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@ This lecture has four parts:
@ Eigenvalues and eigenvectors of linear functions and square
matrices
The characteristic polynomial and spectrum
Eigenvalues and invertibility (plus the Invertible Matrix

Theorem, version 4)
The relationship between algebraic and geometric multiplicities
of eigenvalues
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© Eigenvalues and eigenvectors of linear functions and square
matrices

Definition

Suppose that V is a vector spaces over a field I, and that

f .V — Vis a linear function. An eigenvector of f is a vector
v € V' \ {0} for which there exists a scalar A € F, called the
eigenvalue of f associated with the eigenvector v, s.t.

flv) = Aw.

Under these circumstances, we also say that v is an eigenvector of
f associated with the eigenvalue .
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© Eigenvalues and eigenvectors of linear functions and square
matrices

Definition

Suppose that V is a vector spaces over a field I, and that

f .V — Vis a linear function. An eigenvector of f is a vector
v € V' \ {0} for which there exists a scalar A € F, called the
eigenvalue of f associated with the eigenvector v, s.t.

flv) = Aw.

Under these circumstances, we also say that v is an eigenvector of
f associated with the eigenvalue .

@ So, the eigenvectors of f are those non-zero vectors in V
that simply get scaled by f, and the eigenvalues are the
scalars that the eigenvectors get scaled by.

@ By definition, an eigenvector cannot be 0, but an eigenvalue
may possibly be 0.



Definition

Suppose that V is a vector spaces over a field I, and that

f .V — Vis a linear function. An eigenvector of f is a vector
v € V' \ {0} for which there exists a scalar A € F, called the
eigenvalue of f associated with the eigenvector v, s.t.

flv) = Aw.

Under these circumstances, we also say that v is an eigenvector of
f associated with the eigenvalue .

o Remark: Note that eigenvectors and eigenvalues are only
defined for those linear functions whose domain is the same as
the codomain.




Example 8.1.1

Consider the linear function f : R? — R? given by

(o) =[5 8]2] =[]

for all x1,x2 € R. So, f is the reflection about the xp-axis (see the

picture below), and its standard matrix is { _(1) (1) }

As usual, e; and e, are the standard basis vectors of R2. Then
(next slide)



Example 8.1.1

@ ej is an eigenvector of f associated with the eigenvalue
A1 := —1, since f(e1) = —e; = \ieq;

@ e is an eigenvector of f associated with the eigenvalue
A2 =1, since f(e2) = ex = \sey.

o

el Y




Example 8.1.2
Consider the linear function f : R? — R? given by

X1 o 0 -1 X1 - —X2
(=D =12 9)l2] - 7%
for all x,x; € R. So, f is the counterclockwise rotation by 90°
about the origin (see the picture below), and its standard matrix is

[ (1) _é } This function has no eigenvectors (and consequently, it

has no eigenvalues), since it does not simply scale any non-zero
vector in R?,

T2




Example 8.1.3

Consider the linear function f : C?> — C? given by

X1 o 0 -1 X1 o —X2
(R I
for all x1,xy € C. (This is the same formula as the one from

Example 8.1.2, except that we are now working over C, rather than
over R.) Then
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Example 8.1.3

Consider the linear function f : C?> — C? given by

X1 o 0 -1 X1 o —X2
(R I
for all x1,xy € C. (This is the same formula as the one from

Example 8.1.2, except that we are now working over C, rather than
over R.) Then

o v; = 1 is an eigenvalue of f associated with the
i

eigenvalue \; := i, since f(vi) = [ _%. } = { , } = A\vq;

o v, = 1’ } is an eigenvector of f associated with the

eigenvalue \ := —i, since

F(va) = [ -1 ] — (i) [ o ] = Jovy.

I



o Example 8.1.2: f : R? — R?, given by
X1 . 0 -1 X1 . —X2
(2D = 5 lla] = [2] vanes
(counterclockwise rotation by 90° about the origin);
o Example 8.1.3: f : C%2 — C?,

(5D =[][R] - [2] wenee



o Example 8.1.2: f : R? — R?, given by

X1 . 0 -1 X1 . —X2
(2D = 5 lla] = [2] vanes
(counterclockwise rotation by 90° about the origin);
o Example 8.1.3: f : C%2 — C?,

X1 o 0 -1 X1 o —X2
(2] - [ olla] - [ 3] wmee
@ Remark: It may be somewhat surprising that the linear

function f from Example 8.1.2 has no eigenvectors and no
eigenvalues, whereas the one from Example 8.1.3 has them.



o Example 8.1.2: f : R? — R?, given by
X1 . 0 -1 X1 . —X2
(2 - (2 2[2] - [3] wwnes

(counterclockwise rotation by 90° about the origin);
o Example 8.1.3: f : C%2 — C?,

(5D =[][R] - [2] wenee

@ Remark: It may be somewhat surprising that the linear
function f from Example 8.1.2 has no eigenvectors and no
eigenvalues, whereas the one from Example 8.1.3 has them.

