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This lecture has three parts:

1 The Cayley-Hamilton theorem
2 Eigenvectors and linear independence. Eigenbases
3 Diagonalization
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1 The Cayley-Hamilton theorem

The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

The Cayley-Hamilton theorem essentially states that every
square matrix is a root of its own characteristic polynomial.

Here, we need to treat the free coefficient of the characteristic
polynomial as that coefficient times the identity matrix of the
appropriate size.
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For example, for the matrix

A =
[

1 2
3 4

]
,

with entries understood to be in R or C, we have that

pA(λ) = det(λI2 − A) =
∣∣∣∣ λ − 1 −2

−3 λ − 4

∣∣∣∣ = λ2 − 5λ − 2,

and we see that

A2 − 5A − 2I2 =
[

1 2
3 4

]2
− 5

[
1 2
3 4

]
− 2

[
1 0
0 1

]

=
[

7 10
15 22

]
−

[
5 10
15 20

]
−

[
2 0
0 2

]

=
[

0 0
0 0

]
.



The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

The proof of the Cayley-Hamilton theorem relies on the
adjugate matrix and on the theorem below.

Theorem 7.8.2
Let F be a field, and let A ∈ Fn×n (n ≥ 2). Then

adj(A) A = A adj(A) = det(A)In.

Consequently, if A is invertible, then A−1 = 1
det(A)adj(A).
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pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

Proof.

If n = 1, then the result is immediate.
Indeed, suppose that n = 1, and consider any matrix
A =

[
a1,1

]
in F1×1.

Then pA(λ) = det(λI1 − A) = det(
[

λ − a1,1
]
) = λ − a1,1, and

we see that A − a1,1I1 = O1×1.
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Proof (continued). From now on, we assume that n ≥ 2.

By
Theorem 7.8.2 applied to the matrix λIn − A (where λ is a
variable), we get that

(λIn − A) adj(λIn − A) = det(λIn − A)In.

Now, note that each cofactor of the matrix λIn − A is a
polynomial (in variable λ) of degree at most λn−1. Since the
entries of adj(λIn − A) are precisely the cofactors of λIn − A, it
follows that each entry of adj(λIn − A) is a polynomial (in the
variable λ) of degree at most n − 1. So, the matrix adj(λIn − A)
can be expressed in the form

adj(λIn − A) = λn−1Bn−1 + λn−2Bn−2 + · · · + λB1 + B0,

for some matrices B0, B1, . . . , Bn−1 ∈ Fn×n. Consequently,

(λIn − A)(λn−1Bn−1 + λn−2Bn−2 + · · · + λB1 + B0︸ ︷︷ ︸
=adj(λIn−A)

)

︸ ︷︷ ︸
:=LHS

= det(λIn − A)In︸ ︷︷ ︸
:=RHS

.
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Proof (continued). Reminder: n ≥ 2,

(λIn − A)(λn−1Bn−1 + λn−2Bn−2 + · · · + λB1 + B0︸ ︷︷ ︸
=adj(λIn−A)

)

︸ ︷︷ ︸
:=LHS

= det(λIn − A)In︸ ︷︷ ︸
:=RHS

.

For the left-hand-side, we have
LHS = (λIn − A)(λn−1Bn−1 + · · · + λB1 + B0)

= λnBn−1 + λn−1(Bn−2 − ABn−1) + λn−2(Bn−3 − ABn−2)+
+ · · · + λ(B0 − AB1) − AB0.

For the right-hand-side, we have
RHS = det(λIn − A)In = pA(λ)In

= (λn + an−1λn−1 + an−2λn−1 + · · · + a1λ + a0)In
= λnIn + λn−1an−1In + λn−2an−2In + · · · + λa1In + a0In.

The corresponding coefficients in front of λi (for i ∈ {0, 1, . . . , n})
must be equal on the left-hand-side (LHS) and the right-hand-side
(RHS). This yields the following n + 1 equations (next slide).
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Proof (continued).

Bn−1 = In
Bn−2 − ABn−1 = an−1In
Bn−3 − ABn−2 = an−2In

...
B0 − AB1 = a1In

−AB0 = a0In

We now multiply the first (top) equation by An on the left, the
second equation by An−1 on the left, the third equation by An−2

on the left, and so on. This yields the following.

AnBn−1 = An

An−1Bn−2 − AnBn−1 = an−1An−1

An−2Bn−3 − An−1Bn−2 = an−2An−2

...
AB0 − A2B1 = a1A

−AB0 = a0In
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So, the right-hand-side must also sum up to On×n, i.e.

