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This lecture has four parts:

1 Eigenvalues and eigenvectors of linear functions and square
matrices

2 The characteristic polynomial and spectrum
3 Eigenvalues and invertibility (plus the Invertible Matrix

Theorem, version 4)
4 The relationship between algebraic and geometric multiplicities
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1 Eigenvalues and eigenvectors of linear functions and square
matrices

Definition
Suppose that V is a vector spaces over a field F, and that
f : V → V is a linear function. An eigenvector of f is a vector
v ∈ V \ {0} for which there exists a scalar λ ∈ F, called the
eigenvalue of f associated with the eigenvector v, s.t.

f (v) = λv.

Under these circumstances, we also say that v is an eigenvector of
f associated with the eigenvalue λ.

So, the eigenvectors of f are those non-zero vectors in V
that simply get scaled by f , and the eigenvalues are the
scalars that the eigenvectors get scaled by.
By definition, an eigenvector cannot be 0, but an eigenvalue
may possibly be 0.
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Definition
Suppose that V is a vector spaces over a field F, and that
f : V → V is a linear function. An eigenvector of f is a vector
v ∈ V \ {0} for which there exists a scalar λ ∈ F, called the
eigenvalue of f associated with the eigenvector v, s.t.

f (v) = λv.

Under these circumstances, we also say that v is an eigenvector of
f associated with the eigenvalue λ.

Remark: Note that eigenvectors and eigenvalues are only
defined for those linear functions whose domain is the same as
the codomain.



Example 8.1.1
Consider the linear function f : R2 → R2 given by

f
( [

x1
x2

] )
=

[
−1 0

0 1

] [
x1
x2

]
=

[
−x1

x2

]
for all x1, x2 ∈ R. So, f is the reflection about the x2-axis (see the

picture below), and its standard matrix is
[

−1 0
0 1

]
.

x1

x2

vf (v)

As usual, e1 and e2 are the standard basis vectors of R2. Then
(next slide)



Example 8.1.1

x1

x2

vf (v)

e1 is an eigenvector of f associated with the eigenvalue
λ1 := −1, since f (e1) = −e1 = λ1e1;
e2 is an eigenvector of f associated with the eigenvalue
λ2 := 1, since f (e2) = e2 = λ2e2.

e1f (e1) = −e1

f (e2) = e2

x1

x2



Example 8.1.2
Consider the linear function f : R2 → R2 given by

f
( [

x1
x2

] )
=

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2

x1

]
for all x1, x2 ∈ R. So, f is the counterclockwise rotation by 90◦

about the origin (see the picture below), and its standard matrix is[
0 −1
1 0

]
. This function has no eigenvectors (and consequently, it

has no eigenvalues), since it does not simply scale any non-zero
vector in R2.

x1

x2

v

f (v)

90◦



Example 8.1.3
Consider the linear function f : C2 → C2 given by

f
( [

x1
x2

] )
=

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2

x1

]
for all x1, x2 ∈ C. (This is the same formula as the one from

Example 8.1.2, except that we are now working over C, rather than
over R.) Then

v1 :=
[

i
1

]
is an eigenvalue of f associated with the

eigenvalue λ1 := i , since f (v1) =
[

−1
i

]
= i

[
i
1

]
= λ1v1;

v2 :=
[

−i
1

]
is an eigenvector of f associated with the

eigenvalue λ2 := −i , since
f (v2) =

[
−1
−i

]
= (−i)

[
−i

1

]
= λ2v2.
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Example 8.1.2: f : R2 → R2, given by

f
( [

x1
x2

] )
=

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2

x1

]
∀x1, x2 ∈ R

(counterclockwise rotation by 90◦ about the origin);
Example 8.1.3: f : C2 → C2,

f
( [

x1
x2

] )
=

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2

x1

]
∀x1, x2 ∈ C.

Remark: It may be somewhat surprising that the linear
function f from Example 8.1.2 has no eigenvectors and no
eigenvalues, whereas the one from Example 8.1.3 has them.
As we shall see once we learn how to actually compute
eigenvalues and eigenvectors (this will involve finding roots of
polynomials), the essential difference is that C is an
algebraically closed field, whereas R is not.
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Reminder:

Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

If F is an algebraically closed field, and p(x) is non-constant
polynomial with coefficients in F, then p(x) can be factored
into linear terms.
C is algebraically closed.
Q, R, and Zp (where p is a prime number) are not
algebraically closed.
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For a linear function f : V → V , where V is a vector space
over a field F, and for a scalar λ ∈ F, we define

Eλ(f ) := {v ∈ V | f (v) = λv}.

Note that 0 ∈ Eλ(f ), since f (0) (∗)= 0 = λ0, where (*) follows
from Proposition 6.1.4 (since f is linear).
The set Eλ(f ) can be defined for any scalar λ, but it is only
interesting in the case when λ is an eigenvalue of V , in which
case Eλ(f ) is called the eigenspace of f associated with the
eigenvalue λ.
Note that, for an eigenvalue λ of f , the elements of the
eigenspace Eλ(f ) are precisely the zero vector and the
eigenvectors of f associated with λ.

By definition, 0 cannot be an eigenvector.