@ As we shall see once we learn how to actually compute
eigenvalues and eigenvectors (this will involve finding roots of
polynomials), the essential difference is that C is an
algebraically closed field, whereas R is not.
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every non-constant polynomial with coefficients in IF has a root in
F.
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e If F is an algebraically closed field, and p(x) is non-constant
polynomial with coefficients in F, then p(x) can be factored
into linear terms.



@ Reminder:

Definition

An algebraically closed field is a field I that has the property that
every non-constant polynomial with coefficients in IF has a root in
F.

e If F is an algebraically closed field, and p(x) is non-constant
polynomial with coefficients in F, then p(x) can be factored
into linear terms.

o C is algebraically closed.

e Q R, and Z, (where p is a prime number) are not
algebraically closed.



@ For a linear function f : V — V, where V is a vector space
over a field IF, and for a scalar A € I, we define

Ex(f) = {veV|f(v)=Av}.
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over a field IF, and for a scalar A € I, we define

Ex(f) = {veV|f(v)=Av}.
()

e Note that 0 € E,\(f), since f(0) = 0 = A0, where (*) follows
from Proposition 6.1.4 (since f is linear).
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@ For a linear function f : V — V, where V is a vector space
over a field IF, and for a scalar A € I, we define

Ex(f) = {veV|f(v)=Av}.
()

e Note that 0 € E,\(f), since f(0) = 0 = A0, where (*) follows
from Proposition 6.1.4 (since f is linear).

@ The set E\(f) can be defined for any scalar A, but it is only
interesting in the case when A is an eigenvalue of V/, in which
case E\(f) is called the eigenspace of f associated with the
eigenvalue .

@ Note that, for an eigenvalue X\ of f, the elements of the

eigenspace E)(f) are precisely the zero vector and the
eigenvectors of f associated with A.

e By definition, 0 cannot be an eigenvector.
@ On the other hand, if A is not an eigenvalue of f, then we
simply have that Ex(f) = {0}, and we do not refer to Ex(f)
as an eigenspace.



Proposition 8.1.4
Let V be a vector space over a field F, and let f : V — V be a
linear function. Then both the following hold:

@ for all scalars A € IF, Ex(f) is a subspace of V/, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff \ is an eigenvalue of f;

@ for all distinct scalars A1, A\, € F, we have that
Ex,(f) N Ex,(f) = {0}.

Proof (outline). (a) For A € F:
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@ for all scalars A € IF, Ex(f) is a subspace of V/, and this
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e we check that Ex(f) contains 0 and is closed under vector
addition and scalar multiplication, and we deduce (by
Theorem 3.1.7) that Ex(f) is a subspace of V;



Proposition 8.1.4
Let V be a vector space over a field F, and let f : V — V be a
linear function. Then both the following hold:

@ for all scalars A € IF, Ex(f) is a subspace of V/, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff \ is an eigenvalue of f;

@ for all distinct scalars A1, A\, € F, we have that
Ex,(f) N Ex,(f) = {0}.

Proof (outline). (a) For A € F:

e we check that Ex(f) contains 0 and is closed under vector
addition and scalar multiplication, and we deduce (by
Theorem 3.1.7) that Ex(f) is a subspace of V;

@ any non-zero vector in Ex(f) is an eigenvector of f associated
with A, and so Ey(f) is non-trivial iff A is an eigenvalue of f.



Proposition 8.1.4

Let V be a vector space over a field F, and let f : V — V be a
linear function. Then both the following hold:

@ for all scalars A € IF, Ex(f) is a subspace of V, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff A\ is an eigenvalue of f;

@ for all distinct scalars A\, A\» € F, we have that
Ex,(f) N Ex,(f) = {0}.

Proof (outline, continued). (b) Fix distinct A1, A2 € F.