An + an−1An−1 + an−2An−2 + · · · + a1A + a0In = On×n.

But this is precisely what we needed to show. □
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The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

Corollary 8.3.1
Let F be a field. For all matrices A ∈ Fn×n:

(a) An ∈ Span(In, A, A2, . . . , An−1), i.e. An is a linear combination
of In, A, A2, . . . , An−1;

(b) if A is invertible, then A−1 ∈ Span(In, A, A2, . . . , An−1), i.e.
A−1 is a linear combination of In, A, A2, . . . , An−1.

Proof. Fix a matrix A ∈ Fn×n, and consider its characteristic
polynomial pA(λ) = λn + an−1λn−1 + an−2λn−2 + · · · + a1λ + a0.
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Thus, An is a linear combination of the matrices
In, A, A2, . . . , An−1.
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The Cayley-Hamilton theorem
Let F be a field, let A ∈ Fn×n be a square matrix, and let
pA(λ) = λn + an−1λn−1 + · · · + a1λ + a0 be the characteristic
polynomial of A. Then

An + an−1An−1 + · · · + a1A + a0In = On×n.

Corollary 8.3.1
Let F be a field. For all matrices A ∈ Fn×n:

(a) An ∈ Span(In, A, A2, . . . , An−1), i.e. An is a linear combination
of In, A, A2, . . . , An−1;

(b) if A is invertible, then A−1 ∈ Span(In, A, A2, . . . , An−1), i.e.
A−1 is a linear combination of In, A, A2, . . . , An−1.



2 Eigenvectors and linear independence. Eigenbases

Definition
For a finite-dimensional vector space V over a field F and a linear
function f : V → V , an eigenbasis of V associated with f is a
basis B of V s.t. all vectors in B are eigenvectors of f .

Definition
For an field F and a matrix A ∈ Fn×n, an eigenbasis of Fn

associated with A is a basis B of Fn s.t. all vectors in B are
eigenvectors of A.

Eigenbases do not always exist, and one of our goals in this
section is to determine when they do and do not exist.
As we shall see (later!), eigenbases play a crucial role in
matrix “diagonalization.”
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Proposition 8.4.1
Let V be a vector space over a field F, let f : V → V be a linear
function, let λ1, . . . , λk ∈ F be pairwise distinct eigenvalues of f ,
associated with eigenvectors v1, . . . , vk , respectively. Then
{v1, . . . , vk} is a linearly independent set.

Proof.

We will prove inductively that for all i ∈ {0, . . . , k}, the set
{v1, . . . , vi} is linearly independent.

For i = 0, we have that {v1, . . . , vi} = ∅, which is obviously a
linearly independent set.

Now, fix an index i ∈ {0, . . . , k − 1}, and assume inductively that
the set {v1, . . . , vi} is linearly independent. We must show that
{v1, . . . , vi , vi+1} is linearly independent. Fix scalars
α1, . . . , αi , αi+1 ∈ F s.t.

α1v1 + · · · + αivi + αi+1vi+1 = 0.

WTS α1 = · · · = αi = αi+1 = 0.
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Proof (continued). Reminder: {v1, . . . , vi} is linearly independent;
α1v1 + · · · + αivi + αi+1vi+1 = 0; WTS
α1 = · · · = αi = αi+1 = 0.

If we multiply both sides of the equation above by λi+1, we obtain
(1) λi+1α1v1 + · · · + λi+1αivi + λi+1αi+1vi+1 = 0.

If, on the other hand, we apply the function f to both sides and
also use the fact that f (0) = 0, then we obtain

(2) f
(
α1v1 + · · · + αivi + αi+1vi+1

)
= 0.
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Proposition 8.4.1
Let V be a vector space over a field F, let f : V → V be a linear
function, let λ1, . . . , λk ∈ F be pairwise distinct eigenvalues of f ,
associated with eigenvectors v1, . . . , vk , respectively. Then
{v1, . . . , vk} is a linearly independent set.

Proof (continued). We now compute:

0 (2)= f
(
α1v1 + · · · + αivi + αi+1vi+1

)
(∗)= α1f (v1) + · · · + αi f (vi) + αi+1f (vi+1)

(∗∗)= α1λ1v1 + · · · + αiλivi + αi+1λi+1vi+1,

where (*) follows from the linearity of f , and (**) follows from the
fact that v1, . . . , vi , vi+1 are eigenvectors of f associated with
eigenvalues λ1, . . . , λi , λi+1, respectively.
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Let V be a vector space over a field F, let f : V → V be a linear
function, let λ1, . . . , λk ∈ F be pairwise distinct eigenvalues of f ,
associated with eigenvectors v1, . . . , vk , respectively. Then
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2 f
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)
= 0;

3 α1λ1v1 + · · · + αiλivi + αi+1λi+1vi+1 = 0.

