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@ The Cayley-Hamilton theorem

The Cayley-Hamilton theorem

Let F be a field, let A € F"™*" be a square matrix, and let
pa(A) = A"+ a, 1A""L ...+ a1\ + ap be the characteristic
polynomial of A. Then

A"+ a, 1A 1+ 4 aA+ agl, = Opxn.

@ The Cayley-Hamilton theorem essentially states that every
square matrix is a root of its own characteristic polynomial.
e Here, we need to treat the free coefficient of the characteristic

polynomial as that coefficient times the identity matrix of the
appropriate size.



@ For example, for the matrix

with entries understood to be in R or C, we have that

_ oA 2|,
pa(A) = det(\hb—A) = ’ - A4‘ = X _5BA—2,
and we see that
r 2
1 2 1 2 1 0
2 _ _ _ _ _
wosaan = [12] 05[22 1 0]




The Cayley-Hamilton theorem

Let F be a field, let A € F"™*" be a square matrix, and let
pa(A) = A"+ a, 1A""1 4 ...+ a1\ + ap be the characteristic
polynomial of A. Then

A"+ a, 1AL+ 4 aA+ agl, = Opxn.

@ The proof of the Cayley-Hamilton theorem relies on the
adjugate matrix and on the theorem below.

Theorem 7.8.2

Let IF be a field, and let A€ F™" (n > 2). Then
adj(A) A = Aadj(A) = det(A)l,.

Consequently, if A is invertible, then A~! = ﬁ(A)adj(A).




The Cayley-Hamilton theorem

Let F be a field, let A € F"™*" be a square matrix, and let
pa(A) = A"+ a, 1A"" 1+ ...+ a1\ + ap be the characteristic
polynomial of A. Then

A"+ a, 1AL+ ...+ a1A+ apl, = Opxn.

Proof.



The Cayley-Hamilton theorem

Let F be a field, let A € F"™*" be a square matrix, and let
pa(A) = A"+ a, 1A"" 1+ ...+ a1\ + ap be the characteristic
polynomial of A. Then

A"+ a, 1AL+ ...+ a1A+ apl, = Opxn.

Proof. If n =1, then the result is immediate.

@ Indeed, suppose that n = 1, and consider any matrix
A= [ aii ] in FlX]'.

@ Then pa(A) =det(Ah — A) =det([ A— a1 |) =A— a1, and
we see that A — a1 1/1 = O1x1.



Proof (continued). From now on, we assume that n > 2.



Proof (continued). From now on, we assume that n > 2. By
Theorem 7.8.2 applied to the matrix Al, — A (where A is a
variable), we get that

(M — A) adj(Mn — A) = det(Al, — A)l,.
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polynomial (in variable \) of degree at most A"~ L.
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variable), we get that

(M — A) adj(Mn — A) = det(Al, — A)l,.

Now, note that each cofactor of the matrix A/, — Ais a
polynomial (in variable \) of degree at most A"~1. Since the
entries of adj(\/, — A) are precisely the cofactors of A, — A, it
follows that each entry of adj(A/, — A) is a polynomial (in the
variable \) of degree at most n — 1.



Proof (continued). From now on, we assume that n > 2. By
Theorem 7.8.2 applied to the matrix Al, — A (where A is a
variable), we get that

(M — A) adj(Mn — A) = det(Al, — A)l,.

Now, note that each cofactor of the matrix A/, — Ais a
polynomial (in variable \) of degree at most A"~1. Since the
entries of adj(\/, — A) are precisely the cofactors of A, — A, it
follows that each entry of adj(A/, — A) is a polynomial (in the
variable \) of degree at most n — 1. So, the matrix adj(A/, — A)
can be expressed in the form

adj(My—A) = A1B, 1 +A"2B, 5+ -+ AB; + By,

for some matrices By, By,..., B,—1 € F™".



Proof (continued). From now on, we assume that n > 2. By
Theorem 7.8.2 applied to the matrix Al, — A (where A is a
variable), we get that

(M — A) adj(Mn — A) = det(Al, — A)l,.

Now, note that each cofactor of the matrix A/, — Ais a
polynomial (in variable \) of degree at most A"~1. Since the
entries of adj(\/, — A) are precisely the cofactors of A, — A, it
follows that each entry of adj(A/, — A) is a polynomial (in the
variable \) of degree at most n — 1. So, the matrix adj(A/, — A)
can be expressed in the form

adj(My—A) = A1B, 1 +A"2B, 5+ -+ AB; + By,

for some matrices By, By, ..., B,_1 € F"™". Consequently,
My = AYN"IBy 1 + A" 2By o+ -+ ABL+ By) = det(M, — A)l,.
~————
=adj(Ml,—A) :=RHS

:=LHS



Proof (continued). Reminder: n > 2,

M= AYN"IBy 1 + A" 2By o+ -+ ABL+ By) = det(M, — A)l,.
N—————
=adj(A,—A) :=RHS

:=LHS



Proof (continued). Reminder: n > 2,

M= AYN"IBy 1 + A" 2By o+ -+ ABL+ By) = det(M, — A)l,.
N—————
=adj(A,—A) :=RHS
:=LHS

For the left-hand-side, we have
LHS = (Mp— A) A" 1By + -+ ABy + By)

= >\an—1 + A’171(Bn—2 - ABn—l) + >\n72(Bn—3 - ABn—2)+
+o 1+ \(Bo — ABy) — ABy.



Proof (continued). Reminder: n > 2,

M= AYN"IBy 1 + A" 2By o+ -+ ABL+ By) = det(M, — A)l,.
N—————
=adj(A,—A) :=RHS
:=LHS

For the left-hand-side, we have
LHS = (Mp— A) A" 1By + -+ ABy + By)

Aan—l + A’171(Bn—2 - ABn—l) + >\n72(Bn—3 - ABn—2)+
4+ A(Bo — ABy) — ABy.

For the right-hand-side, we have
RHS det(M, — A)ly = pa(\)ly
A"+ a1 A" T+ a, A" ad + ag) s
= AL+ 2""tap_1l, + N2, ol 4+ -+ Xarly + aoly.
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M= AYN"IBy 1 + A" 2By o+ -+ ABL+ By) = det(M, — A)l,.
N—————
=adj(A,—A) :=RHS
:=LHS

For the left-hand-side, we have
LHS = (Mp— A) A" 1By + -+ ABy + By)

Aan—l + A’171(Bn—2 - ABn—l) + >\n72(Bn—3 - ABn—2)+
4+ A(Bo — ABy) — ABy.

For the right-hand-side, we have
RHS det(M, — A)ly = pa(\)ly
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The corresponding coefficients in front of ' (for i € {0,1,...,n})
must be equal on the left-hand-side (LHS) and the right-hand-side
(RHS).



Proof (continued). Reminder: n > 2,

M= AYN"IBy 1 + A" 2By o+ -+ ABL+ By) = det(M, — A)l,.
N—————
=adj(A,—A) :=RHS
:=LHS

For the left-hand-side, we have
LHS = (Mp— A) A" 1By + -+ ABy + By)

Aan—l + A’171(Bn—2 - ABn—l) + >\n72(Bn—3 - ABn—2)+
4+ A(Bo — ABy) — ABy.

For the right-hand-side, we have
RHS det(M, — A)ly = pa(\)ly
= (A" +a A"t a, AT ad + a)l,
= AL+ 2""tap_1l, + N2, ol 4+ -+ Xarly + aoly.

The corresponding coefficients in front of ' (for i € {0,1,...,n})
must be equal on the left-hand-side (LHS) and the right-hand-side
(RHS). This yields the following n + 1 equations (next slide).



Proof (continued).

anl

Bn—2 - ABn—l
Bn—3 - ABn—2
By — AB;

_AB,

an—lln
an—2ln

alln
aOln



Proof (continued).
B, = Iy
Br2—AB,-1 = a1l
Bn—3 - ABn—2 = an—2ln
BO — ABl = alln
—ABO = aol,,

We now multiply the first (top) equation by A" on the left, the
second equation by A" on the left, the third equation by A"~2
on the left, and so on.



Proof (continued).
B, = Iy
Br2—AB,-1 = a1l
Bn—3 - ABn—2 = an—2ln
BO — ABl = alln
—ABO = aol,,

We now multiply the first (top) equation by A" on the left, the
second equation by A" on the left, the third equation by A"~2
on the left, and so on. This yields the following.

A'B,1 = A"
AIB, 5, —A'B, 1 = a, 1A"!
An—2 an3 _ An—l Bn72 — an72An—2
AB() — A2 Bl = alA

—AB() = 30/,,



Proof (continued). Reminder:

A'B, ; = A"
An_an_z —A"B,_1 = a,,_lA"_l
An72 Bn—3 _ Anfl Bn—2 — an_2Anf2
ABO - A281 = alA

—ABO = aol,,



Proof (continued). Reminder:

A'B, ; = A"
An_an_z —A"B,_1 = a,,_lA"_l
An72 Bn—3 _ Anfl Bn—2 — an_2Anf2
ABO - A281 = alA
—ABO = aol,,

We now add up the equations that we obtained.