On the other hand, if λ is not an eigenvalue of f , then we
simply have that Eλ(f ) = {0}, and we do not refer to Eλ(f )
as an eigenspace.
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Proposition 8.1.4
Let V be a vector space over a field F, and let f : V → V be a
linear function. Then both the following hold:

(a) for all scalars λ ∈ F, Eλ(f ) is a subspace of V , and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff λ is an eigenvalue of f ;

(b) for all distinct scalars λ1, λ2 ∈ F, we have that
Eλ1(f ) ∩ Eλ2(f ) = {0}.

Proof (outline). (a) For λ ∈ F:

we check that Eλ(f ) contains 0 and is closed under vector
addition and scalar multiplication, and we deduce (by
Theorem 3.1.7) that Eλ(f ) is a subspace of V ;
any non-zero vector in Eλ(f ) is an eigenvector of f associated
with λ, and so Eλ(f ) is non-trivial iff λ is an eigenvalue of f .
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f (v) = λ1v (because v ∈ Eλ1(f )) and
f (v) = λ2v (because v ∈ Eλ2(f ))

=⇒ λ1v = λ2v =⇒ (λ1 − λ2︸ ︷︷ ︸
̸=0

)v = 0 =⇒ v = 0.

So, Eλ1(f ) ∩ Eλ2(f ) = {0}. □
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Proposition 8.1.4
Let V be a vector space over a field F, and let f : V → V be a
linear function. Then both the following hold:

(a) for all scalars λ ∈ F, Eλ(f ) is a subspace of V , and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff λ is an eigenvalue of f ;

(b) for all distinct scalars λ1, λ2 ∈ F, we have that
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Terminology: Suppose that V is a vector space over a field F,
and that λ is an eigenvalue of a linear function f : V → V .

The geometric multiplicity of the eigenvalue λ is defined to be
dim

(
Eλ(f )

)
.

So, the geometric multiplicity of an eigenvalue is the
dimension of the associated eigenspace.



Definition
Let F be a field, and let A ∈ Fn×n be a square matrix. An
eigenvector of A is a vector v ∈ Fn \ {0} for which there exists a
scalar λ ∈ F, called the eigenvalue of A associated with the
eigenvector v, s.t.

Av = λv.

Under these circumstances, we also say that v is an eigenvector of
A associated with the eigenvalue λ.

Eigenvectors are, by definition, non-zero, whereas eigenvalues
may possibly be zero.



For a square matrix A ∈ Fn×n (where F is some field), and for
a scalar λ ∈ F, we define

Eλ(A) := {v ∈ Fn | Av = λv}.

If λ is an eigenvalue of A, then Eλ(A) is called the eigenspace
of A associated with the eigenvalue λ.

Note that, for an eigenvalue λ of A, the elements of the
eigenspace Eλ(A) are precisely the zero vector and the
eigenvectors of A associated with λ.
On the other hand, if λ is not an eigenvalue of A, then we
simply have that Eλ(A) = {0}, and we do not refer to Eλ(A)
as an eigenspace.
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Proposition 8.1.5
Let F be a field, let f : Fn → Fn be a linear function, and let A be
the standard matrix of f . Then f and A have exactly the same
eigenvalues and the associated eigenectors. Moreover, for all
eigenvalues λ of f and A, we have that Eλ(f ) = Eλ(A).

Proof. This follows immediately from the appropriate definitions. □



Reminder:

Proposition 8.1.4
Let V be a vector space over a field F, and let f : V → V be a
linear function. Then both the following hold:

(a) for all scalars λ ∈ F, Eλ(f ) is a subspace of V , and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff λ is an eigenvalue of f ;

(b) for all distinct scalars λ1, λ2 ∈ F, we have that
Eλ1(f ) ∩ Eλ2(f ) = {0}.

For square matrices, we have the following analog of
Proposition 8.1.4.
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Proposition 8.1.6
Let F be a field, and let A ∈ Fn×n be a square matrix. Then all the
following hold:

(a) for all scalars λ ∈ F, Eλ(A) is a subspace of Fn, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff λ is an eigenvalue of A;

(b) for all distinct scalars λ1, λ2 ∈ F, we have that
Eλ1(A) ∩ Eλ2(A) = {0}.

Proof.

Consider the function fA : Fn → Fn, given by fA(v) = Av
for all vectors v ∈ Fn. Then fA is linear (by Proposition 1.10.4),
and moreover, A is the standard matrix of fA.

So, by Proposition 8.1.5, we have that for all λ ∈ F,
Eλ(A) = Eλ(fA).

The result now follows immediately from Proposition 8.1.4. □
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Proposition 8.1.6
Let F be a field, and let A ∈ Fn×n be a square matrix. Then all the
following hold:

(a) for all scalars λ ∈ F, Eλ(A) is a subspace of Fn, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff λ is an eigenvalue of A;

(b) for all distinct scalars λ1, λ2 ∈ F, we have that
Eλ1(A) ∩ Eλ2(A) = {0}.

Terminology: Suppose that F is a field, and that λ is an
eigenvalue of a square matrix A ∈ Fn×n.

The geometric multiplicity of the eigenvalue λ is defined to be
dim

(
Eλ(A)

)
.

So, the geometric multiplicity of an eigenvalue is the
dimension of the associated eigenspace.