Combining (1) and (3), we obtain:
α1λ1v1 + · · · + αiλivi + αi+1λi+1vi+1

= λi+1α1v1 + · · · + λi+1αivi + λi+1αi+1vi+1.

By subtracting one side from the other and factoring, we get

α1(λ1 − λi+1)v1 + · · · + αi(λi − λi+1)vi = 0.
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Proof (continued). Reminder:
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By the ind. hyp., v1, . . . , vi are linearly independent, and it follows
that α1(λ1 − λi+1) = · · · = αi(λi − λi+1) = 0. Since
λ1 − λi+1, . . . , λi − λi+1 are all non-zero (because λ1, . . . , λi , λi+1
are pairwise distinct), we deduce that α1 = · · · = αi = 0. Plugging
this into our equation α1v1 + · · · + αivi + αi+1vi+1 = 0, we get

αi+1vi+1 = 0.

But vi+1 is an eigenvector of f , and so by definition, vi+1 ̸= 0. So,
αi+1 = 0. Thus, α1 = · · · = αi = αi+1 = 0. So, {v1, . . . , vi , vi+1}
is linearly independent. This completes the induction. □
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Proof.

Fix α1,1, . . . , α1,t1 , α2,1, . . . , α2,t2 , . . . , αk,1, . . . , αk,tk ∈ F
s.t. k∑

i=1

(
αi ,1vi ,1 + · · · + αi ,ti vi ,ti

)
= 0.

∀i ∈ {1, . . . , k}: set vi := αi ,1vi ,1 + · · · + αi ,ti vi ,ti , that is
v1 := α1,1v1,1 + · · · + α1,t1v1,t1 ;
v2 := α2,1v2,1 + · · · + α2,t2v2,t2 ;
...
vk := αk,1vk,1 + · · · + αk,tk vk,tk .

So, v1 + v2 + · · · + vk = 0. Now, note that for each
i ∈ {1, . . . , k}, the vector vi is a linear combination of vectors in
Eλi (f ); since Eλi (f ) is a subsapce of V , it follows that vi ∈ Eλi (f ).
Consequently, ∀i ∈ {1, . . . , k}: vi is either 0 or an eigenvector of f
associated with the eigenvalue λi . WTS v1 = v2 = · · · = vk = 0.
Suppose otherwise. By symmetry, WMA ∃ℓ ∈ {1, . . . , k} s.t.
v1, . . . , vℓ are all non-zero (and are consequently eigenvectors of f
associated with λ1, . . . , λℓ), while vℓ+1, . . . , vk are all zero.
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Proof (continued). So,
v1 + · · · + vℓ = 0,

and it follows that {v1, . . . , vℓ} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that v1 = · · · = vk = 0. So, for all indices
i ∈ {1, . . . , k}, we have that

αi ,1vi ,1 + · · · + αi ,ti vi ,ti = 0;

since vectors vi ,1, . . . , vi ,ti are linearly independent, it follows that
αi ,1 = · · · = αi ,ti = 0.

Since this holds for all indices i ∈ {1, . . . , k}, we deduce that the
eigenvectors

v1,1, . . . , v1,t1 , v2,1, . . . , v2,t2 , . . . , vk,1, . . . , vk,tk

are linearly independent, which is what we needed to show. □
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Proposition 8.4.1
Let V be a vector space over a field F, let f : V → V be a linear
function, let λ1, . . . , λk ∈ F be pairwise distinct eigenvalues of f ,
associated with eigenvectors v1, . . . , vk , respectively. Then
{v1, . . . , vk} is a linearly independent set.

Proposition 8.4.2
Let V be a vector space over a field F, let f : V → V be a linear
function, and let λ1, λ2, . . . , λk ∈ F be pairwise distinct
eigenvalues of f . For each i ∈ {1, . . . , k}, let vi ,1, . . . , vi ,ti be
linearly independent eigenvectors of f associated with the
eigenvalue λi . Then the eigenvectors

v1,1, . . . , v1,t1 , v2,1, . . . , v2,t2 , . . . , vk,1, . . . , vk,tk

are linearly independent.



