕ J2(0);

J2 =


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

 = J1(1) ⊕ J2(0) ⊕ J1(0) ⊕ J3(1);

J3 =


0 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 = J1(0) ⊕ J2(1) ⊕ J2(1) ⊕ J2(0).

We see that J1 and J2 have the same Jordan blocks (counting
repetitions), and so A1 and A2 are similar. On the other hand, the
Jordan blocks of the matrix J3 are different from those of J1 and
J2, and so A3 is not similar to A1 and A2.
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Solution (continued). Reminder:
J1 = J1(0) ⊕ J3(1) ⊕ J1(1) ⊕ J2(0);
J2 = J1(1) ⊕ J2(0) ⊕ J1(0) ⊕ J3(1);
J3 = J1(0) ⊕ J2(1) ⊕ J2(1) ⊕ J2(0).

For each i ∈ {1, 2, 3}, we see that the characteristic polynomial of
Ai is

pAi (λ) (∗)= pJi (λ) (∗∗)= λ3(λ − 1)4,

where (*) follows from the fact that Ai and Ji are similar (we are
using Proposition 8.2.9), and (**) from the fact that the Jordan
matrix Ji is upper triangular (we are using Proposition 8.2.7).
Finally, we see from the matrices J1, J2, J3, that A1, A2, A3 all have
spectrum {0, 0, 0, 1, 1, 1, 1}, and that they all have exactly two
eigenvalues:

the eigenvalue 0 with algebraic multiplicity 3 and geometric
multiplicity 2;
the eigenvalue 1 with algebraic multiplicity 4 and geometric
multiplicity 2. □
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Theorem 8.6.6
Let F be an algebraically closed field, let A ∈ Fn×n, and let{

λ1, . . . , λ1︸ ︷︷ ︸
m1

, . . . , λk , . . . , λk︸ ︷︷ ︸
mk

}
be the spectrum of A, where λ1, . . . , λk are pairwise distinct
eigenvalues of A and m1, . . . , mk are positive integers.a Then A is
similar to a matrix J ∈ Fn×n in Jordan normal form that has the
following properties:

(i) each Jordan block of the Jordan matrix J is of the form Jt(λi)
for some i ∈ {1, . . . , k} and t ∈ {1, . . . , mi};

(ii) for each i ∈ {1, . . . , k} and each positive integer r , the Jordan
matrix J has exactly rank

(
(A − λi In)r−1)− rank

(
(A − λi In)r)

many Jordan blocks Jt(λi) satisfying t ≥ r .
Moreover, A is similar to any Jordan matrix in Fn×n that satisfies
conditions (i) and (ii) above.

aSince F is algebraically closed, we know that m1 + · · · + mk = n.



Theorem 8.6.6 does indeed allow us to compute the Jordan
normal form of a square matrix A with entries in an
algebraically closed field F, as long as we are able to factor its
characteristic polynomial into linear terms.

Any non-constant polynomial with coefficients in an
algebraically closed field F can be factored into linear terms
(with coefficients in F).
However, this is merely an existence result: actually computing
the linear factors may be extremely difficult or even impossible.
If we get stuck factoring the characteristic polynomial into
linear terms, then Theorem 8.6.6 is of no use to us
(computationally speaking).

Indeed, condition (i) of Theorem 8.6.6 tells us what sorts of
Jordan blocks the Jordan normal form of A may possibly have.
Condition (ii) gives us an easy way to compute the number of
Jordan blocks of each type.
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Indeed, using the set-up and notation from Theorem 8.6.6, we
consider an eigenvalue λi of A, and we fix a positive integer r .
Then the number of Jordan blocks Jr (λi) in the Jordan
normal form of A is exactly(

rank
(

(A − λi In)r−1
)

− rank
(

(A − λi In)r
))︸ ︷︷ ︸

= number of Jordan blocks
Jt (λi ) satisfying t ≥ r

−
(

rank
(

(A − λi In)r
)

− rank
(

(A − λi In)r+1
))︸ ︷︷ ︸

= number of Jordan blocks
Jt (λi ) satisfying t ≥ r + 1

.

So, we can compute both the possible types of Jordan blocks
that the Jordan normal form of A may have, and the exact
number of blocks of each possible type.
We in fact get an exact formula

rank
(
(A − λi In)r−1)+ rank

(
(A − λi In)r+1 − 2 rank

(
(A − λi In)r)

for the number of Jordan blocks Jr (λi) in the Jordan normal
form of A.

However, it is arguably easier to memorize the formula for the
number of Jordan blocks of the form Jt(λi) satisfying t ≥ r .
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Example 8.6.8
Consider the following matrix in C10×10:

A :=


3 1 0 0 0 0 0 −1 0 1

−3 1 5 2 −2 −4 −7 4 −1 3
0 1 3 0 0 0 0 −1 0 1

−2 −1 3 4 −1 −2 −3 2 −1 2
−1 0 2 1 2 −2 −1 1 0 1
−1 0 1 0 0 2 −1 0 0 1

1 1 −2 −1 1 2 7 −2 1 −2
−1 0 1 0 0 −1 0 3 1 0

0 0 0 0 0 0 1 0 3 −1
1 1 −2 −1 1 2 5 −2 1 0

 .