Proof (continued). Reminder:

A'B, ; = A"
An_an_z —A"B,_1 = a,,_lA"_l
An72 Bn—3 _ Anfl Bn—2 — an_2Anf2
ABO - A281 = alA
—ABO = aol,,

We now add up the equations that we obtained.

On the left-hand-side, the sum is obviously Opxp.



Proof (continued). Reminder:

A'B, ; = A"
An_an_z —A"B,_1 = a,,_lA"_l
An72 Bn—3 _ Anfl Bn—2 — an_2Anf2
ABO - A281 = alA
—ABO = aol,,

We now add up the equations that we obtained.
On the left-hand-side, the sum is obviously Opxp.

So, the right-hand-side must also sum up to Opxp, i.€.
A" 4 ap 1A 4 a, DA o+ aiA+ agly, = Opxn.

But this is precisely what we needed to show. [



The Cayley-Hamilton theorem

Let IF be a field, let A € F"*" be a square matrix, and let
pa(A) = A"+ a, 1A""L 4.+ a1\ + ap be the characteristic
polynomial of A. Then

A"+ a,_ 1A 4o+ a1A4a9l, = Onxn.



The Cayley-Hamilton theorem

Let IF be a field, let A € F"*" be a square matrix, and let
pa(A) = A"+ a, 1A""L 4.+ a1\ + ap be the characteristic
polynomial of A. Then

A"+ a,_ 1A 4o+ a1A4a9l, = Onxn.

Corollary 8.3.1

Let F be a field. For all matrices A € F™*":

@ A" ¢ Span(l,,A A%, ..., A"1) i.e. A" is a linear combination
of I,,A A% ... AL

@ if Ais invertible, then A=! € Span(/,, A, A% ... A" 1) ie.
A=l is a linear combination of /,, A, A%, ... A""L,

Proof.



The Cayley-Hamilton theorem

Let IF be a field, let A € F"*" be a square matrix, and let
pa(A) = A"+ a, 1A""L 4.+ a1\ + ap be the characteristic
polynomial of A. Then

A"+ a,_ 1A 4o+ a1A4a9l, = Onxn.

Corollary 8.3.1

Let F be a field. For all matrices A € F™*":

@ A" ¢ Span(l,,A A%, ..., A"1) i.e. A" is a linear combination
of I,,A A% ... AL

@ if Ais invertible, then A=! € Span(/,, A, A% ... A" 1) ie.
A=l is a linear combination of /,, A, A%, ... A""L,

Proof. Fix a matrix A € F"™" and consider its characteristic
polynomial pa(A) = A"+ a,_ 1 A" 1 4+ 2, 2 A"72 4 - 4 a1\ + ap.



Corollary 8.3.1

@ A" e Span(l,,A A% ... A" 1) ie. A" is a linear combination
of I,,A, A%, ... A" L

@ Reminder:
pA()\) =N+ an_l/\”_l + an_g)\”_z 4+ -4+ a1+ ag.

Proof of (a).



Corollary 8.3.1

@ A" e Span(l,,A A% ... A" 1) ie. A" is a linear combination
of I,,A, A%, ... A" L

@ Reminder:
pA()\) =N+ an_l/\”_l + an_g)\”_z 4+ -4+ a1+ ag.

Proof of (a). By the Cayley-Hamilton theorem, we have that

A"+ ap 1A 4 a A2+ A+ aol, = Opxn.



Corollary 8.3.1

@ A" e Span(l,,A A% ... A" 1) ie. A" is a linear combination
of I,,A, A%, ... A" L

@ Reminder:
pA()\) =N+ an_l/\”_l + an_g)\”_z 4+ -4+ a1+ ag.

Proof of (a). By the Cayley-Hamilton theorem, we have that
A"+ a, (A" 4 4 a, A2+ a1A+agln = Opxn.
Consequently,

A" = —al, — a1A— 22A2 — e — an_lAn_l.



Corollary 8.3.1

@ A" e Span(l,,A A% ... A" 1) ie. A" is a linear combination
of I,,A, A%, ... A" L

@ Reminder:
pA()\) =N+ an_l/\”_l + an_g)\”_z 4+ -4+ a1+ ag.

Proof of (a). By the Cayley-Hamilton theorem, we have that
A" ap 1 AT a2+ aiAt a0l = Opxne
Consequently,
A" = —apl, — @A — aAZ — ... — g, 1A L.

Thus, A" is a linear combination of the matrices
l,,A A% ... AL



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ..., A"~1,

@ Reminder:
PA(A) = A"+ ap XN 4 a, AT 4 A h + .

Proof of (b). Assume that A is invertible.



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ..., A"~1,

@ Reminder:
PA(A) = A"+ ap XN 4 a, AT 4 A h + .

Proof of (b). Assume that A is invertible. Proposition 8.2.11 then
guarantees that 0 is not an eigenvalue of A.



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ..., A"~1,

@ Reminder:
PA(A) = A"+ ap XN 4 a, AT 4 A h + .

Proof of (b). Assume that A is invertible. Proposition 8.2.11 then
guarantees that 0 is not an eigenvalue of A. Since the eigenvalues
of A are precisely the roots of the characteristic polynomial of A,
we have that pa(0) # 0; since pa(0) = ap, it follows that ag # 0.



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ..., A"~1,

@ Reminder:
PA(A) = A"+ ap XN 4 a, AT 4 A h + .

Proof of (b). Assume that A is invertible. Proposition 8.2.11 then
guarantees that 0 is not an eigenvalue of A. Since the eigenvalues
of A are precisely the roots of the characteristic polynomial of A,
we have that pa(0) # 0; since pa(0) = ap, it follows that ag # 0.

Now, by the Cayley-Hamilton theorem, we have that

AT+ an_lAn_l + -4 32A2 +aiA+agl, = Onxn-



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ... A"~1,

Proof of (b) (continued). Reminder: ap # 0,
A" 4 a, 1AL 4 A2+ a1A+ agly, = Opxnp.



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ... A"~1,

Proof of (b) (continued). Reminder: ap # 0,
A" 4 a, 1AL 4 A2+ a1A+ agly, = Opxnp.

We multiply both sides of the equation by A~! on the right, and
we obtain

APt g, A2 4o At arl, +aAt = Opxn,



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ... A"~1,

Proof of (b) (continued). Reminder: ap # 0,
A" 4 a, 1AL 4 A2+ a1A+ agly, = Opxnp.

We multiply both sides of the equation by A~! on the right, and
we obtain

APt g, A2 4o At arl, +aAt = Opxn,
and consequently,

a()A_l = —ailp—aA—---— a,,,lA”_2 — A1,



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ... A"~1,

Proof of (b) (continued). Reminder: ap # 0,
A" 4 a, 1AL 4 A2+ a1A+ agly, = Opxnp.

We multiply both sides of the equation by A~! on the right, and
we obtain

APl g, (A2 44 A+ ail,+ a0A = Opxns
and consequently,
Al = —ail,—aA—-—a, 1A 2 — AL
Since ag # 0, this implies that

Al = 3y 2A L Sipn=2 L pn-l
ao EN ao a0



Corollary 8.3.1

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
A~1lis a linear combination of /,, A, A%, ... A"~1,

Proof of (b) (continued). Reminder: ap # 0,
A" 4 a, 1AL 4 A2+ a1A+ agly, = Opxnp.

We multiply both sides of the equation by A~! on the right, and
we obtain

APt g, A2 4o At arl, +aAt = Opxn,
and consequently,
aOA_l = —a]_/n — 32A — = anflA”_2 - An—l'
Since ag # 0, this implies that
Al — _ay _amp_ .. @n-1An-2_ 1 An-1
= 20 n ao ao ao '

So, AL is a linear combination of /,, A, A% ... A"l O



The Cayley-Hamilton theorem

Let F be a field, let A € F"™*" be a square matrix, and let
pa(A) = A"+ a, 1A"" 1+ ...+ a1\ + ap be the characteristic
polynomial of A. Then

A"+ a, 1AL+ ...+ aA+ apl, = Opxn.

Corollary 8.3.1

Let F be a field. For all matrices A € F™*":

@ A" ¢ Span(l,,A A% ... A" 1) ie. A" is a linear combination
of I,,A A%, ... A" L

@ if Ais invertible, then A~! € Span(/,, A, A%,... A" 1), ie.
AL is a linear combination of /,, A, A%,... A" L.
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@ Eigenvectors and linear independence. Eigenbases

Definition

For a finite-dimensional vector space V over a field F and a linear
function f : V — V/, an eigenbasis of V associated with f is a
basis B of V s.t. all vectors in B are eigenvectors of f.