Proposition 8.1.4

Let V be a vector space over a field F, and let f : V — V be a
linear function. Then both the following hold:

@ for all scalars A € IF, Ex(f) is a subspace of V, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff A\ is an eigenvalue of f;

@ for all distinct scalars A\, A\» € F, we have that
Ex,(f) N Ex,(f) = {0}.

Proof (outline, continued). (b) Fix distinct A1, A2 € F. Obviously,
0¢c E>\1(f) N E)\Q(f).



Proposition 8.1.4

Let V be a vector space over a field F, and let f : V — V be a
linear function. Then both the following hold:

@ for all scalars A € IF, Ex(f) is a subspace of V, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff A\ is an eigenvalue of f;

@ for all distinct scalars A\, A\» € F, we have that
Ex,(f) N Ex,(f) = {0}.

Proof (outline, continued). (b) Fix distinct A1, A2 € F. Obviously,
0 € E),(f) N Ex,(f). On the other hand, for v € Ey, (f) N Ex,(f):

f(v) = A1v (because v € Ey,(f)) and
f(v) = Aav (because v € Ey,(f))

— >\1V=)\2V — ()\1—)\2)V=0 — v=0.
N—_——
#0
So, Ey, (f)NEy(f) ={0}. O



Proposition 8.1.4

Let V be a vector space over a field F, and let f : V — V be a
linear function. Then both the following hold:

@ for all scalars A\ € I, Ex(f) is a subspace of V/, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff \ is an eigenvalue of f;

@ for all distinct scalars A1, A\, € F, we have that
Ex,(f) N Ex,(f) = {0}.

@ Terminology: Suppose that V is a vector space over a field F,
and that X is an eigenvalue of a linear function f : V — V.
o The geometric multiplicity of the eigenvalue X\ is defined to be
dlm(E)\(f))
e So, the geometric multiplicity of an eigenvalue is the
dimension of the associated eigenspace.




Definition

Let IF be a field, and let A € F"*" be a square matrix. An
eigenvector of A is a vector v € F" \ {0} for which there exists a
scalar A € F, called the eigenvalue of A associated with the
eigenvector v, s.t.

Av = Av.

Under these circumstances, we also say that v is an eigenvector of
A associated with the eigenvalue A.

o Eigenvectors are, by definition, non-zero, whereas eigenvalues
may possibly be zero.



e For a square matrix A € F"*" (where F is some field), and for
a scalar A € IF, we define

Ex(A) = {velF"|Av=A\v}.

If X is an eigenvalue of A, then E)(A) is called the eigenspace
of A associated with the eigenvalue A.



e For a square matrix A € F"*" (where F is some field), and for
a scalar A € IF, we define

Ex(A) = {velF"|Av=A\v}.

If X is an eigenvalue of A, then E)(A) is called the eigenspace
of A associated with the eigenvalue A.
o Note that, for an eigenvalue X\ of A, the elements of the
eigenspace E)(A) are precisely the zero vector and the
eigenvectors of A associated with A.



e For a square matrix A € F"*" (where F is some field), and for
a scalar A € IF, we define

Ex(A) = {velF"|Av=A\v}.

If X is an eigenvalue of A, then E)(A) is called the eigenspace
of A associated with the eigenvalue A.

o Note that, for an eigenvalue X\ of A, the elements of the
eigenspace E)(A) are precisely the zero vector and the
eigenvectors of A associated with A.

e On the other hand, if A is not an eigenvalue of A, then we
simply have that Ex(A) = {0}, and we do not refer to Ej(A)
as an eigenspace.



Proposition 8.1.5

Let F be a field, let f : F” — F" be a linear function, and let A be
the standard matrix of f. Then f and A have exactly the same
eigenvalues and the associated eigenectors. Moreover, for all
eigenvalues \ of f and A, we have that E\(f) = Ey(A).

Proof. This follows immediately from the appropriate definitions. [



@ Reminder:

Proposition 8.1.4
Let V be a vector space over a field F, and let f : V — V be a
linear function. Then both the following hold:

@ for all scalars A € IF, Ex(f) is a subspace of V/, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff A is an eigenvalue of f;

@ for all distinct scalars A1, A\» € I, we have that
Ex (f) N Ex,(f) = {0},




@ Reminder:

Proposition 8.1.4
Let V be a vector space over a field F, and let f : V — V be a
linear function. Then both the following hold:

@ for all scalars A € IF, Ex(f) is a subspace of V/, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff A is an eigenvalue of f;

@ for all distinct scalars A1, A\» € I, we have that
Ex (f) N Ex(f) = {0}.