Theorem 8.4.3
Let V be a non-trivial, finite-dimensional vector space over a field
F, and set n := dim(V ). Let f : V → V be a linear function, let
λ1, . . . , λk be all (distinct) the eigenvalues of f , and let B1, . . . , Bk
be bases of the associated eigenspaces Eλ1(f ), . . . , Eλk (f ),
respectively. Set B := B1 ∪ · · · ∪ Bk . Then all the following hold:

(a) B is a linearly independent set of eigenvectors of f ;
(b) dim

(
Eλ1(f )

)
+ · · · + dim

(
Eλk (f )

)
≤ n, i.e. the sum of

geometric multiplicities of the eigenvalues of f is at most n;
(c) V has an eigenbasis associated with f iff the sum of

geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

(d) V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f .
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+ · · · + dim
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)
≤ n, i.e. the sum of

geometric multiplicities of the eigenvalues of f is at most n;

Proof. Part (a) follows immediately from Proposition 8.4.2.

Part (b) follows from (a) and from the fact that, by
Theorem 3.2.17(a), any linearly independent set of vectors in an
n-dimensional vector space contains at most n vectors.
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Theorem 8.4.3
(c) V has an eigenbasis associated with f iff the sum of

geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c).

Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n. Then
B is a linearly independent set of size n in the n-dimensional vector
space V . So, by Corollary 3.2.20(a), B is a basis of V . Since all
vectors in B are eigenvectors of f , it follows that B is an eigenbasis
of V associated with f .
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Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f ;

since dim(V ) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f , we see that they all belong to
Eλ1(f ) ∪ · · · ∪ Eλk (f ). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim

(
Eλi (f )

)
many vectors from Eλi (f ) for any index

i ∈ {1, . . . , k}. So, |C| ≤ dim
(
Eλ1(f )

)
+ · · · + dim

(
Eλk (f )

)
. But

now we have that

n = |C| ≤ dim
(
Eλ1(f )

)
+ · · · + dim

(
Eλk (f )

) (b)
≤ n,

and it follows that dim
(
Eλ1(f )

)
+ · · · + dim

(
Eλk (f )

)
= n, i.e. the

sum of geometric multiplicities of the eigenvalues of f is n. This
proves (c).
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Theorem 8.4.3
(d) V has an eigenbasis associated with f iff the sum of algebraic

multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f .

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n,

and so by (c), V has an eigenbasis associated with f ,
and B is one such eigenbasis.

For the converse, assume that V has an eigenbasis C associated
with f . Let λ1, . . . , λk be the eigenvalues of f , with geometric
multiplicities g1, . . . , gk , respectively, and algebraic multiplicities
a1, . . . , ak , respectively.
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Proof (continued). By (c), we have that g1 + · · · + gk = n.

On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.
a1 + · · · + ak ≤ n. But by Theorem 8.2.17, the geometric
multiplicity of an eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue, that is, gi ≤ ai for all indices
i ∈ {1, . . . , n}. We now have that

n = g1 + · · · + gk ≤ a1 + · · · + ak ≤ n,

and we deduce that a1 + · · · + ak = n and that gi = ai for all
i ∈ {1, . . . , k}. This proves (d). □
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Corollary 8.4.4
Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n := dim(V ). If a linear function f : V → V has n
distinct eigenvalues, then V has an eigenbasis associated with f .

Proof.

Let f : V → V be a linear function that has n distinct
eigenvalues, say λ1, . . . , λn.

By the definition of an eigenvalue, we have that dim
(
Eλi (f )

)
≥ 1

for all i ∈ {1, . . . , n}. Consequently,
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+ · · · + dim
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On the other hand, Theorem 8.4.3(b) guarantees that
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≤ n.

Thus, dim
(
Eλ1(f )

)
+ · · · + dim

(
Eλn(f )

)
= n, and so by

Theorem 8.4.3(c), V has an eigenbasis associated with f . □
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We would now like to “translate” Theorem 8.4.3 and
Corollary 8.4.4 into the language of matrices.

Given a field F and a square matrix A ∈ Fn×n, we can define
fA : Fn → Fn by setting fA(v) = Av for all v ∈ Fn.

So, fA is linear, and its standard matrix is A.
We can apply Theorem 8.4.3 and Corollary 8.4.4 to the linear
function fA, and then get the same result for A “for free.”