Proposition 8.1.7
Let V be a non-trivial, finite-dimensional vector space over a field
F, let B = {b1, . . . , bn} be a basis of V , and let f : V → V be a
linear function. Then for all λ ∈ F, we have that

Eλ

(
B

[
f

]
B

)
=

{ [
v

]
B

| v ∈ Eλ(f )
}

.

Consequently, the linear function f and the matrix
B

[
f

]
B

have
exactly the same eigenvalues, with exactly the same corresponding
geometric multiplicities.

Proof: Lecture Notes.
Proposition 8.1.7 states that Eλ

(
B

[
f

]
B

)
is the image of

Eλ(f ) under the coordinate transformation
[

·
]

B
.



In view of Propositions 8.1.5 (“linear functions and their
standard matrices have the same eigenvalues, eigenvectors,
and eigenspaces”) and 8.1.7 (previous slide), we see that the
study of eigenvalues and eigenvectors of linear functions from
a non-trivial, finite-dimensional vector space to itself is
essentially equivalent to the study of eigenvalues and
eigenvectors of square matrices.

The computational tools that we develop for finding
eigenvectors and eigenvalues will primarily be for square
matrices.
On the other hand, some of the theoretical results that we
prove will be for linear functions instead, and we will obtain
corresponding results for matrices as more or less immediate
corollaries.



2 The characteristic polynomial and spectrum

Definition
Given a field F and a matrix A ∈ Fn×n, the characteristic
polynomial of A is defined to be

pA(λ) := det
(
λIn − A

)
.

The characteristic equation of A is the equation
det

(
λIn − A

)
= 0.

So, the roots of the characteristic polynomial of A are precisely the
solutions of the characteristic equation of A.



Example 8.2.1
Compute the characteristic polynomial of the following matrix in
C3×3:

A =

 1 −2 3
−1 0 2

2 −1 −3

 .

Solution.

The characteristic polynomial of A is:

pA(λ) = det(λI3 − A) =

∣∣∣∣∣∣
λ − 1 2 −3

1 λ −2
−2 1 λ + 3

∣∣∣∣∣∣
= λ3 + 2λ2 − 9λ − 3.

□
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Compute the characteristic polynomial of the following matrix in
C3×3:

A =

 1 −2 3
−1 0 2

2 −1 −3

 .

Solution. The characteristic polynomial of A is:

pA(λ) = det(λI3 − A) =

∣∣∣∣∣∣
λ − 1 2 −3

1 λ −2
−2 1 λ + 3

∣∣∣∣∣∣
= λ3 + 2λ2 − 9λ − 3.

□



Remark: For a field F and a matrix A ∈ Fn×n, the
characteristic polynomial pA(λ) = det(λIn − A) is a
polynomial of degree n, with leading coefficient 1, i.e. the
coefficient in front of λn in pA(λ) is 1.

In some texts, the characteristic polynomial is defined to be
det(A − λIn).
By Proposition 7.2.3, we have that
det(A − λIn) = (−1)ndet(λIn − A), and so the polynomials
det(λIn − A) and det(A − λIn) have exactly the same roots,
with the same corresponding multiplicities, which is what we
will actually care about when it comes to the characteristic
polynomial.
The main advantage of using det(λIn − A) rather than
det(A − λIn) is that the former polynomial has leading
coefficient 1, whereas the latter has leading coefficient (−1)n,
which is −1 if n is odd.
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Theorem 8.2.2
Let F be a field, let A ∈ Fn×n, and let λ0 ∈ F. Then

Eλ0(A) = Nul
(
λ0In − A

)
= Nul

(
A − λ0In

)
.

Moreover, the following are equivalent:
(1) λ0 is an eigenvalue of A;
(2) λ0 is a root of the characteristic polynomial of A, i.e.

pA(λ0) = 0;
(3) λ0 is a solution of the characteristic equation of A, i.e.

det
(
λ0In − A

)
= 0.

Proof.

Obviously, for all v ∈ Fn, we have that
(
λ0In − A

)
v = 0 iff(

A − λ0In
)
v = 0. So, Nul

(
λ0In − A

)
= Nul

(
A − λ0In

)
.
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Eλ0(A) = Nul
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(1) λ0 is an eigenvalue of A;
(2) λ0 is a root of the characteristic polynomial of A, i.e.

pA(λ0) = 0;
(3) λ0 is a solution of the characteristic equation of A, i.e.

det
(
λ0In − A

)
= 0.

Proof (continued). Further, we compute (next slide):
Eλ0(A) =

{
v ∈ Fn | Av = λ0v

}
=

{
v ∈ Fn | Av = λ0Inv

}
=

{
v ∈ Fn | (λ0In − A)v = 0

}
= Nul

(
λ0In − A

)
.



Theorem 8.2.2
Let F be a field, let A ∈ Fn×n, and let λ0 ∈ F. Then

Eλ0(A) = Nul
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(2) λ0 is a root of the characteristic polynomial of A, i.e.
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(3) λ0 is a solution of the characteristic equation of A, i.e.
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Proof (continued). We have now shown that
Eλ0(A) = Nul

(
λ0In − A

)
= Nul

(
A − λ0In

)
.