@ For square matrices, we have the following analog of
Proposition 8.1.4.



Proposition 8.1.6

Let IF be a field, and let A € F"*" be a square matrix. Then all the

following hold:

@ for all scalars A € IF, E5(A) is a subspace of F", and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff A\ is an eigenvalue of A;

@ for all distinct scalars A1, A\, € F, we have that
Ex(A)N Ex(A) = {0}.

Proof.



Proposition 8.1.6

Let IF be a field, and let A € F"*" be a square matrix. Then all the

following hold:

@ for all scalars A € IF, E5(A) is a subspace of F", and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff A\ is an eigenvalue of A;

@ for all distinct scalars A1, A\, € F, we have that
Ex(A)N Ex(A) = {0}.

Proof. Consider the function f4 : F" — F", given by fa(v) = Av
for all vectors v € F". Then f4 is linear (by Proposition 1.10.4),
and moreover, A is the standard matrix of f4.

So, by Proposition 8.1.5, we have that for all A € F,
Ex(A) = Ex(fa).

The result now follows immediately from Proposition 8.1.4. [J



Proposition 8.1.6

Let IF be a field, and let A € F"*" be a square matrix. Then all the

following hold:

@ for all scalars A\ € I, E)(A) is a subspace of F”, and this
subspace is non-trivial (i.e. contains at least one non-zero
vector) iff A\ is an eigenvalue of A;

@ for all distinct scalars A1, A\, € I, we have that
Ex,(A) N Ex,(A) = {0}.

@ Terminology: Suppose that F is a field, and that A is an
eigenvalue of a square matrix A € F"*".
o The geometric multiplicity of the eigenvalue X\ is defined to be
dim(Ex(A)).
e So, the geometric multiplicity of an eigenvalue is the
dimension of the associated eigenspace.



Proposition 8.1.7

Let V be a non-trivial, finite-dimensional vector space over a field
F, let B={b1,...,b,} be a basisof V, andlet f: V — V be a
linear function. Then for all A € F, we have that

Bl fls) = Ulv]lvenm)

Consequently, the linear function f and the matrix B{ f }B have
exactly the same eigenvalues, with exactly the same corresponding
geometric multiplicities.

@ Proof: Lecture Notes.
@ Proposition 8.1.7 states that E)‘(B[ f }B) is the image of

E)(f) under the coordinate transformation



@ In view of Propositions 8.1.5 (“linear functions and their
standard matrices have the same eigenvalues, eigenvectors,
and eigenspaces”) and 8.1.7 (previous slide), we see that the
study of eigenvalues and eigenvectors of linear functions from
a non-trivial, finite-dimensional vector space to itself is
essentially equivalent to the study of eigenvalues and
eigenvectors of square matrices.

e The computational tools that we develop for finding
eigenvectors and eigenvalues will primarily be for square
matrices.

@ On the other hand, some of the theoretical results that we
prove will be for linear functions instead, and we will obtain
corresponding results for matrices as more or less immediate
corollaries.



@ The characteristic polynomial and spectrum

Definition

Given a field F and a matrix A € F"*" the characteristic
polynomial of A is defined to be

pa(A) = det(\, — A).
The characteristic equation of A is the equation
det(M, —A) = 0.

So, the roots of the characteristic polynomial of A are precisely the
solutions of the characteristic equation of A.




Example 8.2.1
Compute the characteristic polynomial of the following matrix in

(C3><3.

1 -2 3
A = -1 0o 2.
2 -1 -3

Solution.



Example 8.2.1
Compute the characteristic polynomial of the following matrix in

(C3><3.

1 -2 3
A = -1 0o 2.
2 -1 -3

Solution. The characteristic polynomial of A is:

A-1 2 -3
pa(\) = det(\s—A) = 1 A -2
—2 1 A+3

= M 4+2)2-9)\-3.



o Remark: For a field F and a matrix A € F"™", the
characteristic polynomial pa(\) = det(Al, — A) is a
polynomial of degree n, with leading coefficient 1, i.e. the
coefficient in front of A" in pa()) is 1.
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polynomial of degree n, with leading coefficient 1, i.e. the
coefficient in front of A" in pa()) is 1.

e In some texts, the characteristic polynomial is defined to be
det(A — M,).



o Remark: For a field F and a matrix A € F"™", the
characteristic polynomial pa(\) = det(Al, — A) is a
polynomial of degree n, with leading coefficient 1, i.e. the
coefficient in front of A" in pa()) is 1.