Using Theorem 8.6.6, compute the Jordan normal form of A.

Solution.

First of all, we compute the characteristic polynomial of
A, and we factor it into linear terms:

pA(λ) = det
(
λI10 − A

)
= (λ − 3)8(λ − 2)2.

So, the eigenvalues of A are λ1 = 3 (with alg. mult. 8) and
λ2 = 2 (with alg. mult. 2). So, all of our Jordan blocks will be of
the form Jt(3) and Jt(2) for various positive integers t. We now
deal with the two eigenvalues separately, as follows.
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pA(λ) = det
(
λI10 − A

)
= (λ − 3)8(λ − 2)2.

So, the eigenvalues of A are λ1 = 3 (with alg. mult. 8) and
λ2 = 2 (with alg. mult. 2). So, all of our Jordan blocks will be of
the form Jt(3) and Jt(2) for various positive integers t.

We now
deal with the two eigenvalues separately, as follows.
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−1 0 1 0 0 −1 0 3 1 0

0 0 0 0 0 0 1 0 3 −1
1 1 −2 −1 1 2 5 −2 1 0

 .

Using Theorem 8.6.6, compute the Jordan normal form of A.

Solution. First of all, we compute the characteristic polynomial of
A, and we factor it into linear terms:

pA(λ) = det
(
λI10 − A

)
= (λ − 3)8(λ − 2)2.

So, the eigenvalues of A are λ1 = 3 (with alg. mult. 8) and
λ2 = 2 (with alg. mult. 2). So, all of our Jordan blocks will be of
the form Jt(3) and Jt(2) for various positive integers t. We now
deal with the two eigenvalues separately, as follows.



Solution (continued). We first deal with the eigenvalue λ1 = 3.

We compute the matrices (A − λ1I10)r for r = 0, 1, 2, 3, . . . along
with their ranks. We keep computing until we get the same rank
twice in a row. We obtain:

rank
(
(A − λ1I10)0

)
= 10;

rank
(
(A − λ1I10)1

)
= 7;

rank
(
(A − λ1I10)2

)
= 4;

rank
(
(A − λ1I10)3

)
= 2;

rank
(
(A − λ1I10)4

)
= 2.

We have now obtained the same rank twice in a row, and so we
can stop. We compute (next slide):
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Solution (continued).
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− rank
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(
(A − λ1I10)4

)
= 0.

By Theorem 8.6.6, the Jordan normal form of A will contain:
three Jordan blocks Jt(λ1) = Jt(3) with t ≥ 1;
three Jordan blocks Jt(λ1) = Jt(3) with t ≥ 2;
two Jordan blocks Jt(λ1) = Jt(3) with t ≥ 3;
zero Jordan blocks Jt(λ1) = Jt(3) with t ≥ 4.
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Solution (continued). Reminder:
three Jordan blocks Jt(λ1) = Jt(3) with t ≥ 1;
three Jordan blocks Jt(λ1) = Jt(3) with t ≥ 2;
two Jordan blocks Jt(λ1) = Jt(3) with t ≥ 3;
zero Jordan blocks Jt(λ1) = Jt(3) with t ≥ 4.

Keeping in mind that for any positive integer r , the number of
Jordan blocks Jr (λ1) = Jr (3) in the Jordan normal form of A is
equal to(

number of Jordan blocks
Jt(λ1) satisfying t ≥ r

)
−
(

number of Jordan blocks
Jt(λ1) satisfying t ≥ r + 1

)
,

we conclude that the Jordan normal form of A will contain exactly
two Jordan blocks J3(λ1) = J3(3), and exactly one Jordan block
J2(λ1) = J2(3). The Jordan normal form of A contains no other
Jordan blocks of the form Jt(λ1) = Jt(3).
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Solution (continued). Reminder: The Jordan normal form of A will
contain exactly two Jordan blocks J3(λ1) = J3(3), and exactly one
Jordan block J2(λ1) = J2(3). The Jordan normal form of A
contains no other Jordan blocks of the form Jt(λ1) = Jt(3).

A similar computation shows that A contains exactly one Jordan
block J2(λ2) = J2(2), and it contains no other Jordan blocks of
the form Jt(λ2) = Jt(2). (Details: Lecture Notes.)



Solution (continued). Reminder: The Jordan normal form of A will
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Solution (continued). Putting everything together, we get that the
Jordan normal form of A is the following:

J := J3(λ1) ⊕ J3(λ1) ⊕ J2(λ1) ⊕ J2(λ2)

= J3(3) ⊕ J3(3) ⊕ J2(3) ⊕ J2(2)

=



3 1 0 0 0 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 3 1 0 0 0 0 0
0 0 0 0 3 1 0 0 0 0
0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 3 1 0 0
0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 2


.