It remains to show that (1), (2), and (3) are equivalent. The fact
that (2) and (3) are equivalent follows immediately from the
appropriate definitions. It remains to prove that (1) and (3) are
equivalent.
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Theorem 8.2.2
Moreover, the following are equivalent:

(1) λ0 is an eigenvalue of A;
(3) λ0 is a solution of the characteristic equation of A, i.e.

det
(
λ0In − A

)
= 0.

Proof (continued). Reminder: Eλ0(A) = Nul
(
λ0In − A

)
.

λ0 is an eigenvalue of A︸ ︷︷ ︸
(1)

Prop. 8.1.6⇐⇒ Eλ0(A) ̸= {0}

⇐⇒ Nul
(
λ0In − A

)︸ ︷︷ ︸
=Eλ0 (A)

̸= {0}

IMT⇐⇒ the matrix λ0In − A
is not invertible

IMT⇐⇒
det

(
λ0In − A

)
= 0︸ ︷︷ ︸

(3) □



Theorem 8.2.2
Let F be a field, let A ∈ Fn×n, and let λ0 ∈ F. Then
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By Theorem 8.2.2, the eigenvalues of a square matrix are
precisely the roots of its characteristic polynomial.

For a field F, a matrix A ∈ Fn×n, and an eigenvalue λ0 of A,
the algebraic multiplicity of the eigenvalue λ0 is its multiplicity
as a root of the characteristic polynomial of A, or in other
words, it is the largest integer k such that (λ − λ0)k | pA(λ),
i.e. such that (λ − λ0)k divides the polynomial pA(λ).
Since deg

(
pA(λ)

)
= n, the sum of algebraic multiplicities of

the eigenvalues of the matrix A ∈ Fn×n is at most n; if the
field F is algebraically closed, then the sum of algebraic
multiplicities of the eigenvalues of A is exactly n.

Indeed, if F is algebraically closed, then the characteristic
polynomial pA(λ) can be written as a product of linear factors,
and there are n of those factors.
If F is not algebraically closed, we might or might not be able
to factor pA(λ) in this way, which is why the sum of algebraic
multiplicities of the eigenvalues of A is at most n (possibly
strictly smaller than n).
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Theorem 8.2.3
Let F be a field, and let A ∈ Fn×n. Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Proof: Later!
Schematically, Theorem 8.2.3 states that for an eigenvalue λ
of A:

geometric multiplicity of λ ≤ algebraic multiplicity of λ.

For now, we have only stated Theorem 8.2.3. We will not use
this theorem before proving it.
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The spectrum of a square matrix A ∈ Fn×n is the multiset of
all eigenvalues of A, with algebraic multiplicities taken into
account.

This means that the number of times that an eigenvalue
appears in the spectrum is equal to the algebraic multiplicity of
that eigenvalue. The order in which we list the eigenvalues in
the spectrum does not matter, but repetitions do matter.

For example, if a matrix A ∈ C5×5 has eigenvalues 1 (with
algeraic multiplicity 1), 1 + i (with algebraic multiplicity 2),
and 1 − i (with algebraic multiplicity 2), then the spectrum of
A is {1, 1 + i , 1 + i , 1 − i , 1 − i}.
In general, the spectrum of a matrix A ∈ Fn×n (where F is a
field) has at most n elements; if the field F is algebraically
closed, then the spectrum of A has exactly n elements.
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Example 8.2.4
Consider the following matrix in C3×3:

A =

 4 0 −2
2 5 4
0 0 5

 .

(a) Compute the characteristic polynomial pA(λ) of the matrix A.
(b) Compute all the eigenvalues of A and their algebraic

multiplicities, and compute the spectrum of A.
(c) For each eigenvalue λ of A, compute a basis of the eigenspace

Eλ(A) and specify the geometric multiplicity of the eigenvalue
λ.



Reminder: A =
[

4 0 −2
2 5 4
0 0 5

]
.

Solution. (a) The characteristic polynomial of A is:
pA(λ) = det(λI3 − A)

=

∣∣∣∣∣∣
λ − 4 0 2
−2 λ − 5 −4

0 0 λ − 5

∣∣∣∣∣∣
= (λ − 4)(λ − 5)2 via Laplace expansion

along 2nd column
= λ3 − 14λ2 + 65λ − 100.

Remark: We did not really need to expand in the last line.
We only really care about the roots of the characteristic
polynomial, and it is more convenient to have a form that is
already factored.
So, pA(λ) = (λ − 4)(λ − 5)2 is a “better” answer than
pA(λ) = λ3 − 14λ2 + 65λ − 100, although they are both
correct.
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A =
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0 0 5
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(a) Compute the characteristic polynomial pA(λ) of the matrix A.
(b) Compute all the eigenvalues of A and their algebraic

multiplicities, and compute the spectrum of A.
(c) For each eigenvalue λ of A, compute a basis of the eigenspace

Eλ(A) and specify the geometric multiplicity of the eigenvalue
λ.

Solution (continued). Reminder: (a) pA(λ) = (λ − 4)(λ − 5)2.

(b) From part (a), we see that A has two eigenvalues, namely, the
eigenvalue λ1 = 4 (with algebraic multiplicity 1), and the
eigenvalue λ2 = 5 (with algebraic multiplicity 2). So, the spectrum
of A is {4, 5, 5}.