e In some texts, the characteristic polynomial is defined to be
det(A — \l,).

e By Proposition 7.2.3, we have that
det(A — Al,) = (—1)"det(Al, — A), and so the polynomials
det(Al, — A) and det(A — \l,) have exactly the same roots,
with the same corresponding multiplicities, which is what we
will actually care about when it comes to the characteristic
polynomial.



o Remark: For a field F and a matrix A € F"™", the
characteristic polynomial pa(\) = det(Al, — A) is a
polynomial of degree n, with leading coefficient 1, i.e. the
coefficient in front of A" in pa()) is 1.

e In some texts, the characteristic polynomial is defined to be
det(A — \l,).

e By Proposition 7.2.3, we have that
det(A — Al,) = (—1)"det(Al, — A), and so the polynomials
det(Al, — A) and det(A — Al,) have exactly the same roots,
with the same corresponding multiplicities, which is what we
will actually care about when it comes to the characteristic
polynomial.

e The main advantage of using det(A/, — A) rather than
det(A — Al,) is that the former polynomial has leading
coefficient 1, whereas the latter has leading coefficient (—1)",
which is —1 if n is odd.



Theorem 8.2.2
Let IF be a field, let A € F"" and let \g € F. Then

Ex,(A) = Nul(holy—A) = Nul(A—Xol).

Moreover, the following are equivalent:

@ g is an eigenvalue of A;

@ Ao is a root of the characteristic polynomial of A, i.e.
pa(Xo) = 0;

@ g is a solution of the characteristic equation of A, i.e.
det(Mo/y — A) = 0.

Proof.



Theorem 8.2.2
Let IF be a field, let A € F"" and let \g € F. Then

Ex,(A) = Nul(holy—A) = Nul(A—Xol).

Moreover, the following are equivalent:

@ g is an eigenvalue of A;

@ Ao is a root of the characteristic polynomial of A, i.e.
pa(Xo) = 0;

@ ) is a solution of the characteristic equation of A, i.e.
det(Mo/y — A) = 0.

Proof. Obviously, for all v.€ F", we have that (Aol, — A)v = 0 iff
(A— Aol)v = 0. So, Nul(Aoly — A) = Nul(A — Aol,).



Theorem 8.2.2

Let IF be a field, let A € F"*" and let \g € F. Then
Ex,(A) = Nul(Moln —A) = Nul(A— Xoly).

Moreover, the following are equivalent:

@ Mg is an eigenvalue of A;
@ g is a root of the characteristic polynomial of A, i.e.
pa(Xo) = 0;
@ Mg is a solution of the characteristic equation of A, i.e.
det(Xolh — A) = 0.
Proof (continued). Further, we compute (next slide):
Ex(A) = {veF"|Av= v}
= {veF"|Av= X/}
= {veF"| (Xl — ANV =0}
Nul(Aoln — A).




Theorem 8.2.2

Let IF be a field, let A € F"*" and let \g € F. Then
Ex,(A) = Nul(Moln —A) = Nul(A— Xoly).

Moreover, the following are equivalent:
@ o is an eigenvalue of A;

@ g is a root of the characteristic polynomial of A, i.e.
pa(Xo) = 0;

@ Ao is a solution of the characteristic equation of A, i.e.
det(Xolp — A) = 0.

Proof (continued). We have now shown that

Ex,(A) = Nul(Aoly—A) = Nul(A— Xolp).



Theorem 8.2.2

Let IF be a field, let A € F"*" and let \g € F. Then
Ex,(A) = Nul(Moln —A) = Nul(A— Xoly).

Moreover, the following are equivalent:

@ o is an eigenvalue of A;

@ \p is a root of the characteristic polynomial of A, i.e.
pa(Xo) = 0;

@ o is a solution of the characteristic equation of A, i.e.
det(Xolp — A) = 0.

Proof (continued). We have now shown that
Ex(A) = Nul(doly—A) = Nul(A—Xol).

It remains to show that (1), (2), and (3) are equivalent. The fact
that (2) and (3) are equivalent follows immediately from the
appropriate definitions. It remains to prove that (1) and (3) are
equivalent.



Theorem 8.2.2

Moreover, the following are equivalent:

@ Mo is an eigenvalue of A;

@ o is a solution of the characteristic equation of A, i.e.
det(Xolh — A) = 0.

Proof (continued). Reminder: Ey,(A) = Nul(Aol, — A).