We remark that we could have written our Jordan blocks in a
different order, but in any case, the Jordan blocks would have to
be the same as above (counting repetitions). For instance,
J2(3) ⊕ J3(3) ⊕ J2(2) ⊕ J3(3) is also a Jordan normal form of A.
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Solution (continued). Reminder:

J := J3(λ1) ⊕ J3(λ1) ⊕ J2(λ1) ⊕ J2(λ2)

= J3(3) ⊕ J3(3) ⊕ J2(3) ⊕ J2(2)

=



3 1 0 0 0 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 3 1 0 0 0 0 0
0 0 0 0 3 1 0 0 0 0
0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 3 1 0 0
0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 2


.

Remark: It is acceptable to leave J3(3) ⊕ J3(3) ⊕ J2(3) ⊕ J2(2)
(color coded or not) as a final answer, without exhibiting the
actual 10 × 10 matrix with its 100 entries. It is not acceptable to
leave J3(λ1) ⊕ J3(λ1) ⊕ J2(λ1) ⊕ J2(λ2) as a final answer. □



There is another worked out example in the Lecture Notes
(see Example 8.6.9).

Remark: Suppose we are given a matrix A ∈ Fn×n, where F
is an algebraically closed field.

We just saw how we can compute the Jordan normal form of
A, that is, how we can find a Jordan matrix J ∈ Fn×n that is
similar to A.
Could we also compute an invertible matrix P ∈ Fn×n for
which J = P−1AP?
This is indeed possible, but it is significantly more complicated
than just computing a suitable Jordan matrix J .
Unfortunately, any example that illustrates the procedure in
full generality (more or less) requires a great deal of long and
laborious computation.
For the sufficiently brave, a recipe and a couple of examples
are given in subsection 8.6.7 of the Lecture Notes.
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Reminder:

Corollary 8.6.3
Let F be an algebraically closed field, and let A, B ∈ Fn×n. Then
A and B are similar iff they have the same Jordan normal form.
More precisely, the following are equivalent:

(a) A and B are similar;
(b) there exists a Jordan matrix J ∈ Fn×n s.t. both A and B are

similar to J ;
(c) there exist Jordan matrices JA, JB ∈ Fn×n s.t. A is similar to

JA, B is similar to JB, and the Jordan matrices JA and JB can
be obtained from each other by possibly rearranging the order
of the Jordan blocks.

What if F is not algebraically closed?
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Definition
A field F1 is a subfield of a field F2 if the following three conditions
are satisfied:

F1 ⊆ F2;
for all a, b ∈ F1, the sum a + b is the same in F1 and in F2;
for all a, b ∈ F1, the product ab is the same in F1 and in F2.

For example, Q is a subfield of both R and C, and R is a
subfield of C.
On the other hand, for distinct prime numbers p and q, Zp is
not a subfield of Zq (even if p < q).
Moreover, for a prime number p, Zp is not a subfield of any
one of Q, R, or C.
It can be shown that any field is a subfield of some
algebraically closed field, but the proof of this fact is beyond
the scope of this course.

However, let us point out that the field R is a subfield of the
algebraically closed field C. (Q is also a subfield of C.)
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Definition
For a field F, we say that n × n matrices A and B with entries in F
are similar over F if there exists an invertible matrix P ∈ Fn×n s.t.
B = P−1AP.

This is simply our usual definition of matrix similarity in Fn×n.

However, if F is a subfield of some larger field F̃, then it
makes sense to speak of A and B being (or not being) similar
over F, or of them being (or not being) similar over F̃.
In fact, it can be shown that the two notions are equivalent.
More precisely, it can be shown that if F is a subfield of F̃,
then n × n matrices A and B, with entries in F, are similar
over F iff they are similar over F̃, that is, the following are
equivalent:

there exists an invertible matrix P ∈ Fn×n s.t. B = P−1AP;
there exists an invertible matrix P ∈ F̃n×n s.t. B = P−1AP.

We will not prove this in full generality, since it would involve
theory that is beyond the scope of this course.
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In fact, it can be shown that the two notions are equivalent.
More precisely, it can be shown that if F is a subfield of F̃,
then n × n matrices A and B, with entries in F, are similar
over F iff they are similar over F̃, that is, the following are
equivalent:

there exists an invertible matrix P ∈ Fn×n s.t. B = P−1AP;
there exists an invertible matrix P ∈ F̃n×n s.t. B = P−1AP.

We will not prove this in full generality, since it would involve
theory that is beyond the scope of this course.
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For the special case of R and C, we give a proof (nice and not
very hard) in the Lecture Notes.

Theorem 8.6.7
Two n × n matrices with real entries are similar over R iff they are
similar over C.

What does this have to do with the Jordan normal form?
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Suppose that we need to check if two n × n matrices, call
them A and B, with entries in some field F, are similar (over
F).

We first extend F to an algebraically closed field F̃.
For example, we extend R to C.