Example 8.2.4
Consider the following matrix in C3×3:

A =

 4 0 −2
2 5 4
0 0 5

 .

(a) Compute the characteristic polynomial pA(λ) of the matrix A.
(b) Compute all the eigenvalues of A and their algebraic

multiplicities, and compute the spectrum of A.
(c) For each eigenvalue λ of A, compute a basis of the eigenspace

Eλ(A) and specify the geometric multiplicity of the eigenvalue
λ.

Solution (continued). Reminder: (a) pA(λ) = (λ − 4)(λ − 5)2.

(b) From part (a), we see that A has two eigenvalues, namely, the
eigenvalue λ1 = 4 (with algebraic multiplicity 1), and the
eigenvalue λ2 = 5 (with algebraic multiplicity 2). So, the spectrum
of A is {4, 5, 5}.



Reminder: A =
[

4 0 −2
2 5 4
0 0 5

]
.

Solution (continued). Reminder: the eigenvalues of A are λ1 = 4
and λ2 = 5.

(c) For each i ∈ {1, 2}, we have that

Eλi (A) = Nul
(
λi I3 − A

)
,

which is precisely the set of all solutions of the characteristic
equation

(λi I3 − A)x = 0.

Let us now compute a basis of each of the two eigenspaces.
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Reminder: A =
[

4 0 −2
2 5 4
0 0 5

]
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Solution (continued). (c) For λ1 = 4, we have that

λ1I3 − A =

 λ1 − 4 0 2
−2 λ1 − 5 −4

0 0 λ1 − 5

 =

 0 0 2
−2 −1 −4

0 0 −1

 ,

and that

RREF(λ1I3 − A) =

 1 1
2 0

0 0 1
0 0 0

 .

Consequently, the general solution of the equation
(λ1I3 − A)x = 0 is

x =

 −t/2
t
0

 = t

 −1/2
1
0

 = t
2

 −1
2
0

 , with t ∈ C.

So,
{ [

−1 2 0
]T

}
is a basis of the eigespace

Eλ1(A) = Nul
(
A − λ1In

)
, and we see that the eigenvalue λ1 = 4

has geometric multiplicity 1.
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Example 8.2.4
Consider the following matrix in C3×3:

A =

 4 0 −2
2 5 4
0 0 5

 .

(a) Compute the characteristic polynomial pA(λ) of the matrix A.
(b) Compute all the eigenvalues of A and their algebraic

multiplicities, and compute the spectrum of A.
(c) For each eigenvalue λ of A, compute a basis of the eigenspace

Eλ(A) and specify the geometric multiplicity of the eigenvalue
λ.

Solution (continued). (c) Similarly, for λ2 = 5, we get that{  0
1
0

 ,

 −2
0
1

 }
is a basis of the eigenspace

Eλ2(A) = Nul
(
A − λ2In

)
, and we see that the eigenvalue λ2 = 5

has geometric multiplicity 2 (details: Lecture Notes). □



Reminder:

Proposition 7.3.1
Let F be a field, and let A =

[
ai,j

]
n×n be a triangular matrix in

Fn×n. Then

det(A) =
n∏

i=1
ai ,i = a1,1a2,2 . . . an,n,

that is, det(A) is equal to the product of entries on the main
diagonal of A.


∗ ∗ ∗ . . . ∗ ∗
0 ∗ ∗ . . . ∗ ∗
0 0 ∗ . . . ∗ ∗
...

...
...

. . .
...

...
0 0 0 . . . ∗ ∗
0 0 0 . . . 0 ∗




∗ 0 0 . . . 0 0
∗ ∗ 0 . . . 0 0
∗ ∗ ∗ . . . 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ . . . ∗ 0
∗ ∗ ∗ . . . ∗ ∗


upper triangular matrix lower triangular matrix



Proposition 8.2.7

Let F be a field, and let A =
[

ai ,j
]

n×n
be a triangular matrix in

Fn×n. Then the characteristic polynomial of A is

pA(λ) =
n∏

i=1
(λ − ai ,i) = (λ − a1,1)(λ − a2,2) . . . (λ − an,n),

the eigenvalues of A are precisely the entries of A on its main
diagonal, and moreover, the algebraic multiplicity of each
eigenvalue is precisely the number of times that it appears on the
main diagonal of A.a Consequently, the spectrum of A is
{a1,1, a2,2, . . . , an,n}, i.e. the multiset formed precisely by the main
diagonal entries of A, with each number appearing in the spectrum
of A the same number of times as on the main diagonal of A.

aHowever, the geometric multiplicity may possibly be smaller.



For example, for the matrix

A =


1 2 0 0 0
0 2 0 0 0
0 0 1 1 3
0 0 0 3 3
0 0 0 0 3


in C5×5, we have the following:

the characteristic polynomial of A is:

pA(λ) = (λ − 1)(λ − 2)(λ − 1)(λ − 3)(λ − 3)

= (λ − 1)2(λ − 2)(λ − 3)2;

the spectrum of A is {1, 1, 2, 3, 3}.



Definition
Let F be a field. Given matrices A, B ∈ Fn×n, we say that A is
similar to B if there exists an invertible matrix P ∈ Fn×n s.t.
B = P−1AP.