Ao is an eigenvalue of A Prop. 8.1.6
2 E Ex,(A) # {0}
(1)
—_———
—Exy(A)

<|M:T> the matrix Ao/, — A
is not invertible

IMT det()\()ln — A) = 0

<

©)



Theorem 8.2.2

Let F be a field, let A € F"™*" and let \g € F. Then
Ex,(A) = Nul(Moln —A) = Nul(A— Xoly).

Moreover, the following are equivalent:

@ Mo is an eigenvalue of A;

@ Mo is a root of the characteristic polynomial of A, i.e.
pa(Xo) = 0;

@ Mo is a solution of the characteristic equation of A, i.e.
det(Xolp — A) = 0.




@ By Theorem 8.2.2, the eigenvalues of a square matrix are
precisely the roots of its characteristic polynomial.
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precisely the roots of its characteristic polynomial.

@ For a field F, a matrix A € F"*", and an eigenvalue \g of A,
the algebraic multiplicity of the eigenvalue Ag is its multiplicity
as a root of the characteristic polynomial of A, or in other
words, it is the largest integer k such that (A — \o)* | pa()),
i.e. such that (A — \g)¥ divides the polynomial pa()).



@ By Theorem 8.2.2, the eigenvalues of a square matrix are
precisely the roots of its characteristic polynomial.

@ For a field F, a matrix A € F"*", and an eigenvalue \g of A,
the algebraic multiplicity of the eigenvalue Ag is its multiplicity
as a root of the characteristic polynomial of A, or in other
words, it is the largest integer k such that (A — \o)* | pa()),
i.e. such that (A — \g)¥ divides the polynomial pa()).

e Since deg(pa(\)) = n, the sum of algebraic multiplicities of
the eigenvalues of the matrix A € F"*" is at most n; if the
field IF is algebraically closed, then the sum of algebraic
multiplicities of the eigenvalues of A is exactly n.



@ By Theorem 8.2.2, the eigenvalues of a square matrix are
precisely the roots of its characteristic polynomial.

@ For a field F, a matrix A € F"*", and an eigenvalue \g of A,
the algebraic multiplicity of the eigenvalue Ag is its multiplicity
as a root of the characteristic polynomial of A, or in other
words, it is the largest integer k such that (A — \o)* | pa()),
i.e. such that (A — \g)¥ divides the polynomial pa()).

e Since deg(pa(\)) = n, the sum of algebraic multiplicities of
the eigenvalues of the matrix A € F"*" is at most n; if the
field IF is algebraically closed, then the sum of algebraic
multiplicities of the eigenvalues of A is exactly n.

o Indeed, if FF is algebraically closed, then the characteristic
polynomial pa(\) can be written as a product of linear factors,
and there are n of those factors.



@ By Theorem 8.2.2, the eigenvalues of a square matrix are
precisely the roots of its characteristic polynomial.

@ For a field F, a matrix A € F"*", and an eigenvalue \g of A,
the algebraic multiplicity of the eigenvalue Ag is its multiplicity
as a root of the characteristic polynomial of A, or in other
words, it is the largest integer k such that (A — \o)* | pa()),
i.e. such that (A — \g)¥ divides the polynomial pa()).

e Since deg(pa(\)) = n, the sum of algebraic multiplicities of
the eigenvalues of the matrix A € F"*" is at most n; if the
field IF is algebraically closed, then the sum of algebraic
multiplicities of the eigenvalues of A is exactly n.

o Indeed, if FF is algebraically closed, then the characteristic
polynomial pa(\) can be written as a product of linear factors,
and there are n of those factors.

o If F is not algebraically closed, we might or might not be able
to factor pa(A) in this way, which is why the sum of algebraic
multiplicities of the eigenvalues of A is at most n (possibly
strictly smaller than n).



Theorem 8.2.3

Let IF be a field, and let A € F"*". Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

@ Proof: Later!

@ Schematically, Theorem 8.2.3 states that for an eigenvalue A
of A:

geometric multiplicity of A < algebraic multiplicity of A.



Theorem 8.2.3

Let IF be a field, and let A € F"*". Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

@ Proof: Later!

@ Schematically, Theorem 8.2.3 states that for an eigenvalue A
of A:

geometric multiplicity of A < algebraic multiplicity of A.

@ For now, we have only stated Theorem 8.2.3. We will not use
this theorem before proving it.