Then the following are equivalent:
A and B are similar over F;
A and B are similar over F̃;
A and B have the same Jordan normal form in F̃n×n (up to a
reordering of the Jordan blocks).

(The equivalence of the second and third item above follows
from Corollary 8.6.3.)
So, if we can compute the Jordan normal forms of A and B in
F̃n×n, then we can immediately determine if A and B are
similar over F.
Of course, actually computing the Jordan normal forms of A
and B (in F̃n×n) may be very difficult or even impossible,
essentially because we might not succeed in factoring the
characteristic polynomials pA(λ) and pB(λ).
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2 Symmetric matrices and orthogonal diagonalization

Reminder: The complex conjugate of a complex number z is
denoted by z .
Reminder: The standard scalar product in Rn or Cn, denoted
by ·, is defined as follows:

for all x =
[

x1 . . . xn
]T and y =

[
y1 . . . yn

]T in
Rn:

x · y =
n∑

k=1
xkyk ;

for all x =
[

x1 . . . xn
]T and y =

[
y1 . . . yn

]T in
Cn:

x · y =
n∑

k=1
xkyk .

In what follows, we shall denote by || · || the norm induced by
the standard scalar product · in Rn or Cn (as appropriate).
In particular, orthogonality and orthonormality will always be
assumed to be with respect to the standard scalar product
and the induced norm.
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For any field F, a matrix A ∈ Fn×n is symmetric if AT = A.

If F = C, then it turns out that symmetric matrices are less
interesting than the so-called “Hermitian matrices.”
For a matrix A =

[
ai,j

]
n×m in Cn×m, we set A =

[
ai,j

]
n×m,

i.e. A is an n × m matrix s.t. for all indices i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}, the i , j-th entry of A is ai ,j (the complex
conjugate of ai ,j).
The Hermitian transpose of a A is the matrix A∗ = (A)T .
For example, for

A :=
[

−1 + i 3 2i
1 + 2i 4 − 2i 3

]
,

we have the following:

A =
[

−1 − i 3 −2i
1 − 2i 4 + 2i 3

]
, A∗ =

[ −1 − i 1 − 2i
3 4 + 2i

−2i 3

]
.

A square matrix A ∈ Cn×n is Hermitian if A∗ = A.



For any field F, a matrix A ∈ Fn×n is symmetric if AT = A.
If F = C, then it turns out that symmetric matrices are less
interesting than the so-called “Hermitian matrices.”

For a matrix A =
[

ai,j
]

n×m in Cn×m, we set A =
[

ai,j
]

n×m,
i.e. A is an n × m matrix s.t. for all indices i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}, the i , j-th entry of A is ai ,j (the complex
conjugate of ai ,j).
The Hermitian transpose of a A is the matrix A∗ = (A)T .
For example, for

A :=
[

−1 + i 3 2i
1 + 2i 4 − 2i 3

]
,

we have the following:

A =
[

−1 − i 3 −2i
1 − 2i 4 + 2i 3

]
, A∗ =

[ −1 − i 1 − 2i
3 4 + 2i

−2i 3

]
.

A square matrix A ∈ Cn×n is Hermitian if A∗ = A.



For any field F, a matrix A ∈ Fn×n is symmetric if AT = A.
If F = C, then it turns out that symmetric matrices are less
interesting than the so-called “Hermitian matrices.”
For a matrix A =

[
ai,j

]
n×m in Cn×m, we set A =

[
ai,j

]
n×m,

i.e. A is an n × m matrix s.t. for all indices i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}, the i , j-th entry of A is ai ,j (the complex
conjugate of ai ,j).

The Hermitian transpose of a A is the matrix A∗ = (A)T .
For example, for

A :=
[

−1 + i 3 2i
1 + 2i 4 − 2i 3

]
,

we have the following:

A =
[

−1 − i 3 −2i
1 − 2i 4 + 2i 3

]
, A∗ =

[ −1 − i 1 − 2i
3 4 + 2i

−2i 3

]
.

A square matrix A ∈ Cn×n is Hermitian if A∗ = A.



For any field F, a matrix A ∈ Fn×n is symmetric if AT = A.
If F = C, then it turns out that symmetric matrices are less
interesting than the so-called “Hermitian matrices.”
For a matrix A =

[
ai,j

]
n×m in Cn×m, we set A =

[
ai,j

]
n×m,

i.e. A is an n × m matrix s.t. for all indices i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}, the i , j-th entry of A is ai ,j (the complex
conjugate of ai ,j).
The Hermitian transpose of a A is the matrix A∗ = (A)T .

For example, for

A :=
[

−1 + i 3 2i
1 + 2i 4 − 2i 3

]
,

we have the following:

A =
[

−1 − i 3 −2i
1 − 2i 4 + 2i 3

]
, A∗ =

[ −1 − i 1 − 2i
3 4 + 2i

−2i 3

]
.

A square matrix A ∈ Cn×n is Hermitian if A∗ = A.