Theorem 4.5.16
Let F be a field, let B, C ∈ Fn×n be matrices, and let V be an
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) B and C are similar;
(b) for all bases B of V and linear functions f : V → V s.t.

B = B

[
f

]
B, there exists a basis C of V s.t. C = C

[
f

]
C;

(c) for all bases C of V and linear functions f : V → V s.t.
C = C

[
f

]
C, there exists a basis B of V s.t. B = B

[
f

]
B;

(d) there exist bases B and C of V and a linear function
f : V → V s.t. B = B

[
f

]
B and C = C

[
f

]
C.
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Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Warning: Similar matrices A and B need not have the same
eigenspaces, that is, for an eigenvalue λ of A and B:

Eλ(A) ��ZZ= Eλ(B)



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof.

Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.
Since A and B are similar, Theorem 4.5.16 guarantees that there
exists a linear function f : Fn → Fn and bases A and B of Fn s.t.
A = A

[
f

]
A and B = B

[
f

]
B.

But then by Proposition 8.1.7, the linear function f and the matrix
A = A

[
f

]
A have exactly the same eigenvalues, with exactly the

same corresponding geometric multiplicities, and the same holds
for f and the matrix B = B

[
f

]
B. So, A and B have exactly the

same eigenvalues with exactly the same corresponding geometric
multiplicities.
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Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof (continued). It now remains to show that A and B have the
same characteristic polynomial, since this will (by definition) imply
that A and B have the same spectrum, and in particular, that the
eigenvalues of A and B have the same corresponding algebraic
multiplicities.

Since A and B are similar, we know that there exists an invertible
matrix P ∈ Fn×n s.t. B = P−1AP. We now compute (next slide):
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Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof (continued).

pB(λ) = det
(
λIn − B

)
= det

(
λIn − P−1AP

)
= det

(
P−1(λIn − A)P

)
= det(P−1) det

(
λIn − A

)
det(P) by Theorem 7.5.2

= 1
det(P) det

(
λIn − A

)
det(P) by Corollary 7.5.3

= det
(
λIn − A

)
= pA(λ). □



Theorem 8.2.9
Let F be a field, and let A, B ∈ Fn×n be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Remark: The converse of Theorem 8.2.9 is false: two
matrices in Fn×n (where F is a field) that have the same
characteristic polynomial, as well as the same eigenvalues,
with the same corresponding algebraic multiplicities, and the
same corresponding geometric multiplicities, need not be
similar.

We will see examples of this when we study the “Jordan
normal form.”



Definition
The trace of a square matrix A =

[
ai,j

]
n×n with entries in some

field F is defined to be trace(A) :=
∑n

i=1 ai ,i , i.e. the trace of A is
the sum of entries on the main diagonal of A.

For example, for the matrix

A =

 1 2 3
4 5 6
7 8 9


in C3×3, we have that trace(A) = 1 + 5 + 9 = 15.



Theorem 8.2.10
Let F be a field, let A =

[
ai,j

]
n×n be a matrix in Fn×n, and

assume that {λ1, . . . , λn} is the spectrum of A. Then
(a) det(A) = λ1 . . . λn;
(b) trace(A) = λ1 + · · · + λn.

Proof (outline).

(a) Compute pA(0) in two different ways.
(b) Compute the coefficient in front of λn−1 in pA(λ) in two
different ways. (Details: Lecture Notes.) □

Warning: Theorem 8.2.10 only applies if the spectrum of the
matrix A ∈ Fn×n contains n eigenvalues (counting algebraic
multiplicities)!

This will always be the case if the field F is algebraically
closed (for example, if F = C), but need not be the case
otherwise.
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3 Eigenvalues and invertibility (plus the Invertible Matrix
Theorem, version 4)

Proposition 8.2.11
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff 0 is not
an eigenvalue of A.

Proof. It suffices to show that 0 is an eigenvalue of A iff A is not
invertible. We have the following sequence of equivalent
statements:

0 is eigenvalue of A Thm. 8.2.2⇐⇒ det(0In − A) = 0

⇐⇒ det(−A) = 0

Prop. 7.2.3⇐⇒ (−1)ndet(A) = 0

⇐⇒ det(A) = 0

Thm. 7.4.1⇐⇒ A is not invertible
□
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Proposition 8.2.11
Let F be a field, and let A ∈ Fn×n. Then A is invertible iff 0 is not
an eigenvalue of A.

We now add the eigenvalue condition from Proposition 8.2.11
to our previous version of the Invertible Matrix Theorem to
obtain the fourth and final version of that theorem (next three
slides).

It uses all 26 letters of the English alphabet!



The Invertible Matrix Theorem (version 4)
Let F be a field, and let A ∈ Fn×n be a square matrix. Further, let
f : Fn → Fn be given by f (x) = Ax for all x ∈ Fn.a Then the
following are equivalent:

(a) A is invertible (i.e. A has an inverse);
(b) AT is invertible;
(c) RREF(A) = In;
(d) RREF

( [
A In

] )
=

[
In B

]
for some matrix B ∈ Fn×n;

(e) rank(A) = n;
(f) rank(AT ) = n;
(g) is a product of elementary matrices;

aSince f is a matrix transformation, Proposition 1.10.4 guarantees that f is
linear. Moreover, A is the standard matrix of f .