Next two slides!
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Theorem 8.4.5
Let F be a field, and let A ∈ Fn×n. Let λ1, . . . , λk be all the
(distinct) eigenvalues of A, and let B1, . . . , Bk be bases of the
associated eigenspaces Eλ1(A), . . . , Eλk (A), respectively. Set
B := B1 ∪ · · · ∪ Bk . Then all the following hold:

(a) B is a linearly independent set of eigenvectors of A;
(b) dim

(
Eλ1(A)

)
+ · · · + dim

(
Eλk (A)

)
≤ n, i.e. the sum of

geometric multiplicities of the eigenvalues of A is at most n;
(c) Fn has an eigenbasis associated with A iff the sum of

geometric multiplicities of the eigenvalues of A is n, and in
this case, B is such an eigenbasis;

(d) Fn has an eigenbasis associated with A iff the sum of
algebraic multiplicities of the eigenvalues of A is n, and the
geometric multiplicity of each eigenvalue is equal to its
algebraic multiplicity; in this case, B is an eigenbasis of Fn

associated with the matrix A.



Corollary 8.4.6
Let F be a field, and let A ∈ Fn×n. If A has n distinct eigenvalues,
then Fn has an eigenbasis associated with A.



3 Diagonalization

Definition
For a field F, a square matrix D ∈ Fn×n is diagonal if all its entries
off the main diagonal are zero (the entries on the main diagonal
may or may not be zero). For scalars λ1, λ2, . . . , λn ∈ F,
D(λ1, λ2, . . . , λn) is the n × n matrix with λ1, λ2, . . . , λn on the
main diagonal (appearing in that order) and 0’s everywhere else,
i.e.

D(λ1, λ2, . . . , λn) :=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


=

[
λ1e1 . . . λnen

]
,

where as usual, e1, . . . , en are the standard basis vectors of Fn.

Note that diagonal matrices are, in particular, triangular.
So, Propositions 7.3.1 and 8.2.7 (next slide) apply.
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Proposition 7.3.1
Let F be a field, and let A =

[
ai,j

]
n×n be a triangular matrix in

Fn×n. Then det(A) =
∏n

i=1 ai ,i = a1,1a2,2 . . . an,n, that is, det(A) is
equal to the product of entries on the main diagonal of A.

Proposition 8.2.7
Let F be a field, and let A =

[
ai,j

]
n×n be a triangular matrix in

Fn×n. Then the characteristic polynomial of A is

pA(λ) =
n∏

i=1
(λ − ai ,i) = (λ − a1,1)(λ − a2,2) . . . (λ − an,n),

the eigenvalues of A are precisely the entries of A on its main
diagonal, and moreover, the algebraic multiplicity of each
eigenvalue is precisely the number of times that it appears on the
main diagonal of A. Consequently, the spectrum of A is
{a1,1, a2,2, . . . , an,n}, i.e. the multiset formed precisely by the main
diagonal entries of A, with each number appearing in the spectrum
of A the same number of times as on the main diagonal of A.
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Thus, for scalars λ1, . . . , λn ∈ F (where F is a field), and for
the diagonal matrix D := D(λ1, . . . , λn), we have the
following:

det(D) = λ1 . . . λn;
pD(λ) = (λ − λ1) . . . (λ − λn).

We now state three simple propositions about diagonal
matrices.

The proofs are easy and we omit them here.
However, the proofs can be found in the Lecture Notes.
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Proposition 8.5.1
Let F be a field, let λ1, . . . , λn ∈ F (n ≥ 1) be arbitrary scalars,
and set D := D(λ1, . . . , λn). Then both the following hold:

(a) for all vectors x =
[

x1 . . . xn
]T in Fn, we have that

Dx =

 λ1x1
...

λnxn

 ;

(b) for all matrices A =
[

a1 . . . an
]

in Fm×n, we have that

AD =
[

λ1a1 . . . λnan
]

.

Proof: Lecture Notes (easy!).



Proposition 8.5.2
Let F be a field, and let λ1, . . . , λn, µ1, . . . , µn ∈ F (n ≥ 1) be
arbitrary scalars. Then

D(λ1, . . . , λn) D(µ1, . . . , µn) = D(λ1µ1, . . . , λnµn).

Proof: Lecture Notes (easy!)

Proposition 8.5.3
Let F be a field, let λ1, . . . , λn ∈ F (n ≥ 1), and set
D := D(λ1, . . . , λn). Then both the following hold:

(a) for all non-negative integers m, we have that
Dm = D(λm

1 , . . . , λm
n );

(b) D is invertible iff λ1, . . . , λn are all non-zero, and in this case,
we have that Dm = D(λm

1 , . . . , λm
n ) for all integers m.