For any field F, a matrix A ∈ Fn×n is symmetric if AT = A.
If F = C, then it turns out that symmetric matrices are less
interesting than the so-called “Hermitian matrices.”
For a matrix A =

[
ai,j

]
n×m in Cn×m, we set A =

[
ai,j

]
n×m,

i.e. A is an n × m matrix s.t. for all indices i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}, the i , j-th entry of A is ai ,j (the complex
conjugate of ai ,j).
The Hermitian transpose of a A is the matrix A∗ = (A)T .
For example, for

A :=
[

−1 + i 3 2i
1 + 2i 4 − 2i 3

]
,

we have the following:

A =
[

−1 − i 3 −2i
1 − 2i 4 + 2i 3

]
, A∗ =

[ −1 − i 1 − 2i
3 4 + 2i

−2i 3

]
.

A square matrix A ∈ Cn×n is Hermitian if A∗ = A.



For any field F, a matrix A ∈ Fn×n is symmetric if AT = A.
If F = C, then it turns out that symmetric matrices are less
interesting than the so-called “Hermitian matrices.”
For a matrix A =

[
ai,j

]
n×m in Cn×m, we set A =

[
ai,j

]
n×m,

i.e. A is an n × m matrix s.t. for all indices i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}, the i , j-th entry of A is ai ,j (the complex
conjugate of ai ,j).
The Hermitian transpose of a A is the matrix A∗ = (A)T .
For example, for

A :=
[

−1 + i 3 2i
1 + 2i 4 − 2i 3

]
,

we have the following:

A =
[

−1 − i 3 −2i
1 − 2i 4 + 2i 3

]
, A∗ =

[ −1 − i 1 − 2i
3 4 + 2i

−2i 3

]
.

A square matrix A ∈ Cn×n is Hermitian if A∗ = A.



A square matrix A ∈ Cn×n is Hermitian if A∗ = A.

For example, the matrix −1 1 + i 2 − i
1 − i 2 −3 + i
2 + i −3 − i 0


is Hermitian.
Note that all entries on the main diagonal of a Hermitian
matrix are real.
Note also that if all entries of a matrix in Cn×n happen to be
real, then that matrix is Hermitian iff it is symmetric.
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Proposition 8.7.1
For all x ∈ Cn, we have that x∗x = ||x||2.

Proof.

For any vector x =
[

x1 . . . xn
]T

in Cn, we have that

x∗x =
[

x1 . . . xn
]  x1

...
xn

 =
n∑

k=1
xkxk = x · x = ||x||2,

which is what we needed. □
Proposition 8.7.2
For all matrices A, B ∈ Cn×m and scalars α ∈ C, the following
hold:

(a) (A∗)∗ = A;
(b) (A + B)∗ = A∗ + B∗;

(c) (αA)∗ = αA∗;
(d) (AB)∗ = B∗A∗.

Proof: exercise.
Note that this is very similar to the properties of the ordinary
transpose.
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Theorem 8.7.3
All eigenvalues of a Hermetrian matrix are real.

Remark: The field C is algebraically closed, and
consequently, every matrix in Cn×n has n complex eigenvalues
(with algebraic multiplicities taken into account). So,
Theorem 8.7.3 states that if A is a Hermitian matrix in Cn×n,
then all n eigenvalues of A (with algebraic multiplicities taken
into account) are real.



Theorem 8.7.3
All eigenvalues of a Hermetrian matrix are real.

Proof.

Let A ∈ Cn×n be a Hermitian matrix, let λ be any
eigenvalue of A, and let x be an associated eigenvector of A. After
possibly normalizing the eigenvector x (i.e. replacing x by x

||x||), we
may assume that x is a unit vector, i.e. that it satisfies ||x|| = 1.
Then Ax = λx, and we compute:

x∗Ax = x∗(λx) because Ax = λx

= λ(x∗x)

= λ||x||2 by Proposition 8.7.1

= λ because ||x|| = 1.
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Theorem 8.7.3
All eigenvalues of a Hermetrian matrix are real.

Proof (continued). Reminder: x∗Ax = λ.
But now we have the following:

λ = x∗Ax

= x∗A∗x because A is Hermitian

= x∗A∗(x∗)∗ by Proposition 8.7.2(a)

= (x∗Ax)∗ by Proposition 8.7.2(d)

= λ∗ where we consider λ as
a 1 × 1 complex matrix

= λ
where we consider λ as
a complex number.

We have now shown that λ = λ, and it follows that λ is a real
number. □



Theorem 8.7.3
All eigenvalues of a Hermetrian matrix are real.

Corollary 8.7.4
Every symmetric matrix in Rn×n has n real eigenvalues (with
algebraic multiplicities taken into account). In other words, for
every symmetric matrix A ∈ Rn×n, the sum of algebraic
multiplicities of its distinct (real) eigenvalues is n.