Definition

For an field F and a matrix A € F"™"  an eigenbasis of F"
associated with A is a basis B of F" s.t. all vectors in B are
eigenvectors of A.
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Definition

For a finite-dimensional vector space V over a field F and a linear
function f : V — V/, an eigenbasis of V associated with f is a
basis B of V s.t. all vectors in B are eigenvectors of f.

Definition

For an field F and a matrix A € F"™"  an eigenbasis of F"
associated with A is a basis B of F" s.t. all vectors in B are
eigenvectors of A.

@ Eigenbases do not always exist, and one of our goals in this
section is to determine when they do and do not exist.



@ Eigenvectors and linear independence. Eigenbases

Definition

For a finite-dimensional vector space V over a field F and a linear
function f : V — V/, an eigenbasis of V associated with f is a
basis B of V s.t. all vectors in B are eigenvectors of f.

Definition

For an field F and a matrix A € F"™"  an eigenbasis of F"
associated with A is a basis B of F" s.t. all vectors in B are
eigenvectors of A.

@ Eigenbases do not always exist, and one of our goals in this
section is to determine when they do and do not exist.

@ As we shall see (later!), eigenbases play a crucial role in
matrix “diagonalization.”



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof.
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Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof. We will prove inductively that for all i € {0, ..., k}, the set
{v1,...,v;} is linearly independent.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof. We will prove inductively that for all i € {0, ..., k}, the set
{v1,...,v;} is linearly independent.

For i =0, we have that {v1,...,v;} =0, which is obviously a
linearly independent set.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof. We will prove inductively that for all i € {0, ..., k}, the set
{v1,...,v;} is linearly independent.
For i =0, we have that {v1,...,v;} =0, which is obviously a

linearly independent set.

Now, fix an index i € {0,...,k — 1}, and assume inductively that
the set {v1,...,v;} is linearly independent. We must show that
{v1,...,vj,viy1} is linearly independent.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof. We will prove inductively that for all i € {0, ..., k}, the set
{v1,...,v;} is linearly independent.

For i =0, we have that {v1,...,v;} =0, which is obviously a
linearly independent set.

Now, fix an index i € {0,...,k — 1}, and assume inductively that

the set {v1,...,v;} is linearly independent. We must show that
{v1,...,vj,vi1} is linearly independent. Fix scalars
at, ..., a1 € F st

v + -+ aivi + ajrvipr = 0.

WTSalz---:a;:af+1:0.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder: {v1,...,v;} is linearly independent;
V1 + - oV + Qg Vipl = 0; WTS
alz---:a,-:a,-H:O.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear

function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder: {v1,...,v;} is linearly independent;
V1 + - oV + Qg Vipl = 0; WTS

a;p=--=a; =aj1 =0.

If we multiply both sides of the equation above by A1, we obtain
@ MNjiavi+ -+ Aijiavi + Aipiaipivier = 0.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear

function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder: {v1,...,v;} is linearly independent;
V1 + - oV + Qg Vipl = 0; WTS

a;p=--=a; =aj1 =0.

If we multiply both sides of the equation above by A1, we obtain
@ MNjiavi+ -+ Aijiavi + Aipiaipivier = 0.

If, on the other hand, we apply the function f to both sides and
also use the fact that £(0) = 0, then we obtain

@) f(a1v1 + -+ aivi + ai+1Vi+1) =0.



Proposition 8.4.1

Let V be a vector space over a field IF, let f : V — V be a linear
function, let A\1,..., Ak € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{vi1,...,vk} is a linearly independent set.

Proof (continued). We now compute:
0 = f(oavi+---+ Vi + @jq1vip1)

= aaf(vi)+ -+ oif(vi) + aiyif(vier)

(%)
= aqAvi + oAV it NV,

where (*) follows from the linearity of f, and (**) follows from the
fact that vy, ...,v;, Vi1 are eigenvectors of f associated with
eigenvalues A1, ..., Aj, Ajy1, respectively.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A1,..., Ak € IF be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{vi1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
Q Nj1aavi+ -+ Apaivi + Ajpripavip = 0;
Q f(aqvi + -+ aivi + ajp1vip1) = 0;
Q@ arMvi+ -+ aidvi + ajpiAif1vipr = 0.
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Let V be a vector space over a field F, let f : V — V be a linear
function, let A1,..., Ak € IF be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{vi1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
Q Nj1aavi+ -+ Apaivi + Ajpripavip = 0;
Q f(aavi+ -+ ajvi + ajp1vip1) = 0;
Q@ arAvi+ -+ AV + ajp1Aip1vipr = 0.
Combining (1) and (3), we obtain:
Q1A1v1 + o+ QA+ Qg A Vig
= Aiproavi + o F AoV + A1 avig.
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Let V be a vector space over a field F, let f : V — V be a linear
function, let A1,..., Ak € IF be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., Vg, respectively. Then
{vi1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
Q Nj1aavi+ -+ Apaivi + Ajpripavip = 0;
Q f(aavi+ -+ ajvi + ajp1vip1) = 0;
Q@ arAvi+ -+ AV + ajp1Aip1vipr = 0.
Combining (1) and (3), we obtain:
Q1A1v1 + o+ QA+ Qg A Vig
= Aiproavi + o F AoV + A1 avig.

By subtracting one side from the other and factoring, we get

1A — Aipa)vi + -+ ai( A — Aip)vi = 0.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
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By the ind. hyp., vi,...,v; are linearly independent,



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
ar(M = Aigvi+ -+ (A= Aip)vi = 0

By the ind. hyp., vi,...,v; are linearly independent, and it follows
that a1(\1 — Njp1) =+ = a;(A\i — A\ig1) = 0.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:

at(Ar — Aig)vi + -+ ai(Ai = Aip)vi = 0
By the ind. hyp., vi,...,v; are linearly independent, and it follows
that al(/\l — )\,'+1) == Oé,‘(/\,’ — )\,'+1) = 0. Since
Al — Nit1, ..o, A — Aip1 are all non-zero (because A1, ..., Aj, Aiy1

are pairwise distinct), we deduce that a3 = --- = a; = 0.
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Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
ar(M = Aigvi+ -+ (A= Aip)vi = 0

By the ind. hyp., vi,...,v; are linearly independent, and it follows
that al(/\l — )\,'+1) == Oé,‘(/\,’ — )\,'+1) = 0. Since

Al — Nit1, ..o, A — Aip1 are all non-zero (because A1, ..., Aj, Aiy1
are pairwise distinct), we deduce that a; = --- = a; = 0. Plugging
this into our equation ajvi + - 4+ a;v; + aji1vip; = 0, we get

ajrvisr = 0.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
ar(M = Aigvi+ -+ (A= Aip)vi = 0

By the ind. hyp., vi,...,v; are linearly independent, and it follows
that al(/\l — )\,'+1) == Oé,‘(/\,’ — )\,'+1) = 0. Since

Al — Nit1, ..o, A — Aip1 are all non-zero (because A1, ..., Aj, Aiy1
are pairwise distinct), we deduce that a; = --- = a; = 0. Plugging
this into our equation ajvi + - 4+ a;v; + aji1vip; = 0, we get

ajrvisr = 0.

But v;41 is an eigenvector of f, and so by definition, v;+; # 0.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:
ar(M = Aigvi+ -+ (A= Aip)vi = 0

By the ind. hyp., vi,...,v; are linearly independent, and it follows
that al(/\l — )\,'+1) == Oé,‘(/\,’ — )\,'+1) = 0. Since

Al — Nit1, ..o, A — Aip1 are all non-zero (because A1, ..., Aj, Aiy1
are pairwise distinct), we deduce that a; = --- = a; = 0. Plugging
this into our equation ajvi + - 4+ a;v; + aji1vip; = 0, we get

ajrvisr = 0.

But v;41 is an eigenvector of f, and so by definition, v;+1 # 0. So,
Qi1 = 0. ThUS, A =+ =0 = Qj41 = 0.



Proposition 8.4.1

Let V be a vector space over a field F, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proof (continued). Reminder:

ar(M = Aigvi+ -+ (A= Aip)vi = 0
By the ind. hyp., vi,...,v; are linearly independent, and it follows
that al(/\l — )\,'+1) == Oé,‘(/\,’ — )\,'+1) = 0. Since
Al — Nit1, ..o, A — Aip1 are all non-zero (because A1, ..., Aj, Aiy1
are pairwise distinct), we deduce that a; = --- = a; = 0. Plugging
this into our equation ajvi + - 4+ a;v; + aji1vip; = 0, we get

ajrvisr = 0.
But v;41 is an eigenvector of f, and so by definition, v;+1 # 0. So,

ajr1 =0. Thus, a3 = -+ =a; = ajr1 = 0. So, {vi,...,vi,vit1}
is linearly independent. This completes the induction. [J
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Let V be a vector space over a field I, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.