Proof: Lecture Notes (easy!)
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Theorem 8.5.4
Let V be a non-trivial, finite-dimensional vector space, let
B = {v1, . . . , vn} be a basis of V , and let f : V → V be a linear
function. Then B is an eigenbasis of V associated with f iff the
matrix B

[
f

]
B is diagonal. Moreover, in this case, we have that

B

[
f

]
B = D(λ1, . . . , λn),

where λ1, . . . , λn are the eigenvalues of f associated with the
eigenvectors v1, . . . , vn, respectively.

Proof.

Suppose first that B is an eigenbasis of V associated with
f . Then, by definition, vectors v1, . . . , vn are eigenvectors of f , and
we let λ1, . . . , λn, respectively, be the associated eigenvalues. Then
f (vi) = λivi for all indices i ∈ {1, . . . , n}, and we have the
following (next slide):
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Proof (continued).

B

[
f

]
B =

[ [
f (v1)

]
B . . .

[
f (v1)

]
B

]
by Theorem 4.5.1

=
[ [

λ1v1
]

B . . .
[

λnvn
]

B
]

=
[

λ1e1 . . . λnen
]

= D(λ1, . . . , λn).



Theorem 8.5.4
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B = D(λ1, . . . , λn),
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eigenvectors v1, . . . , vn, respectively.

Proof (continued). Conversely, suppose that the matrix B

[
f

]
B is

diagonal, and let λ1, . . . , λn be the entries of this matrix on the
main diagonal, so that

B

[
f

]
B = D(λ1, . . . , λn) =

[
λ1e1 . . . λnen

]
.

We will show that the basis vectors v1, . . . , vn are eigenvectors of f
with associated eigenvalues λ1, . . . , λn, respectively. Fix any index
i ∈ {1, . . . , n}; WTS f (vi) = λivi . Since vi is the i-th basis vector
of B, we have that

[
vi

]
B = ei . We now compute (next slide):
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eigenvectors v1, . . . , vn, respectively.

Proof (continued).[
f (vi)

]
B = B

[
f

]
B

[
vi

]
B =

[
λ1e1 . . . λnen

]
ei

(∗)= λiei = λi
[

vi
]

B
(∗∗)=

[
λivi

]
B ,

where (*) follows from Proposition 1.4.4, and (**) follows from
the linearity of

[
·

]
B. Since

[
·

]
B is an isomorphism (and in

particular, one-to-one), it follows that f (vi) = λivi , which is what
we needed to show. □



Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.

By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the
basis elements.

v2

λ2v2

λ1v1

v1

f

Indeed, suppose that B = {v1, . . . , vn} is some basis of V , and
that λ1, . . . , λn ∈ F are some scalars.
By Theorem 4.3.2, there exists a unique linear function
f : V → V such that f (vi) = λivi .
But then by Theorem 8.5.4, B

[
f

]
B = D(λ1, . . . , λn).

By Theorem 8.5.4, the converse also holds.
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Definition
A matrix A ∈ Fn×n (where F is a field) is diagonalizable if it is
similar to a diagonal matrix. To diagonalize a diagonalizable
matrix A means to compute a diagonal matrix D and an invertible
matrix P such that D = P−1AP (equivalently: A = PDP−1).



Theorem 8.5.6
Let F be a field, and let A ∈ Fn×n be a matrix. Then A is
diagonalizable if and only if Fn has an eigenbasis associated with
A. Moreover, if P = {p1, . . . , pn} is any eigenbasis of Fn

associated with A, and λ1, . . . , λn are the eigenvalues of A
associated with the eigenvectors p1, . . . , pn, respectively, then

D = P−1AP and A = PDP−1,

where D = D(λ1, . . . , λn) and P =
[

p1 . . . pn
]
.

Proof: Lecture Notes.

Theorem 8.5.6 can be obtained as a corollary of Theorem 8.5.4
(try it!).
However, in the Lecture Notes, there is a proof “from scratch”
(i.e. one that uses matrices only).
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Theorem 8.5.6
Let F be a field, and let A ∈ Fn×n be a matrix. Then A is
diagonalizable if and only if Fn has an eigenbasis associated with
A. Moreover, if P = {p1, . . . , pn} is any eigenbasis of Fn

associated with A, and λ1, . . . , λn are the eigenvalues of A
associated with the eigenvectors p1, . . . , pn, respectively, then

D = P−1AP and A = PDP−1,

where D = D(λ1, . . . , λn) and P =
[

p1 . . . pn
]
.

Corollary 8.5.7
Let F be a field, and let A ∈ Fn×n. If A has n distinct eigenvalues,
then A is diagonalizable.

Proof.