Proof. Consider any symmetric matrix A ∈ Rn×n. If we consider A
as a matrix in Cn×n, then A is Hermitian, and so Theorem 8.7.3
guarantees that all complex eigenvalues of A are in fact real.
Finally, the fact that A has n complex eigenvalues follows from the
fact that C is algebraically closed. □
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fact that C is algebraically closed. □
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Definition
A matrix Q ∈ Rn×n is orthogonal if it satisfies QT Q = In.

Theorem 6.8.1
Let Q ∈ Rn×n. Then the following are equivalent:

(a) Q is orthogonal (i.e. satisfies QT Q = In);
(b) Q is invertible and satisfies Q−1 = QT ;
(c) QQT = In;
(d) QT is orthogonal;
(e) Q is invertible and Q−1 is orthogonal;
(f) the columns of Q form an orthonormal basis of Rn;
(g) the columns of QT form an orthonormal basis of Rn.

In what follows, we will repeatedly use the fact that the three
red statements above are equivalent, without explicitly
mentioning Theorem 6.8.1.
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Definition
A matrix A ∈ Rn×n is orthogonally diagonalizable if there exists a
diagonal matrix D and an orthogonal matrix Q, both in Rn×n, s.t.
D = QT AQ.

Since orthogonal matrices Q are invertible and satisfy
QT = Q−1, we see that orthogonally diagonalizable matrices
are, in particular, diagonalizable in the usual sense.
Our goal is to prove the following theorem:

Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

The proof proceeds by induction on n, and in the induction
step, it will be convenient to reduce the problem to the case
when the matrix has an eigenvalue 0. To this end, we will use
the following technical proposition (next slide).
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Proposition 8.7.5
Let A ∈ Rn×n and λ0 ∈ R. Then all the following hold:

(a) λ0 is an eigenvalue of A iff 0 is an eigenvalue of A − λ0In, and
moreover, Eλ0(A) = E0(A − λ0In);a

(b) A is symmetric iff A − λ0In is symmetric;
(c) A is diagonalizable iff A − λ0 is digonalizable;
(d) A is orthogonally disagonalizable iff A − λ0In is orthogonally

diagonalizable.
aHere, Eλ0 (A) = E0(A − λ0In) holds even if λ0 is not an eigenvalue of A. In

that case, we simply have that Eλ0 (A) = E0(A − λ0In) = {0}.

Proof.

(a) For all v ∈ Rn, we have that Av = λ0v iff
(A − λ0In)v = 0 = 0v, and so v ∈ Eλ0(A) iff v ∈ E0(A − λ0In).
Thus, Eλ0(A) = E0(A − λ0In).
In particular, Eλ0(A) is non-trivial iff E0(A − λ0In) is non-trivial,
and consequently (by definition, or alternatively, by Prop. 8.1.6(a)),
λ0 is an eigenvalue of A iff 0 is an eigenvalue of A − λ0In.
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Proof (continued). (b) First, we note that

(A − λ0In)T = AT − λ0IT
n = AT − λ0In;

consequently, (A − λ0In)T = A − λ0In iff AT = A, i.e. A − λ0In is
symmetric iff A is symmetric.
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Proof (continued). (c) Suppose first that A is diagonalizable.

Then there exist a diagonal matrix D and an invertible matrix P,
both in Rn×n, s.t. D = P−1AP. But then

P−1(A − λ0In)P = P−1AP − P−1(λ0In)P

= P−1AP︸ ︷︷ ︸
=D

−λ0 P−1P︸ ︷︷ ︸
=In

= D − λ0In,

and obviously, D − λ0In is diagonal. So, A − λ0In is diagonalizable.
The proof of the converse is analogous.
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Proof (continued). (d) This is completely analogous to the proof
of (c), except that instead of P and P−1 (where P ∈ Rn×n is an
invertible matrix), we have Q and QT (where Q ∈ Rn×n is an
orthogonal matrix). □



Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

Proof.

Let us first show that orthogonally diagonalizable matrices
are symmeteric. Fix any orthogonally diagonalizable matrix
A ∈ Rn×n. Let D be a diagonal and Q an orthogonal matrix, both
in Rn×n, s.t. D = QT AQ. Then A = QDQT , and we see that

AT = (QDQT )T = (QT )T DT QT (∗)= QDQT = A,

where in (*), we used the fact that DT = D, since D is diagonal.
Thus, A is symmetric.
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Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

Proof (continued). It remains to prove the reverse implication:
symmetric matrices in Rn×n are orthogonally diagonalizable. We
proceed by induction on n.

For n = 1, the result is immediate: indeed, if A ∈ R1×1, then A is
diagonal, and we can take D := A and Q := I1 to obtain
D = QT AQ.

Now, fix a positive integer n, and assume inductively that every
symmetric matrix in Rn×n is orthogonally diagonalizable. Fix any
symmetric matrix A ∈ R(n+1)×(n+1); we must show that A is
orthogonally diagonalizable. By Corollary 8.7.4, A has n + 1 real
eigenvalues (with algebraic multiplicities taken into account). Let
λ0 ∈ R be an eigenvalue of A. In view of Proposition 8.7.5, we
may assume that λ0 = 0, for otherwise, we simply consider
A − λ0In instead of A.
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Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

Proof (continued). Let x0 ∈ Rn be an eigenvector of A associated
with the eigenvalue 0, so that Ax0 = 0.