@ The spectrum of a square matrix A € F"*" is the multiset of
all eigenvalues of A, with algebraic multiplicities taken into
account.

e This means that the number of times that an eigenvalue
appears in the spectrum is equal to the algebraic multiplicity of
that eigenvalue. The order in which we list the eigenvalues in
the spectrum does not matter, but repetitions do matter.



@ The spectrum of a square matrix A € F"*" is the multiset of
all eigenvalues of A, with algebraic multiplicities taken into
account.

e This means that the number of times that an eigenvalue
appears in the spectrum is equal to the algebraic multiplicity of
that eigenvalue. The order in which we list the eigenvalues in
the spectrum does not matter, but repetitions do matter.

e For example, if a matrix A € C>*® has eigenvalues 1 (with
algeraic multiplicity 1), 1 + i (with algebraic multiplicity 2),
and 1 — / (with algebraic multiplicity 2), then the spectrum of
Ais {1,1+i,14i,1—i,1—i}.



@ The spectrum of a square matrix A € F"*" is the multiset of
all eigenvalues of A, with algebraic multiplicities taken into
account.

e This means that the number of times that an eigenvalue
appears in the spectrum is equal to the algebraic multiplicity of
that eigenvalue. The order in which we list the eigenvalues in
the spectrum does not matter, but repetitions do matter.

e For example, if a matrix A € C>*® has eigenvalues 1 (with
algeraic multiplicity 1), 1 + i (with algebraic multiplicity 2),
and 1 — / (with algebraic multiplicity 2), then the spectrum of
Ais{1,1+i,1+i1—i1—i}.

@ In general, the spectrum of a matrix A € F"*" (where F is a
field) has at most n elements; if the field I is algebraically
closed, then the spectrum of A has exactly n elements.



Example 8.2.4

Consider the following matrix in C3*3;

4 0 -2
A = 2 5 4.
0 0 5

@ Compute the characteristic polynomial pa()) of the matrix A.
@ Compute all the eigenvalues of A and their algebraic
multiplicities, and compute the spectrum of A.

@ For each eigenvalue A of A, compute a basis of the eigenspace

E)(A) and specify the geometric multiplicity of the eigenvalue
A




. 4 0 -2
@ Reminder: A= | 2 5 4
0 0 5

Solution. (a) The characteristic polynomial of A is:

pa(})

det()\l3 — A)

A—4 0 2
-2 A-5 -4
0 0 A-=5

via Laplace expansion

_ _E)2
(A=A -5) along 2nd column

A3 — 1422 4+ 65\ — 100.



. 4 0 -2
@ Reminder: A= | 2 5 4
0 0 5

Solution. (a) The characteristic polynomial of A is:
pa(A) = det(\; — A)

A—4 0 2
= | =2 A-5 —4
0 0 A-=5

via Laplace expansion

_ _E)2
(A=A -5) along 2nd column

= A3 —14)\2 4+ 65\ — 100.

@ Remark: We did not really need to expand in the last line.
e We only really care about the roots of the characteristic
polynomial, and it is more convenient to have a form that is
already factored.
o So, pa(A) = (A —4)(A —5)? is a “better” answer than
pa(A) = A3 — 14)2 + 65\ — 100, although they are both
correct.



Example 8.2.4

Consider the following matrix in C3*3:

4 0 -2
A= |25 a].
00 5

@ Compute the characteristic polynomial pa(A) of the matrix A.
@ Compute all the eigenvalues of A and their algebraic
multiplicities, and compute the spectrum of A.

@ For each eigenvalue A of A, compute a basis of the eigenspace

E)(A) and specify the geometric multiplicity of the eigenvalue
A

V.

Solution (continued). Reminder: (a) pa(\) = (A — 4)(\ — 5)2.



Example 8.2.4

Consider the following matrix in C3*3:

4 0 -2
A= |25 a].
00 5

@ Compute the characteristic polynomial pa(A) of the matrix A.
@ Compute all the eigenvalues of A and their algebraic
multiplicities, and compute the spectrum of A.

@ For each eigenvalue A of A, compute a basis of the eigenspace
E)(A) and specify the geometric multiplicity of the eigenvalue
A.

Solution (continued). Reminder: (a) pa(\) = (A — 4)(\ — 5)2.

(b) From part (a), we see that A has two eigenvalues, namely, the
eigenvalue A\; = 4 (with algebraic multiplicity 1), and the
eigenvalue A\, =5 (with algebraic multiplicity 2). So, the spectrum
of Ais {4,5,5}.

V.