Assume that A has n distinct eigenvalues. By
Corollary 8.4.6, Fn has an eigenbasis associated with A. So, by
Theorem 8.5.6, A is diagonalizable. □



Theorem 8.5.6
Let F be a field, and let A ∈ Fn×n be a matrix. Then A is
diagonalizable if and only if Fn has an eigenbasis associated with
A. Moreover, if P = {p1, . . . , pn} is any eigenbasis of Fn

associated with A, and λ1, . . . , λn are the eigenvalues of A
associated with the eigenvectors p1, . . . , pn, respectively, then

D = P−1AP and A = PDP−1,

where D = D(λ1, . . . , λn) and P =
[

p1 . . . pn
]
.

Corollary 8.5.7
Let F be a field, and let A ∈ Fn×n. If A has n distinct eigenvalues,
then A is diagonalizable.

Proof. Assume that A has n distinct eigenvalues. By
Corollary 8.4.6, Fn has an eigenbasis associated with A. So, by
Theorem 8.5.6, A is diagonalizable. □



Theorems 8.4.5 and 8.5.6 together give us a recipe for
determining whether a matrix A ∈ Fn×n is diagonalizable, and
if so, for diagonalizing it (i.e. for finding a diagonal matrix D
and an invertible matrix P, both in Fn×n, such that
D = P−1AP).
We proceed as follows (next two slides).



1 We compute the characteristic polynomial pA(λ) and its roots.
By Theorem 8.2.2, the roots of pA(λ) are the eigenvalues of
A, and we can read off the algebraic multiplicities of those
eigenvalues from the polynomial pA(λ).

Computing the roots of pA(λ) is the computationally tricky
part, since there is no formula for computing the roots of a
high-degree polynomial. If we cannot figure out how to
compute the roots of pA(λ), then we are stuck: the matrix A
may or may not be diagonalizable, but computationally, we
cannot diagonalize it.

2 If the sum of algebraic multiplicities of the eigenvalues of A is
less than n, then by Theorem 8.4.5, Fn does not have an
eigenbasis associated with A, and so by Theorem 8.5.6, A is
not diagonalizable.

3 From now on, we assume that the sum of algebraic
multiplicities of the eigenvalues of A, call them λ1, . . . , λk , is
n. We then compute a basis Bi for each eigenspace Eλi (A),
which allows us to compute the geometric multiplicities of all
the eigenvalues of A.
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4 If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, Fn does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.

5 From now on, we assume that the geometric multiplicity of
each eigenvalue of A is equal to its algebraic multiplicity.
Theorem 8.4.5 then guarantees that Fn has an eigenbasis
associated with A, and moreover, that B = B1 ∪ · · · ∪ Bk is
one such eigenbasis.

6 By Theorem 8.5.6, A is diagonalizable. We now follow the
recipe from Theorem 8.5.6 to actually diagonalize A.

7 We form the matrix P whose columns are precisely the vectors
in the eigenbasis B. We form the diagonal matrix D, where on
the main diagonal we place the eigenvalues of A, taking care
that, for each i ∈ {1, . . . , n}, the i-th entry on the main
diagonal of D is the eigenvalue associated with the i-th
column of P (which is, by construction, an eigenvector of A).
Now D = P−1AP.
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Example 8.5.8.
Consider the following matrix in C3×3:

A =

 4 0 −2
2 5 4
0 0 5

 .

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution.

The matrix A is precisely the matrix from Example 8.2.4.
In that example, we determined that A has two eigenvalues:

λ1 = 4 (with algebraic multiplicity 1 and geometric
multiplicity 1);
λ2 = 5 (with algebraic multiplicity 2 and geometric
multiplicity 2).

Since the sum of algebraic multiplicities of the eigenvalues of A is
3, and since the geometric multiplicity of each eigenvalue of A is
equal to its algebraic multiplicity, we see that the 3 × 3 matrix A is
indeed diagonalizable.
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Solution (continued). Reminder: λ1 = 4, λ2 = 5.

In Example 8.2.4, we saw that:{ −1
2
0

}
is a basis of the eigespace Eλ1(A);

{ 0
1
0

,

 −2
0
1

}
is a basis of the eigenspace Eλ2(A).

So, we set

D :=

 4 0 0
0 5 0
0 0 5

 and P :=

 −1 0 −2
2 1 0
0 0 1

 ,

and we see that D = P−1AP. □
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Example 8.5.9
Consider the following matrix in C5×5:

A =


1 2 0 0 0
0 2 0 0 0
0 0 1 1 3
0 0 0 3 3
0 0 0 0 3

 .

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution.