After possibly normalizing
the eigenvector x0 (i.e. replacing x0 by x0

||x0||), we may assume that
||x0|| = 1. Now, using Corollary 6.3.11(d), we let {x0, x1, . . . , xn}
be an orthonormal basis of Rn+1.

Indeed, {x0} is an orthonormal basis of the subspace
U := Span(x0) of Rn+1, and so by Corollary 6.3.11(d), {x0}
can be extended to an orthonormal basis of Rn+1.

Set S :=
[

x0 x1 . . . xn
]
; then S is an orthogonal matrix.

Now, since A is symmetric, so is ST AS; indeed,

(
ST AS

)T = ST AT S (∗)= ST AS,

where in (*), we used the fact that AT = A (since A is symmetric).
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Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

Proof (continued). Reminder: A ∈ R(n+1)×(n+1) is symmetric,
Ax0 = 0; ||x0|| = 1; S :=

[
x0 x1 . . . xn

]
is orthogonal; ST AS

is symmetric.

Moreover, it is easy to see that the first (i.e. leftmost) column of
ST AS is 0; indeed:

ST AS = ST A
[

x0 x1 . . . xn
]

=
[

ST Ax0 ST Ax1 . . . ST Axn
] by the definition of

matrix multiplication

=
[

ST 0 ST Ax1 . . . ST Axn
]

because Ax0 = 0

=
[

0 ST Ax1 . . . ST Axn
]

.

We now know that ST AS ∈ R(n+1)×(n+1) is a symmetric matrix,
and that its leftmost column is 0.



Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

Proof (continued). Reminder: A ∈ R(n+1)×(n+1) is symmetric,
Ax0 = 0; ||x0|| = 1; S :=

[
x0 x1 . . . xn

]
is orthogonal; ST AS

is symmetric.
Moreover, it is easy to see that the first (i.e. leftmost) column of
ST AS is 0; indeed:

ST AS = ST A
[

x0 x1 . . . xn
]

=
[

ST Ax0 ST Ax1 . . . ST Axn
] by the definition of

matrix multiplication

=
[

ST 0 ST Ax1 . . . ST Axn
]

because Ax0 = 0

=
[

0 ST Ax1 . . . ST Axn
]

.

We now know that ST AS ∈ R(n+1)×(n+1) is a symmetric matrix,
and that its leftmost column is 0.



Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

Proof (continued). Reminder: A ∈ R(n+1)×(n+1) is symmetric,
Ax0 = 0; ||x0|| = 1; S :=

[
x0 x1 . . . xn

]
is orthogonal; ST AS

is symmetric.
Moreover, it is easy to see that the first (i.e. leftmost) column of
ST AS is 0; indeed:

ST AS = ST A
[

x0 x1 . . . xn
]

=
[

ST Ax0 ST Ax1 . . . ST Axn
] by the definition of

matrix multiplication

=
[

ST 0 ST Ax1 . . . ST Axn
]

because Ax0 = 0

=
[

0 ST Ax1 . . . ST Axn
]

.

We now know that ST AS ∈ R(n+1)×(n+1) is a symmetric matrix,
and that its leftmost column is 0.



Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

Proof (continued). So, there exists a symmetric matrix A0 ∈ Rn×n

s.t.
ST AS =

[
0 0T

0 A0

]
.

By the induction hypothesis, A0 is orthogonally diagonalizable, i.e.
there exist a diagonal matrix D0 and an orthogonal matrix Q0,
both in Rn×n, s.t. D0 = QT

0 A0Q0. Now, set

D :=
[

0 0T

0 D0

]
(n+1)×(n+1)

; R :=
[

1 0T

0 Q0

]
(n+1)×(n+1)

.

Clearly, D is diagonal (because D0 is diagonal), and R is
orthogonal (because Q0 is orthogonal). Since R and S are
orthogonal, Proposition 6.8.3 guarantees that Q := SR is also
orthogonal. Finally, we compute (next slide):
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Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

Proof (continued).

QT AQ = (SR)T A(SR)

= RT (ST AS)R

=
[

1 0T

0 QT
0

] [
0 0T

0 A0

] [
1 0T

0 Q0

]

=
[

0 0T

0 QT
0 A0Q0

]

=
[

0 0T

0 D0

]
= D,

and we are done. □



Theorem 8.7.6
A matrix in Rn×n is orthogonally diagonalizable iff it is symmetric.

By combing Theorem 8.7.6 with what we know about
diagonalizability, eigenbases, and orthogonality, we obtain the
spectral theorem for symmetric matrices (next slide).