Proposition 8.4.1

Let V be a vector space over a field I, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proposition 8.4.2

Let V be a vector space over a field F, let f : V — V be a linear
function, and let A1, Ao, ..., A\x € F be pairwise distinct
eigenvalues of f. For each i € {1,... k}, let vj1,...,v;y be
linearly independent eigenvectors of f associated with the
eigenvalue \;. Then the eigenvectors

V1’1./ coog V1_1.»1,V2’17 Ce ,V2’t2, e 7Vkﬁ1¢ . «,Vk,tk
are linearly independent.
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® Vi = ('},k"lvk,l + -+ Ok.tkvk.tk-



Proof. Fix a1 1,..., 006,001, 02ty ey Ok 1se .., akr €F
s.t. K

> (Oéi,lvhl +o 4 Oéi,t,Vf,t,-) = 0

i=1

Vie{l,... k}: setvi:=aqj1vi1+ -+ ajyViy, thatis
@ vy iI=aQ11VvVi1+ a1 gVl

@ Vo i=qp Vo1 + -+ Q2 V2,

@ Vi = Qg 1Vk1 Qe Vit
So, vi +vo +--- 4+ v, = 0. Now, note that for each
i€{l,..., k}, the vector v; is a linear combination of vectors in

E)\i(f);
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s.t. K
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i=1

Vie{l,... k}: setvi:=aqj1vi1+ -+ ajyViy, thatis
@ vy iI=aQ11VvVi1+ a1 gVl

@ Vo i=qp Vo1 + -+ Q2 V2,

@ Vi = Qg 1Vk1 Qe Vit
So, vi +vo +--- 4+ v, = 0. Now, note that for each

i€{l,..., k}, the vector v; is a linear combination of vectors in
E),(f); since Ey.(f) is a subsapce of V/, it follows that v; € E),(f).



Proof. Fix a1 1,..., 006,001, 02ty ey Ok 1se .., akr €F

s.t. K

> (Oéi,lvhl +o 4 Oéi,t,Vf,t,-) = 0

i=1

Vie{l,... k}: setvi:=aqj1vi1+ -+ ajyViy, thatis
@ vy iI=aQ11VvVi1+ a1 gVl

@ Vo i=qp Vo1 + -+ Q2 V2,

@ Vi = Qg 1Vk1 Qe Vit
So, vi +vo +--- 4+ v, = 0. Now, note that for each
i€{l,..., k}, the vector v; is a linear combination of vectors in
E),(f); since Ey.(f) is a subsapce of V/, it follows that v; € E),(f).
Consequently, Vi € {1,..., k}: v; is either 0 or an eigenvector of f
associated with the eigenvalue A;. WIS vi =vo =--- =v, =0.



Proof. Fix a1 1,..., 006,001, 02ty ey Ok 1se .., akr €F

s.t. K

> (Oéi,lvhl +o 4 Oéi,t,Vf,t,-) = 0

i=1

Vie{l,... k}: setvi:=aqj1vi1+ -+ ajyViy, thatis
@ vy iI=aQ11VvVi1+ a1 gVl

@ Vo i=qp Vo1 + -+ Q2 V2,

@ Vi = Qg 1Vk1 Qe Vit
So, vi +vo +--- 4+ v, = 0. Now, note that for each
i€{l,..., k}, the vector v; is a linear combination of vectors in
E),(f); since Ey.(f) is a subsapce of V/, it follows that v; € E),(f).
Consequently, Vi € {1,..., k}: v; is either 0 or an eigenvector of f
associated with the eigenvalue A;. WIS vi =vo =--- =v, =0.
Suppose otherwise.



Proof. Fix a1 1,..., 006,001, ., 02ty ces Q1o ey, €F
s.t. K

> (ai,lvhl +o 4 Oéi,t,Vf,t,-) = 0

i=1

Vie{l,... k}: setvi:=aqj1vi1+ -+ ajyViy, thatis
@ vy iI=aQ11VvVi1+ a1 gVl

@ Vo i=qp Vo1 + -+ Q2 V2,

@ Vi = Qg 1Vk1 Qe Vit
So, vi +vo +--- 4+ v, = 0. Now, note that for each
i€{l,...,k}, the vector v; is a linear combination of vectors in
E),(f); since Ey.(f) is a subsapce of V/, it follows that v; € E),(f).
Consequently, Vi € {1,..., k}: v; is either 0 or an eigenvector of f

associated with the eigenvalue A;. WIS vi =vo =--- =v, =0.
Suppose otherwise. By symmetry, WMA 3¢ € {1,...,k} s.t.
Vvi,...,Vp are all non-zero (and are consequently eigenvectors of f

associated with A1,...,\), while vpiq, ..., vy are all zero.



Proof (continued). So,
vi+---+v, = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.



Proof (continued). So,
vi+---+v, = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that vi = --- = v, = 0.



Proof (continued). So,
vi+---+v, = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that vi = --- = v, = 0. So, for all indices
ie{l,..., k}, we have that

aiVit+ -+ aigVviy = 0



Proof (continued). So,
vi+---+v, = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that vi = --- = v, = 0. So, for all indices
ie{l,..., k}, we have that

aiVit+ -+ aigVviy = 0

since vectors v;1,...,V; are linearly independent, it follows that
ajp1=-=aj; =0.



Proof (continued). So,
vi+---+v, = 0,

and it follows that {v1,...,v,} is a linearly dependent set. But
this contradicts Proposition 8.4.1.

We have now shown that vi = --- = v, = 0. So, for all indices
ie{l,..., k}, we have that

ajvil+ -+ aigVviy = 0;
since vectors v;1,...,V; are linearly independent, it follows that
Qj1 =" " =0 = 0.
Since this holds for all indices i € {1,..., k}, we deduce that the

eigenvectors

Vi1, .- ‘Vl.t17v2,17 cee 7v2,t27 ce 7Vkﬁ17 cee ‘Vk.i‘k

are linearly independent, which is what we needed to show. [J



Proposition 8.4.1

Let V be a vector space over a field I, let f : V — V be a linear
function, let A\1,..., Ax € F be pairwise distinct eigenvalues of f,
associated with eigenvectors vy, ..., vy, respectively. Then
{v1,...,vk} is a linearly independent set.

Proposition 8.4.2

Let V be a vector space over a field F, let f : V — V be a linear
function, and let A1, Ao, ..., A\x € F be pairwise distinct
eigenvalues of f. For each i € {1,... k}, let vj1,...,v;y be
linearly independent eigenvectors of f associated with the
eigenvalue \;. Then the eigenvectors

V1’1./ coog V1_1.»1,V2’17 Ce ,V2’t2, e 7Vkﬁ1¢ . «,Vk,tk
are linearly independent.




Theorem 8.4.3

Let V be a non-trivial, finite-dimensional vector space over a field
F, and set n :=dim(V). Let f : V — V be a linear function, let
A1, ..., Ak be all (distinct) the eigenvalues of f, and let By, ..., B
be bases of the associated eigenspaces Ey, (f), ..., Ex(f),
respectively. Set B := B U---U By. Then all the following hold:

@ B is a linearly independent set of eigenvectors of f;

@ dim(Ey (f)) + -+ +dim(E\(f)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of f is at most n;

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.



Theorem 8.4.3

Let V be a non-trivial, finite-dimensional vector space over a field
F, and set n:=dim(V). Let f : V — V be a linear function, let
A1, ..., Ak be all (distinct) the eigenvalues of f, and let By, ..., Bk
be bases of the associated eigenspaces Ey, (f), ..., Ex(f),
respectively. Set B := By U---U By. Then all the following hold:
@ B is a linearly independent set of eigenvectors of f;

@ dim(Ey, (f)) + -+ +dim(Ey, (f)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of f is at most n;

Proof. Part (a) follows immediately from Proposition 8.4.2.




Theorem 8.4.3

Let V be a non-trivial, finite-dimensional vector space over a field
F, and set n:=dim(V). Let f : V — V be a linear function, let
A1, ..., Ak be all (distinct) the eigenvalues of f, and let By, ..., Bk
be bases of the associated eigenspaces Ey, (f), ..., Ex(f),
respectively. Set B := By U---U By. Then all the following hold:

@ B is a linearly independent set of eigenvectors of f;

@ dim(Ey, (f)) + -+ +dim(Ey, (f)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of f is at most n;

Proof. Part (a) follows immediately from Proposition 8.4.2.