The Invertible Matrix Theorem (version 4, continued)
(h) the homogeneous matrix-vector equation Ax = 0 has only the

trivial solution (i.e. the solution x = 0);
(i) there exists some vector b ∈ Fn s.t. the matrix-vector

equation Ax = b has a unique solution;
(j) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has

a unique solution;
(k) for all vectors b ∈ Fn, the matrix-vector equation Ax = b has

at most one solution;
(l) for all vectors b ∈ Fn, the matrix-vector equation Ax = b is

consistent;
(m) f is one-to-one;
(n) f is onto;
(o) f is an isomorphism;



The Invertible Matrix Theorem (version 4, continued)
(p) there exists a matrix B ∈ Fn×n s.t. BA = In (i.e. A has a left

inverse);
(q) there exists a matrix C ∈ Fn×n s.t. AC = In (i.e. A has a right

inverse);
(r) the columns of A are linearly independent;
(s) the columns of A span Fn (i.e. Col(A) = Fn);
(t) the columns of A form a basis of Fn;
(u) the rows of A are linearly independent;
(v) the rows of A span F1×n (i.e. Row(A) = F1×n);
(w) the rows of A form a basis of F1×n;
(x) Nul(A) = {0} (i.e. dim

(
Nul(A)

)
= 0);

(y) det(A) ̸= 0;
(z) 0 is not an eigenvalue of A.



Reminder:
Suppose that V is a non-trivial, finite-dimensional vector space
over a field F, and that f : V → V is a linear function. Then
we define the determinant of f to be

det(f ) := det
(

B

[
f

]
B

)
,

where B is any basis of V .

As we explained in section 7.5, the reason that det(f ) is well
defined is because, by Theorem 4.5.16, all matrices of the form
B

[
f

]
B are similar, and therefore (by Corollary 7.5.4) have

the same determinant.
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Definition
Let V is a non-trivial, finite-dimensional vector space over a field
F. The characteristic polynomial of a linear function f : V → V is
defined to be the polynomial

pf (λ) := det
(
λIdV − f

)
= det

(
B

[
λIdV − f

]
B

)
,

where B is any basis of V .a

aAs usual, IdV is the identity function on V , i.e. it is the function
IdV : V → V given by IdV (v) = v for all v ∈ V .

As per our discussion above, the polynomial pf (λ) depends
only on f , and not on the particular choice of the basis B.
The characteristic equation of f is the equation

det
(
λIdV − f

)
= 0.

So, the roots of the characteristic polynomial of f are
precisely the solutions of the characteristic equation of f .
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Proposition 8.2.12
Let V be a non-trivial, finite-dimensional vector space over a field
F, let B be any basis of V , let f : V → V be a linear function, and
set B := B

[
f

]
B. Then pf (λ) = pB(λ).

Proof.

We compute:

pf (λ) = det
(
λIdV − f

)
by definition

= det
(

B

[
λIdV − f

]
B

)
by definition

= det
(

λ B

[
IdV

]
B − B

[
f

]
B

)
by Theorem 4.5.3

= det
(
λIn − B

)
= pB(λ) by definition.

□
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□



Reminder:

Theorem 8.2.2
Let F be a field, let A ∈ Fn×n, and let λ0 ∈ F. Then

Eλ0(A) = Nul
(
λ0In − A

)
= Nul

(
A − λ0In

)
.

Moreover, the following are equivalent:
(1) λ0 is an eigenvalue of A;
(2) λ0 is a root of the characteristic polynomial of A, i.e.

pA(λ0) = 0;
(3) λ0 is a solution of the characteristic equation of A, i.e.

det
(
λ0In − A

)
= 0.

Analogously, we have the following (next slide):
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Theorem 8.2.13
Let V be a non-trivial, finite-dimensional vector space over a field
F, let f : V → V be a linear function, and let λ0 ∈ F. Then

Eλ0(f ) = Ker
(
λ0IdV − f

)
= Ker

(
f − λ0IdV

)
.

Moreover, the following are equivalent:
(1) λ0 is an eigenvalue of f ;
(2) λ0 is a root of the characteristic polynomial of f , i.e.

pf (λ0) = 0;
(3) λ0 is a solution of the characteristic equation of f , i.e.

det
(
λ0IdV − f

)
= 0.

Proof: Lecture Notes. (Similar to the proof of
Theorem 8.2.2.)



Proposition 8.2.14
Let V be a non-trivial, finite-dimensional vector space over a field
F, let f : V → V be a linear function, and let B be any basis of V .
Then f and B

[
f

]
B have the same characteristic polynomial,

and the same spectrum. Moreover, f and B

[
f

]
B have exactly

the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

Proof.

The fact that f and B

[
f

]
B have the same eigenvalues,

with the same geometric multiplicities, follows immediately from
Proposition 8.1.7.

The fact that they have the same characteristic polynomial (and
consequently the same spectrum) follows immediately from
Proposition 8.2.12. Since f and B

[
f

]
B have the same spectrum,

their eigenvalues have the same algebraic multiplicities. □
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Proposition 8.2.14
Let V be a non-trivial, finite-dimensional vector space over a field
F, let f : V → V be a linear function, and let B be any basis of V .
Then f and B

[
f

]
B have the same characteristic polynomial,

and the same spectrum. Moreover, f and B

[
f

]
B have exactly

the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

As a special case for linear functions of the form f : Fn → Fn

(where F is a field) and their standard matrices, we have the
following proposition (next slide).