The full proof is in the Lecture Notes, but it is essentially just
a compilation of the various results we have already seen.
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The spectral theorem for symmetric matrices
For every matrix A ∈ Rn×n, the following are equivalent:

(a) A is symmetric;
(b) A is orthogonally diagonalizable;
(c) Rn has an orthonormal eigenbasis associated with A;
(d) Rn has an orthogonal eigenbasis associated with A;
(e) Rn has an eigenbasis associated with A, and the eigenspaces

of A are pairwise orthogonal;
(f) A has n pairwise orthogonal eigenvectors.a

aThis means that some n eigenvectors of A are pairwise orthogonal. It does
not mean that A has exactly n eigenvectors (which happen to be orthogonal).



By Theorem 8.7.6, every symmetric matrix in Rn×n can be
orthogonally diagonalized, and in fact, the proof of
Theorem 8.7.6 gives us a recipe of sorts for orthogonally
diagonalizing such a matrix.

However, that recipe is not particularly practical, and we are
better off using the spectral theorem instead.
Suppose we are given a symmetric matrix A ∈ Rn×n, which
we wish to orthogonally diagonalize.
So, our goal is to construct a diagonal matrix D and an
orthogonal matrix Q, both in Rn×n, s.t. D = QT AQ.
We proceed as follows (next two slides).
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1 First, we compute the characteristic polynomial of A, we
factor it, and we find all the (real) eigenvalues of A along with
their algebraic multiplicities.

2 Since A is orthogonally diagonalizable (and in particular,
diagonalizable), Theorems 8.4.5(d) and 8.5.6 together
guarantee that Rn has an eigenbasis associated with A, and
moreover, that the sum of algebraic multiplicities of the
eigenvalues of A is n, and that the geometric multiplicity of
each eigenvalue is equal to its algebraic multiplicity.

3 Next, for each eigenvalue λ of A, we compute a basis Bλ of
the eigenspace Eλ(A), and then we apply the Gram-Schmidt
orthogonalization process to Bλ in order to obtain an
orthonormal basis Cλ of Eλ(A).

4 In view of the spectral theorem, we see that the union C of
the Cλ’s is an orthonormal eigenbasis of Rn associated with A.
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5 We now form the diagonal matrix D by placing the
eigenvalues of A on the main diagonal of D (while respecting
the algebraic/geometric multiplicity of each eigenvalue), and
we form Q by arranging the vectors of our orthonormal
eigenbasis C into a matrix (while respecting the order from
D). Since the columns of Q form an orthonormal basis of Rn,
we see that Q is orthogonal, and so Q−1 = QT . But now
Theorem 8.5.6 guarantees that D = Q−1AQ = QT AQ.



Example 8.7.7
Orthogonally diagonalize the following symmetric matrix in R3×3:

A =

 3 −2 4
−2 6 2

4 2 3

 .

Solution.

First, we compute the characteristic polynomial of A:

pA(λ) = det(λI3 − A)

=

∣∣∣∣∣∣∣
λ − 3 2 −4

2 λ − 6 −2
−4 −2 λ − 3

∣∣∣∣∣∣∣
= λ3 − 12λ2 + 21λ + 98

= (λ + 2)(λ − 7)2.
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Solution.

Reminder: pA(λ) = (λ + 2)(λ − 7)2.

Thus, A has two eigenvalues:
λ1 = −2 (with algebraic multiplicity 1),
and λ2 = 7 (with algebraic multiplicity 2).

We now compute a basis B1 = {
[

−2 −1 2
]T } of Eλ1(A) and a

basis B2 = {
[

−1 2 0
]T

,
[

1 0 1
]T } of Eλ2(A).

Next, we apply the Gram-Schmidt orthogonalization process to B1
and B2. This yields an orthonormal basis C1 = {

[
− 2

3 − 1
3

2
3
]T }

of Eλ1 , and an orthonormal basis
C2 = {

[
− 1√

5
2√
5 0

]T
,
[

4
3
√

5
2

3
√

5
5

3
√

5

]T
} of Eλ2 .

We now set

D :=

 −2 0 0
0 7 0
0 0 7

 , Q :=

 −2/3 −1/
√

5 4/(3
√

5)
−1/3 2/

√
5 2/(3

√
5)

2/3 0 5/(3
√

5)

 .

Now D is diagonal, Q is orthogonal, and D = QT AQ. □
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−1 2 0
]T

,
[

1 0 1
]T } of Eλ2(A).

Next, we apply the Gram-Schmidt orthogonalization process to B1
and B2. This yields an orthonormal basis C1 = {

[
− 2

3 − 1
3

2
3
]T }

of Eλ1 , and an orthonormal basis
C2 = {

[
− 1√

5
2√
5 0

]T
,
[

4
3
√

5
2

3
√

5
5

3
√

5

]T
} of Eλ2 .

We now set

D :=

 −2 0 0
0 7 0
0 0 7

 , Q :=

 −2/3 −1/
√

5 4/(3
√

5)
−1/3 2/

√
5 2/(3

√
5)

2/3 0 5/(3
√

5)

 .

Now D is diagonal, Q is orthogonal, and D = QT AQ. □