Part (b) follows from (a) and from the fact that, by
Theorem 3.2.17(a), any linearly independent set of vectors in an
n-dimensional vector space contains at most n vectors.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c).
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Proof (continued). Let us prove (c). Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n.
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@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c). Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n. Then
B is a linearly independent set of size n in the n-dimensional vector
space V.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c). Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n. Then
B is a linearly independent set of size n in the n-dimensional vector
space V. So, by Corollary 3.2.20(a), B is a basis of V.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Let us prove (c). Suppose first that the sum of
geometric multiplicities of the eigenvalues of f is equal to n. Then
B is a linearly independent set of size n in the n-dimensional vector
space V. So, by Corollary 3.2.20(a), B is a basis of V. Since all
vectors in B are eigenvectors of f, it follows that B is an eigenbasis
of V associated with f.
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@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f;
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geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n.
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@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE)\,(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EA,.(f)> many vectors from Ey (f) for any index

ied{l,... k}.
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@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE)\,(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EA,.(f)> many vectors from Ey (f) for any index

ie{l,...,k}. So, [C] < dim(E)(f)) +---+dim(Ey(f)).
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@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE)\,(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EA,.(f)> many vectors from Ey (f) for any index
ie{l,...,k}. So, [C] <dim(E)(f)) +---+dim(Ey(f)). But
now we have that

n = |C| < dim(Ex(f))+ - +dim(Ey, (F)) (;) n,



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE)\,(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EA,.(f)> many vectors from Ey (f) for any index

ie{l,...,k}. So, |C| < dim(E)\l(f)) +---+dim(E>\k(f)). But
now we have that

n = |C| < dim(Ex(f))+ - +dim(Ey, (F)) (;) n,

and it follows that dim(Ey, (f)) + - -+ +dim(Ey,(f)) = n,



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

Proof (continued). Suppose, conversely, that V has an eigenbasis
C associated with f; since dim(V) = n, we see that |C| = n. Since
all vectors in C are eigenvecors of f, we see that they all belong to
E)\,(f)U---UE)\,(f). But since the basis C of V is, in particular,
linearly independent, we see that it cannot contain more than
dim(EA,.(f)> many vectors from Ey (f) for any index

ie{l,...,k}. So, [C] <dim(E)(f)) +---+dim(Ey(f)). But
now we have that
(b)
n = |C] < dim(Ex(f)) + - +dim(E\ () < n,
and it follows that dim(Ey,(f)) + - -+ +dim(E\,(f)) = n, i.e. the
sum of geometric multiplicities of the eigenvalues of f is n. This
proves (c).



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n,



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n, and so by (c), V has an eigenbasis associated with f,
and B is one such eigenbasis.
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@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n, and so by (c), V has an eigenbasis associated with f,
and B is one such eigenbasis.

For the converse, assume that V has an eigenbasis C associated
with 7.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). It remains to prove (d). If the sum of algebraic
multiplicities of the eigenvalues of f is equal to n, and the
geometric multiplicity of each eigenvalue is equal to its algebraic
multiplicity, then obviously, the sum of geometric multiplicities of f
is equal to n, and so by (c), V has an eigenbasis associated with f,
and B is one such eigenbasis.

For the converse, assume that V has an eigenbasis C associated
with f. Let A1,..., Ak be the eigenvalues of f, with geometric
multiplicities g1, ..., gk, respectively, and algebraic multiplicities
ai, ..., ag, respectively.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gx = n.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated

with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gk = n. On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.

ap+---+ax < n



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gk = n. On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.
ai+ -+ ax < n. But by Theorem 8.2.17, the geometric
multiplicity of an eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue, that is, g; < a; for all indices
ied{l,...,n}.



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gk = n. On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.
ai+ -+ ax < n. But by Theorem 8.2.17, the geometric
multiplicity of an eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue, that is, g; < a; for all indices
i€{l,...,n}. We now have that

n = gi+--+g < at---+a < on



Theorem 8.4.3

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.

Proof (continued). By (c), we have that g1 + -+ + gk = n. On
the other hand, the characteristic polynomial of f is of degree n,
we see that the sum of algebraic multiplicitis of f is at most n, i.e.
ai+ -+ ax < n. But by Theorem 8.2.17, the geometric
multiplicity of an eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue, that is, g; < a; for all indices
i€{l,...,n}. We now have that

n = gi+--+g < at---+a < on

and we deduce that a; + - -+ + a, = n and that g; = a; for all
i€{l,..., k}. This proves (d). O



Theorem 8.4.3

Let V be a non-trivial, finite-dimensional vector space over a field
F, and set n :=dim(V). Let f : V — V be a linear function, let
A1, ..., Ak be all (distinct) the eigenvalues of f, and let By, ..., B
be bases of the associated eigenspaces Ey, (f), ..., Ex(f),
respectively. Set B := B U---U By. Then all the following hold:

@ B is a linearly independent set of eigenvectors of f;

@ dim(Ey (f)) + -+ +dim(E\(f)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of f is at most n;

@ V has an eigenbasis associated with f iff the sum of
geometric multiplicities of the eigenvalues of f is n, and in
this case, B is such an eigenbasis;

@ V has an eigenbasis associated with f iff the sum of algebraic
multiplicities of the eigenvalues of f is n, and the geometric
multiplicity of each eigenvalue is equal to its algebraic
multiplicity; in this case, B is an eigenbasis of V associated
with the linear function f.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n:= dim(V). If a linear function f : V. — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n:= dim(V). If a linear function f : V. — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.
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Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n:= dim(V). If a linear function f : V. — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(E),(f)) > 1
forall i € {1,...,n}.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n:= dim(V). If a linear function f : V. — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(E),(f)) > 1
for all i € {1,...,n}. Consequently,
dim(Ey, (f)) +--- +dim(Ey,(f)) > n.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n:= dim(V). If a linear function f : V. — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(E),(f)) > 1
for all i € {1,...,n}. Consequently,
dim(Ey, (f)) +--- +dim(Ey,(f)) > n.

On the other hand, Theorem 8.4.3(b) guarantees that
dim(Ey, (f)) +--- +dim(Ey, () < n.



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n:= dim(V). If a linear function f : V. — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(E),(f)) > 1
for all i € {1,...,n}. Consequently,
dim(Ey, (f)) +--- +dim(Ey,(f)) > n.

On the other hand, Theorem 8.4.3(b) guarantees that
dim(Ey, (f)) +--- +dim(Ey, () < n.

Thus, dim(Ey,(f)) + - -- +dim(Ey,(f)) = n,



Corollary 8.4.4

Let V be a non-trivial, finite-dimensional vector space over a
field F, and set n:= dim(V). If a linear function f : V. — V has n
distinct eigenvalues, then V has an eigenbasis associated with f.

Proof. Let f : V — V be a linear function that has n distinct
eigenvalues, say A1,..., Ap.

By the definition of an eigenvalue, we have that dim(E),(f)) > 1
for all i € {1,...,n}. Consequently,
dim(Ey, (f)) +--- +dim(Ey,(f)) > n.

On the other hand, Theorem 8.4.3(b) guarantees that
dim(Ey, (f)) +--- +dim(Ey, () < n.

Thus, dim(Ey,(f)) + --- +dim(E,,(f)) = n, and so by
Theorem 8.4.3(c), V has an eigenbasis associated with . O



@ We would now like to “translate” Theorem 8.4.3 and
Corollary 8.4.4 into the language of matrices.



@ We would now like to “translate” Theorem 8.4.3 and
Corollary 8.4.4 into the language of matrices.

@ Given a field F and a square matrix A € F™" we can define
fa: F" — F" by setting fa(v) = Av for all v € F".
o So, f4 is linear, and its standard matrix is A.



@ We would now like to “translate” Theorem 8.4.3 and
Corollary 8.4.4 into the language of matrices.
@ Given a field F and a square matrix A € F™" we can define
fa: F" — F" by setting fa(v) = Av for all v € F".
o So, f4 is linear, and its standard matrix is A.
@ We can apply Theorem 8.4.3 and Corollary 8.4.4 to the linear

function f4, and then get the same result for A “for free."
o Next two slides!



Theorem 8.4.5

Let F be a field, and let A € F"™*". Let Ay,..., s be all the
(distinct) eigenvalues of A, and let By, ..., Bk be bases of the
associated eigenspaces Ey, (A), ..., Ey (A), respectively. Set
B:=Bi1U---UDBg. Then all the following hold:

@ B is a linearly independent set of eigenvectors of A;

@ dim(Ey (A)) + - +dim(Ey, (A)) < n, i.e. the sum of
geometric multiplicities of the eigenvalues of A is at most n;

@ [F” has an eigenbasis associated with A iff the sum of
geometric multiplicities of the eigenvalues of A is n, and in
this case, B is such an eigenbasis;

@ " has an eigenbasis associated with A iff the sum of
algebraic multiplicities of the eigenvalues of A is n, and the
geometric multiplicity of each eigenvalue is equal to its
algebraic multiplicity; in this case, B is an eigenbasis of F"
associated with the matrix A.