Proposition 8.2.15
Let F be a field, let f : Fn → Fn be a linear function, and let A be
the standard matrix of f . Then f and A have the same
characteristic polynomial and the same spectrum. Moreover, for
each eigenvalue λ of f and A, all the following hold:

the algebraic multiplicity of λ as an eigenvalue of f is the
same as the algebraic multiplicity of λ as an eigenvalue of A;
the geometric multiplicity of λ as an eigenvalue of f is the
same as the geometric multiplicity of λ as an eigenvalue of A;
Eλ(f ) = Eλ(A).

Proof.

Since A is the standard matrix of f , we have that
A = En

[
f

]
En

, where En is the standard basis of Fn. The result now
follows immediately from Propositions 8.1.5 and 8.2.14. □
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4 The relationship between algebraic and geometric
multiplicities of eigenvalues

Let’s now prove Theorem 8.2.3!

Theorem 8.2.3
Let F be a field, and let A ∈ Fn×n. Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Schematically, Theorem 8.2.3 states that for an eigenvalue λ
of A:

geometric multiplicity of λ ≤ algebraic multiplicity of λ.

In fact, it will be a bit more convenient to prove this theorem
for linear functions first (see Theorem 8.2.17 below), and to
then derive Theorem 8.2.3 as in immediate corollary.
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Theorem 8.2.17
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V → V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Proof.

Suppose that λ0 is an eigenvalue of f of geometric
multiplicity k. We must show that the eigenvalue λ0 has algebraic
multiplicity at least k, that is, that (λ − λ0)k | pf (λ).

The goal is to find a basis B of V for which it can easily be shown
that (λ − λ0)k divides the polynomial pB(λ), where B = B

[
f

]
B;

this is enough because, by Proposition 8.2.12, pf (λ) = pB(λ).
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Proof (continued). Reminder: λ0 is an eigenvalue of f ; WTS there
exists a basis B of V s.t. (λ − λ0)k | pB(λ), where B = B

[
f

]
B.

Since the geometric multiplicity of the eigenvalue λ0 of f is k, we
see that the eigenspace Eλ0(f ) has a k-element basis, say
{b1, . . . , bk}. In particular, {b1, . . . , bk} is a linearly independent
set of vectors in V , and so by Theorem 8.2.19, it can be extended
to a basis B = {b1, . . . , bk , bk+1, . . . , bn} of V . We now compute:

B :=
B

[
f

]
B

(∗)=
[ [

f (b1)
]

B
. . .

[
f (bk)

]
B

[
f (bk+1)

]
B

. . .
[

f (bn)
]

B

]
(∗∗)=

[ [
λ0b1

]
B

. . .
[

λ0bk
]

B

[
f (bk+1)

]
B

. . .
[

f (bn)
]

B

]
=

[
λ0en

1 . . . λ0en
k

[
f (bk+1)

]
B

. . .
[

f (bn)
]

B

]
=

[
λ0Ik

O(n−k)×k

[
f (bk+1)

]
B

. . .
[

f (bn)
]

B

]
,

where (*) follows from Theorem 4.5.1, and (**) follows from the
fact that b1, . . . , bk ∈ Eλ0(f ).
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Proof (continued). Reminder: λ0 is an eigenvalue of f ; WTS there
exists a basis B of V s.t. (λ − λ0)k | pB(λ), where B = B

[
f

]
B.

We showed:

B :=
B

[
f

]
B

=
[

λ0Ik
O(n−k)×k

[
f (bk+1)

]
B

. . .
[

f (bn)
]

B

]
.

Thus, pB(λ) is of the form

pB(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − λ0 0 . . . 0
0 λ − λ0 . . . 0
...

...
. . .

...
0 0 . . . λ − λ0
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

∗ ∗ . . . ∗
∗ ∗ . . . ∗
...

...
. . .

...
∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
...

...
. . .

...
∗ ∗ . . . ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the red submatrix in the upper-left corner (to the left of the
vertical dotted line, and above the horizontal dotted line) is of size
k × k. By iteratively performing Laplace expansion along the first
column, we see that pB(λ) has a factor (λ − λ0)k . □
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]
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[
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where the red submatrix in the upper-left corner (to the left of the
vertical dotted line, and above the horizontal dotted line) is of size
k × k. By iteratively performing Laplace expansion along the first
column, we see that pB(λ) has a factor (λ − λ0)k . □



Theorem 8.2.17
Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V → V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Theorem 8.2.3
Let F be a field, and let A ∈ Fn×n. Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Proof. Let fA : Fn → Fn be given by fA(x) = Ax for all x ∈ Fn.
Then fA is linear (by Prop. 1.10.4), and its standard matrix is A.

By Proposition 8.2.15, A and fA have exactly the same eigenvalues,
with the same corresponding geometric multiplicities, and the same
corresponding algebraic multiplicities. The result now follows from
Theorem 8.2.17 applied to the linear function fA. □
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