The matrix A is precisely the matrix from Example 8.2.8.
In that example, we determined that A has three eigenvalues:

λ1 = 1 (with alg. mult. 2 and geom. mult. 2);
λ2 = 2 (with alg. mult. 1 and geom. mult. 1);
λ3 = 3 (with alg. mult. 2 and geom. mult. 1).

Since the geometric multiplicity of the eigenvalue λ3 = 3 is strictly
smaller than the algebraic multiplicity, we see that A is not
diagonalizable. □
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Suppose that we have successfully diagonalized a square
matrix A ∈ Fn×n (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in Fn×n, such that D = P−1AP.

Then we can easily read off the spectrum and a basis of each
eigenspace of A, as Proposition 8.5.12 (next slide) shows.
This proposition essentially summarizes various facts about
diagonalizable matrices that we have proven already, but it is
convenient to have them stated in one proposition.

The proof is in the Lecture Notes. Here, we omit it.
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Proposition 8.5.12
Let F be a field, and let A ∈ Fn×n. Assume that D = P−1AP,
where D = D(λ1, . . . , λn) is a diagonal and P =

[
p1 . . . pn

]
an

invertible matrix, both in Fn×n. Then the characteristic polynomial
of A is

pA(λ) =
n∏

i=1
(λ − λi) = (λ − λ1) . . . (λ − λn),

and the spectrum of A is {λ1, . . . , λn}. Moreover, for each
eigenvalue λ0 of A,a the algebraic and geometric multiplicity of λ0
are both equal to the number of times that λ0 appears on the
main diagonal of D, and moreover, if λ0 appears precisely in
positions i1, . . . , ik of the main diagonal of D, then the
corresponding columns of P (i.e. vectors pi1 , . . . , pik ) form a basis
of the eigenspace Eλ0(A). Finally, {p1, . . . , pn} is an eigenbasis of
Fn associated with the matrix A.

aSo, λ0 ∈ {λ1, . . . , λn}, since {λ1, . . . , λn} is the spectrum of A.



Example 8.5.13
Consider the following matrices in C6×6 (color coded for
emphasis):

D =


5 0 0 0 0 0
0 4 0 0 0 0
0 0 5 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 4

 , P =


1 3 8 8 3 4
2 8 0 0 0 2
5 4 6 4 5 0
0 5 8 5 4 3
1 0 8 0 3 0
0 2 0 3 0 2

 .

It can be checked that P is invertible (for example, we can
compute that det(P) = −1020 ̸= 0, and so by Theorem 7.4.1, P is
invertible). We now set A = PDP−1, so that D = P−1AP. Then
by Proposition 8.5.12, all the following hold (next three slides):



D =


5 0 0 0 0 0
0 4 0 0 0 0
0 0 5 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 4

 , P =


1 3 8 8 3 4
2 8 0 0 0 2
5 4 6 4 5 0
0 5 8 5 4 3
1 0 8 0 3 0
0 2 0 3 0 2

 .

Example 8.5.13 (continued)
the characteristic polynomial of A is

pA(λ) = (λ − 3)(λ − 4)3(λ − 5)2;

the spectrum of A is {5, 4, 5, 3, 4, 4}, which we can optionally
reorder as {3, 4, 4, 4, 5, 5};
the eigenvalues of A are 3 (with algebraic and geometric
multiplicity 1), 4 (with algebraic and geometric multiplicity 3),
and 5 (with algebraic and geometric multiplicity 2);



D =


5 0 0 0 0 0
0 4 0 0 0 0
0 0 5 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 4

 , P =


1 3 8 8 3 4
2 8 0 0 0 2
5 4 6 4 5 0
0 5 8 5 4 3
1 0 8 0 3 0
0 2 0 3 0 2

 .

Example 8.5.13 (continued)
we can read off bases of the eigenspaces E3(A), E4(A), and
E5(A), as follows:

a basis of E3(A) is
{

8
0
4
5
0
3

}
,

a basis of E4(A) is
{

3
8
4
5
0
2

 ,


3
0
5
4
3
0

 ,


4
2
0
3
0
2

}
,

a basis of E5(A) is
{

1
2
5
0
1
0

 ,


8
0
6
8
8
0

}
;



D =


5 0 0 0 0 0
0 4 0 0 0 0
0 0 5 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 4

 , P =


1 3 8 8 3 4
2 8 0 0 0 2
5 4 6 4 5 0
0 5 8 5 4 3
1 0 8 0 3 0
0 2 0 3 0 2

 .

Example 8.5.13 (continued)
the columns of P form an eigenbasis of Cn associated with
the matrix A.