Corollary 8.4.6

Let F be a field, and let A € F"*". If A has n distinct eigenvalues,
then [F" has an eigenbasis associated with A.




© Diagonalization



© Diagonalization

Definition

For a field F, a square matrix D € F"*" is diagonal if all its entries
off the main diagonal are zero (the entries on the main diagonal
may or may not be zero). For scalars A1, Ao, ..., A\, €F,

D(A1, A2, ..., A\p) is the n x n matrix with A1, A2,..., A, on the
main diagonal (appearing in that order) and 0's everywhere else,
i.e.

A O 0
0 X 0
D(Al,)\z,...,)\n) = .
0 O An
= [ /\181 000 )\,,en } s

where as usual, ey, ..., e, are the standard basis vectors of F".




© Diagonalization

Definition

For a field F, a square matrix D € F"*" is diagonal if all its entries
off the main diagonal are zero (the entries on the main diagonal
may or may not be zero). For scalars A1, Ao, ..., A\, €F,

D(A1, A2, ..., A\p) is the n x n matrix with A1, A2,..., A, on the
main diagonal (appearing in that order) and 0's everywhere else,
i.e.

A1 O 0
0 X 0
D(Al,)\z,...,)\n) = .
0 O An
= [ /\181 000 )\,,en } s
where as usual, ey, ..., e, are the standard basis vectors of F".

@ Note that diagonal matrices are, in particular, triangular.




© Diagonalization

Definition

For a field F, a square matrix D € F"*" is diagonal if all its entries
off the main diagonal are zero (the entries on the main diagonal
may or may not be zero). For scalars A1, Ao, ..., A\, €F,

D(A1, A2, ..., A\p) is the n x n matrix with A1, A2,..., A, on the
main diagonal (appearing in that order) and 0's everywhere else,
i.e.

A1 O 0
0 X 0
D(Al,)\z,...,)\n) = .
0 O An
= [ /\181 000 )\,,en } s
where as usual, ey, ..., e, are the standard basis vectors of F".

@ Note that diagonal matrices are, in particular, triangular.
@ So, Propositions 7.3.1 and 8.2.7 (next slide) apply.




Proposition 7.3.1

Let F be a field, and let A= [ a;; |, be a triangular matrix in
F"*". Then det(A) = [[{_; aij = a1,182,2 . . . an,n, that is, det(A) is
equal to the product of entries on the main diagonal of A.



Proposition 7.3.1

Let F be a field, and let A= [ a;; | be a triangular matrix in
F"*". Then det(A) = [[{_; aij = a1,182,2 . . . an,n, that is, det(A) is
equal to the product of entries on the main diagonal of A.

Proposition 8.2.7

Let F be a field, and let A= [ a;; |
F"*" Then the characteristic polynomial of A is

pal)) = (A —a) = (A—au1)A—a2)... (A ann),

i=1

be a triangular matrix in
nxn

the eigenvalues of A are precisely the entries of A on its main
diagonal, and moreover, the algebraic multiplicity of each
eigenvalue is precisely the number of times that it appears on the
main diagonal of A. Consequently, the spectrum of A is
{a11,a22,...,ann}, i.e. the multiset formed precisely by the main
diagonal entries of A, with each number appearing in the spectrum
of A the same number of times as on the main diagonal of A.




@ Thus, for scalars A1,..., A\, € F (where F is a field), and for
the diagonal matrix D := D(A1, ..., A,), we have the
following:

o det(D) = A1... \n;
o pp(N) = (A= A1) (A= An).



@ Thus, for scalars A1,..., A\, € F (where F is a field), and for
the diagonal matrix D := D(A1, ..., A,), we have the
following:

o det(D) = A1... \n;
o pp(N) = (A= A1) (A= An).

@ We now state three simple propositions about diagonal
matrices.
e The proofs are easy and we omit them here.
e However, the proofs can be found in the Lecture Notes.



Proposition 8.5.1

Let F be a field, let A1,..., A\, € F (n > 1) be arbitrary scalars,
and set D := D(A1,...,\,). Then both the following hold:
@ forallvectorsx=[x ... x ]T in F”, we have that
)\1X1
Dx = ;
AnXn
@ for all matrices A=[ a; ... a, | inF™*" we have that
AD = [ Aar ... Anan ]

@ Proof: Lecture Notes (easy!).



Proposition 8.5.2

Let F be a field, and let A1,..., Ap, i1, ..., un €F (n > 1) be
arbitrary scalars. Then

D(A1,.... n) D(pa, .- spn) = D(A1pa, .., Anjtn)-

@ Proof: Lecture Notes (easy!)



Proposition 8.5.2

Let F be a field, and let A1,..., Ap, i1, ..., un €F (n > 1) be
arbitrary scalars. Then

D(A1,.... n) D(pa, .- spn) = D(A1pa, .., Anjtn)-

@ Proof: Lecture Notes (easy!)

Proposition 8.5.3

Let F be a field, let A\1,..., A\, € F (n>1), and set

D := D(A1,...,An). Then both the following hold:

@ for all non-negative integers m, we have that
D™ = DA, ..., \7);

@ D is invertible iff A\1,..., )\, are all non-zero, and in this case,
we have that D™ = D(AT", ..., A7) for all integers m.

@ Proof: Lecture Notes (easy!)



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,v,} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

B[ f ]B = D(Ai,..., ),
where A\1,...,\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,v,} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

B[ f ]B = D(Ai,..., ),
where A\1,...,\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof. Suppose first that BB is an eigenbasis of V associated with
f.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,v,} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

B[ f ]B = D(Ai,..., ),
where A\1,...,\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof. Suppose first that BB is an eigenbasis of V associated with
f. Then, by definition, vectors vy, ..., v, are eigenvectors of f, and
we let A1,..., A,, respectively, be the associated eigenvalues.




Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,v,} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

B[ f ]B = D(Ai,..., ),
where A\1,...,\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof. Suppose first that BB is an eigenbasis of V associated with
f. Then, by definition, vectors vy, ..., v, are eigenvectors of f, and
we let A1,..., A,, respectively, be the associated eigenvalues. Then
f(v;) = Ajv; for all indices i € {1,..., n}, and we have the
following (next slide):




Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,v,} be abasisof V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

sl fls = DOw.oouhn),
where A1,..., A, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.
Proof (continued).
sl flg = [[fv) g o [ fv) |y ] by Theorem 4.5.1
= [[/\1V1 ]B [)\,,v,, ]B]
= [ Mer ... e, |

D(AL, ..., An).



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

sl fls = DO...uhn),
where A1,..., )\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof (continued). Conversely, suppose that the matrix B[ f ]B is
diagonal, and let A1, ..., A\, be the entries of this matrix on the
main diagonal, so that

B[f]g = D()\lau',)\n) = [/\181 )\nen},



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

sl fls = DO...uhn),
where A1,..., )\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof (continued). Conversely, suppose that the matrix B[ f ]B is

diagonal, and let A1, ..., A\, be the entries of this matrix on the
main diagonal, so that

B[f]B = D()\l,...,>\,,) = [/\181 )\,,en}.
We will show that the basis vectors vi, ..., v, are eigenvectors of f

with associated eigenvalues A1, ..., A, respectively.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

sl fls = DO...uhn),
where A1,..., )\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof (continued). Conversely, suppose that the matrix B[ f ]B is

diagonal, and let A1, ..., A\, be the entries of this matrix on the
main diagonal, so that

B[f]B = D()\l,...,>\,,) = [/\181 )\,,en}.
We will show that the basis vectors vi, ..., v, are eigenvectors of f

with associated eigenvalues A1,..., A, respectively. Fix any index
ie{l,....n}; WTS f(v;) = A\jv;.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

sl fls = DO...uhn),
where A1,..., )\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof (continued). Conversely, suppose that the matrix B[ f ]B is
diagonal, and let A1, ..., A\, be the entries of this matrix on the
main diagonal, so that

B[f]B = D()\l,...,>\,,) = [/\181 )\,,en}.
We will show that the basis vectors vi, ..., v, are eigenvectors of f
with associated eigenvalues A1,..., A, respectively. Fix any index

ie{l,...,n}; WTS f(v;) = A\jv;. Since v; is the i-th basis vector

of B, we have that | v; }B =e;.



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V associated with f iff the
matrix B[ f ]B is diagonal. Moreover, in this case, we have that

sl fls = DO...uhn),
where A1,..., )\, are the eigenvalues of f associated with the
eigenvectors v, ..., V,, respectively.

Proof (continued). Conversely, suppose that the matrix B[ f ]B is
diagonal, and let A1, ..., A\, be the entries of this matrix on the
main diagonal, so that

B[f]B = D()\l,...,>\,,) = [/\181 )\,,en}.
We will show that the basis vectors vi, ..., v, are eigenvectors of f
with associated eigenvalues A1,..., A, respectively. Fix any index

ie{l,...,n}; WTS f(v;) = A\jv;. Since v; is the i-th basis vector

of B, we have that | v; }B = e;. We now compute (next slide):



Theorem 8.5.4

Let V be a non-trivial, finite-dimensional vector space, let

B ={vi,...,vp} be a basis of V, and let f : V — V be a linear
function. Then B is an eigenbasis of V' associated with f iff the
matrix [ f |, is diagonal. Moreover, in this case, we have that

B[ f ]B = D(A,..., \n),
where A1,..., A, are the eigenvalues of f associated with the
eigenvectors vy, ..., V,, respectively.
Proof (continued).
[ f(vi) ]B = B[ f }B[ v ]B = [ Mer ... e, e
Yone = Nlvily © v,

where (*) follows from Proposition 1.4.4, and (**) follows from
the linearity of [ - |,. Since [ - ], is an isomorphism (and in
particular, one-to-one), it follows that f(v;) = A;v;, which is what
we needed to show. [



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.
e By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVy
Vi —

N




@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.
e By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVy
v —
o Indeed, suppose that B = {vy,...,v,} is some basis of V, and

that A1,..., A\, € F are some scalars.



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.
e By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVy
v —
%VZ
o Indeed, suppose that B = {vy,...,v,} is some basis of V, and
that A1,..., A\, € F are some scalars.

e By Theorem 4.3.2, there exists a unique linear function
f:V — V such that f(v;) = A\v;.



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.
e By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVy
v —
%VZ
o Indeed, suppose that B = {vy,...,v,} is some basis of V, and
that A1,..., A\, € F are some scalars.

e By Theorem 4.3.2, there exists a unique linear function
f:V — V such that f(v;) = A\v;.

e But then by Theorem 8.5.4, B[ fl.=D(A1,..., n).

B



@ Remark: Suppose that V is a non-trivial, finite-dimensional
vector space over a field F.
e By Theorems 4.3.2 and 8.5.4, linear functions from V to V
that have a diagonal matrix are precisely those that can be
defined starting from some basis, and then scaling each of the

basis elements.

A1V
f AoVy
v —
%VZ
o Indeed, suppose that B = {vy,...,v,} is some basis of V, and
that A1,..., A\, € F are some scalars.

e By Theorem 4.3.2, there exists a unique linear function
f:V — V such that f(v;) = A\v;.

e But then by Theorem 8.5.4, B[ f }B =D(A1,..., ).

o By Theorem 8.5.4, the converse also holds.



Definition

A matrix A € F"™*" (where F is a field) is diagonalizable if it is
similar to a diagonal matrix. To diagonalize a diagonalizable

matrix A means to compute a diagonal matrix D and an invertible
matrix P such that D = P~1AP (equivalently: A= PDP~1).




Theorem 8.5.6

Let F be a field, and let A € F"*" be a matrix. Then A is
diagonalizable if and only if F" has an eigenbasis associated with
A. Moreover, if P = {p1,...,Pn} is any eigenbasis of F”
associated with A, and A1, ..., A, are the eigenvalues of A
associated with the eigenvectors p1, ..., pn, respectively, then

D = P'AP  and A = PDP,
where D = D(A1,...,Ap) and P=[p1 ... ps ]

@ Proof: Lecture Notes.



Theorem 8.5.6

Let F be a field, and let A € F"*" be a matrix. Then A is
diagonalizable if and only if F" has an eigenbasis associated with
A. Moreover, if P = {p1,...,Pn} is any eigenbasis of F”
associated with A, and A1, ..., A, are the eigenvalues of A
associated with the eigenvectors p1, ..., pn, respectively, then

D = P'AP  and A = PDP,
where D = D(A1,...,Ap) and P=[p1 ... ps ]

@ Proof: Lecture Notes.
e Theorem 8.5.6 can be obtained as a corollary of Theorem 8.5.4
(try it!).
e However, in the Lecture Notes, there is a proof “from scratch”
(i.e. one that uses matrices only).



Theorem 8.5.6

Let F be a field, and let A € F"*" be a matrix. Then A is
diagonalizable if and only if F” has an eigenbasis associated with
A. Moreover, if P = {p1,...,pn} is any eigenbasis of F”
associated with A, and A1, ..., A, are the eigenvalues of A
associated with the eigenvectors ps, ..., pn, respectively, then

D = PlAP and A = PDP1
where D = D(A1,...,Ap) and P=[p1 ... p, ]

Corollary 8.5.7

Let F be a field, and let A € F"*". If A has n distinct eigenvalues,
then A is diagonalizable.

Proof.



Theorem 8.5.6

Let F be a field, and let A € F"*" be a matrix. Then A is
diagonalizable if and only if F” has an eigenbasis associated with
A. Moreover, if P = {p1,...,pn} is any eigenbasis of F”
associated with A, and A1, ..., A, are the eigenvalues of A
associated with the eigenvectors ps, ..., pn, respectively, then

D = PlAP and A = PDP1
where D = D(A1,...,Ap) and P=[p1 ... p, ]

Corollary 8.5.7

Let F be a field, and let A € F"*". If A has n distinct eigenvalues,
then A is diagonalizable.

Proof. Assume that A has n distinct eigenvalues. By
Corollary 8.4.6, F" has an eigenbasis associated with A. So, by
Theorem 8.5.6, A is diagonalizable. [J



@ Theorems 8.4.5 and 8.5.6 together give us a recipe for
determining whether a matrix A € F"*" is diagonalizable, and
if so, for diagonalizing it (i.e. for finding a diagonal matrix D
and an invertible matrix P, both in F"*" such that
D= P~1AP).

@ We proceed as follows (next two slides).



@ We compute the characteristic polynomial pa(\) and its roots.
By Theorem 8.2.2, the roots of pa(\) are the eigenvalues of
A, and we can read off the algebraic multiplicities of those
eigenvalues from the polynomial pa()).
o Computing the roots of pa()\) is the computationally tricky
part, since there is no formula for computing the roots of a
high-degree polynomial. If we cannot figure out how to
compute the roots of pa(A), then we are stuck: the matrix A
may or may not be diagonalizable, but computationally, we
cannot diagonalize it.



@ We compute the characteristic polynomial pa(\) and its roots.
By Theorem 8.2.2, the roots of pa(\) are the eigenvalues of
A, and we can read off the algebraic multiplicities of those
eigenvalues from the polynomial pa()).
o Computing the roots of pa()\) is the computationally tricky
part, since there is no formula for computing the roots of a
high-degree polynomial. If we cannot figure out how to
compute the roots of pa(A), then we are stuck: the matrix A
may or may not be diagonalizable, but computationally, we
cannot diagonalize it.

@ |If the sum of algebraic multiplicities of the eigenvalues of A is
less than n, then by Theorem 8.4.5, F" does not have an
eigenbasis associated with A, and so by Theorem 8.5.6, A is
not diagonalizable.



@ We compute the characteristic polynomial pa(\) and its roots.
By Theorem 8.2.2, the roots of pa(\) are the eigenvalues of
A, and we can read off the algebraic multiplicities of those
eigenvalues from the polynomial pa()).

o Computing the roots of pa()\) is the computationally tricky
part, since there is no formula for computing the roots of a
high-degree polynomial. If we cannot figure out how to
compute the roots of pa(A), then we are stuck: the matrix A
may or may not be diagonalizable, but computationally, we
cannot diagonalize it.

@ |If the sum of algebraic multiplicities of the eigenvalues of A is
less than n, then by Theorem 8.4.5, F" does not have an
eigenbasis associated with A, and so by Theorem 8.5.6, A is
not diagonalizable.

© From now on, we assume that the sum of algebraic
multiplicities of the eigenvalues of A, call them Aq,..., A, is
n. We then compute a basis B; for each eigenspace Ej,(A),
which allows us to compute the geometric multiplicities of all
the eigenvalues of A.



@ |If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, F" does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.



@ |If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, F" does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.

© From now on, we assume that the geometric multiplicity of
each eigenvalue of A is equal to its algebraic multiplicity.
Theorem 8.4.5 then guarantees that F” has an eigenbasis
associated with A, and moreover, that B=8B1U---U By is
one such eigenbasis.



@ |If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, F" does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.

© From now on, we assume that the geometric multiplicity of
each eigenvalue of A is equal to its algebraic multiplicity.
Theorem 8.4.5 then guarantees that F” has an eigenbasis
associated with A, and moreover, that B=8B1U---U By is
one such eigenbasis.

© By Theorem 8.5.6, A is diagonalizable. We now follow the
recipe from Theorem 8.5.6 to actually diagonalize A.



@ |If the geometric multiplicity of some eigenvalue of A is smaller
than its algebraic multiplicity, then by Theorem 8.4.5, F" does
not have an eigenbasis associated with A, and so by
Theorem 8.5.6, A is not diagonalizable.

© From now on, we assume that the geometric multiplicity of
each eigenvalue of A is equal to its algebraic multiplicity.
Theorem 8.4.5 then guarantees that F” has an eigenbasis
associated with A, and moreover, that B=8B1U---U By is
one such eigenbasis.

© By Theorem 8.5.6, A is diagonalizable. We now follow the
recipe from Theorem 8.5.6 to actually diagonalize A.

@ We form the matrix P whose columns are precisely the vectors
in the eigenbasis B. We form the diagonal matrix D, where on
the main diagonal we place the eigenvalues of A, taking care
that, for each i € {1,..., n}, the i-th entry on the main
diagonal of D is the eigenvalue associated with the i-th
column of P (which is, by construction, an eigenvector of A).
Now D = P71AP.



Example 8.5.8.

Consider the following matrix in C3*3:

4 0 -2
A= |25 4].
00 5

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution.



Example 8.5.8.

Consider the following matrix in C3*3:

4 0 -2
A = 2 5 4.
0 0 5

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.4.
In that example, we determined that A has two eigenvalues:
e A1 = 4 (with algebraic multiplicity 1 and geometric
multiplicity 1);
@ )\ =5 (with algebraic multiplicity 2 and geometric
multiplicity 2).



Example 8.5.8.

Consider the following matrix in C3*3:

4 0 -2
A= |25 4].
00 5

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.4.
In that example, we determined that A has two eigenvalues:

@ )1 = 4 (with algebraic multiplicity 1 and geometric
multiplicity 1);
@ )\ =5 (with algebraic multiplicity 2 and geometric
multiplicity 2).
Since the sum of algebraic multiplicities of the eigenvalues of A is
3, and since the geometric multiplicity of each eigenvalue of A is
equal to its algebraic multiplicity, we see that the 3 x 3 matrix A is
indeed diagonalizable.



Solution (continued). Reminder: \; =4, X\, = 5.

In Example 8.2.4, we saw that:

[ -1

° { 2 ] } is a basis of the eigespace E), (A);
0

0 1

0 -2
° { 1 ], [ 0 ] } is a basis of the eigenspace E),(A).



Solution (continued). Reminder: \; =4, X\, = 5.

In Example 8.2.4, we saw that:

[ -1
° { 2 ] } is a basis of the eigespace E), (A);
0
0 -2
° { 1, 0 } is a basis of the eigenspace E),(A).
0 1
So, we set
400 -1 0 -2
D = 0 50 and P = 21 0|,
0 05 00 1

and we see that D = P~1AP. O



Example 8.5.9

Consider the following matrix in C>*>:

12 0 0O
0 2 00O
A = 0 01 1 3
0 00 3 3
0 00 0 3

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution.



Example 8.5.9

Consider the following matrix in C>*>:

12 0 0O
0 2 00O
A = 0 01 1 3
0 00 3 3
0 00 0 3

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.8.



Example 8.5.9

Consider the following matrix in C>*>:

12 0 0O
0 2 00O
A = 0 01 1 3
0 00 3 3
0 00 0 3

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.8.
In that example, we determined that A has three eigenvalues:

e A\; =1 (with alg. mult. 2 and geom. mult. 2);
@ \> =2 (with alg. mult. 1 and geom. mult. 1);
e A3 = 3 (with alg. mult. 2 and geom. mult. 1).



Example 8.5.9

Consider the following matrix in C>*>:

12 0 0O
0 2 00O
A = 0 01 1 3
0 00 3 3
0 00 0 3

Determine whether A is diagonalizable, and if so, diagonalize it.

Solution. The matrix A is precisely the matrix from Example 8.2.8.
In that example, we determined that A has three eigenvalues:

e A\; =1 (with alg. mult. 2 and geom. mult. 2);
@ \> =2 (with alg. mult. 1 and geom. mult. 1);
e A3 = 3 (with alg. mult. 2 and geom. mult. 1).

Since the geometric multiplicity of the eigenvalue A3 = 3 is strictly
smaller than the algebraic multiplicity, we see that A is not
diagonalizable. [J



@ Suppose that we have successfully diagonalized a square
matrix A € F"*" (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in F™", such that D = P~1AP.



@ Suppose that we have successfully diagonalized a square
matrix A € F"*" (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in F™", such that D = P~1AP.

@ Then we can easily read off the spectrum and a basis of each
eigenspace of A, as Proposition 8.5.12 (next slide) shows.



@ Suppose that we have successfully diagonalized a square
matrix A € F"*" (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in F™*", such that D = P~1AP.

@ Then we can easily read off the spectrum and a basis of each
eigenspace of A, as Proposition 8.5.12 (next slide) shows.

@ This proposition essentially summarizes various facts about
diagonalizable matrices that we have proven already, but it is
convenient to have them stated in one proposition.



@ Suppose that we have successfully diagonalized a square
matrix A € F"*" (where F is a field), that is, that we have
computed a diagonal matrix D and an invertible matrix P,
both in F™", such that D = P~1AP.

@ Then we can easily read off the spectrum and a basis of each
eigenspace of A, as Proposition 8.5.12 (next slide) shows.
@ This proposition essentially summarizes various facts about

diagonalizable matrices that we have proven already, but it is
convenient to have them stated in one proposition.

e The proof is in the Lecture Notes. Here, we omit it.



Proposition 8.5.12

Let F be a field, and let A € F"™ " Assume that D = P~ 1AP,
where D = D(Ay1,...,Ap) is adiagonaland P=[ p1 ... p, | an
invertible matrix, both in F"*". Then the characteristic polynomial
of Ais

pA()\) = ()\—>\,') = ()\—)\1)...()\—)\"),

n
i=1
and the spectrum of Ais {A1,...,A,}. Moreover, for each
eigenvalue A\g of A,? the algebraic and geometric multiplicity of Ag
are both equal to the number of times that Ay appears on the
main diagonal of D, and moreover, if A\g appears precisely in
positions i, ..., iy of the main diagonal of D, then the
corresponding columns of P (i.e. vectors pj,,...,pj,) form a basis
of the eigenspace Ey,(A). Finally, {p1,...,pn} is an eigenbasis of
F™ associated with the matrix A.

?So, Ao € {A1,...,An}, since {A1,..., A\, } is the spectrum of A.



Example 8.5.13

Consider the following matrices in C%*® (color coded for
emphasis):

oo ooowu
cocooo O
cocouvioo
oo wooo
oproOOOCO
Moo ooo
O~ OGN
N OO A oW
O ™ o O
wous~O ®
oOwh o w
NO WO NN

It can be checked that P is invertible (for example, we can
compute that det(P) = —1020 # 0, and so by Theorem 7.4.1, P is
invertible). We now set A = PDP~1 sothat D= P~1AP. Then
by Proposition 8.5.12, all the following hold (next three slides):



cocoocoowu
cooosoO
coouv oo
cowooo
orO0O0O0CO
dPOOCOOCOO

o

Il
O OGN
NO U AW
O 0w o O ™
wo U~ O
owhUuow
NOWOoON N

Example 8.5.13 (continued)

@ the characteristic polynomial of A is
pa(d) = (A=3)(A =4\ -5)%
@ the spectrum of A is {5,4,5,3,4,4}, which we can optionally

reorder as {3,4,4,4,5,5};

@ the eigenvalues of A are 3 (with algebraic and geometric
multiplicity 1), 4 (with algebraic and geometric multiplicity 3),
and 5 (with algebraic and geometric multiplicity 2);




coocoowu
cooosO
coouoo
cowooo
orO0O0O0CO
dPOOOCOO

Example 8.5.13 (continued)

@ we can read off bases of the eigenspaces E3(A), Ea(A), and

Es(A), as follows:

o a basis of £5(A) is {

o a basis of £4(A) is {

o a basis of £5(A) is {

OHOUINH NOUINOW WO Ul A O ®©

1
COXDIO®OWHAUIOW

O OGN

NO U S ow

NOWOoON M

O 0w o O

wo U~ O

owhUuow

NOWOoON N




oooohs~O
coouv oo
cowooo
orO0O0O0CO
dPOOOCOO
OO GN
NO U AW
O 0w o O
wouprOo®
owhUuow
NOWwWOoON N

5
0
0
0
0
0

Example 8.5.13 (continued)

@ the columns of P form an eigenbasis of C” associated with
the matrix A.