@ Reminder: A = {3 e i }

0 0 5

Solution (continued). Reminder: the eigenvalues of A are A\; = 4
and /\2 =5.



@ Reminder: A = {3 e i }

0 0 5

Solution (continued). Reminder: the eigenvalues of A are A\; = 4
and /\2 =5.

(c) For each i € {1,2}, we have that
E)\i(A) = Nul(/\,-/3 — A),

which is precisely the set of all solutions of the characteristic
equation
()\,'13 - A)X = 0.



@ Reminder: A = {3 e i }
0 0 5

Solution (continued). Reminder: the eigenvalues of A are A\; = 4
and /\2 =5.

(c) For each i € {1,2}, we have that
E)\i(A) = Nul(/\,-/3 — A),

which is precisely the set of all solutions of the characteristic
equation
()\,'13 - A)X = 0.

Let us now compute a basis of each of the two eigenspaces.



—2
4
5

@ Reminder: A =

onN s

0
5
0
Solution (continued). (c) For A\; = 4, we have that

M—4 0 2 0 0 2
Mh—A = 2 M -5 -4 - | 2 -1 -4 |,
0 0 -1

0 0 A1 —5



—2
4
5

@ Reminder: A =

onN s

0
5
0
Solution (continued). (c) For A\; = 4, we have that
A —4 0
MbB—A = -2 M-5
0 0

and that

RREF(\ /s — A)

O =

o
o ONIR



—2
4
5

@ Reminder: A =

onN s

0
5
0
Solution (continued). (c) For A\; = 4, we have that

A — 4 0 2 0 0 2
Mb—A = —2 A -5 -4 = | -2 -1 -a|,
0 0 A1 —5 0 0 -1
and that -
1 30
RREF(\5—A) = |0 0 1
[o 0 0|

Consequently, the general solution of the equation
()\1/3 — A)X =0is

—t/2 ~1/2
t = t]| 1 -
SRR

N+

|
|

ON =
I

g

P

oy

~+

m

@



0
5
0
Solution (continued). (c) For A\; = 4, we have that

A — 4 0 2
Mk —A = —2 A —5 —4 =
0 0 A1—5
and that -
1 30
RREF(\5—A) = |0 0 1
[o 0 0|

Consequently, the general solution of the equation
()\1/3 — A)X =0is

—t/2 ~1/2
t = t 1 =

So, { [-1 2 0 ]T} is a basis of the eigespace
Er,(A) = Nul(A — M ,),

0
-2
0

0
-1
0

2
—4
-1

|

N+

|
|

ON =
I

g

P

oy

~+

m

Q



0
5
0
Solution (continued). (c) For A\; = 4, we have that

A — 4 0 2 0 0 2
Mb—A = —2 A -5 -4 = | -2 -1 -a|,
0 0 A1 —5 0 0 -1
and that -
1 30
RREF(\5—A) = |0 0 1
[0 0 0|

Consequently, the general solution of the equation
()\1/3 — A)X =0is

—t/2 ~1/2
t = t 1 =

So, { [-1 2 0 ]T} is a basis of the eigespace

E), (A) = Nul(A — A1/,), and we see that the eigenvalue \; = 4
has geometric multiplicity 1.

N+

|
|

ON =
I

g

P

oy

~+

m

aQ



Example 8.2.4

Consider the following matrix in C3*3:

4 0 -2
A = 2 5 4.
0 0 5

@ Compute the characteristic polynomial pa()) of the matrix A.

@ Compute all the eigenvalues of A and their algebraic
multiplicities, and compute the spectrum of A.

@ For each eigenvalue A of A, compute a basis of the eigenspace
E)(A) and specify the geometric multiplicity of the eigenvalue

A

Solution (continued). (c) Similarly, for A, =5, we get that

0 -2
{ [ 1 ] , [ 0 ] } is a basis of the eigenspace

0 1
E),(A) = Nul(A — X2/,), and we see that the eigenvalue A, =5
has geometric multiplicity 2 (details: Lecture Notes). O




@ Reminder:

Proposition 7.3.1

Let IF be a field, and let A= [ a;; |
F"™" Then

. be a triangular matrix in

nx

n
det(A) = [laij = ai1a2...ann,
i=1

that is, det(A) is equal to the product of entries on the main
diagonal of A.

* * * * * 0 0 0 0
0 * * * * * * 0 0 0
0 0 * * * * * * 0 0
0 0 0 * * * * * * 0
0 0 0 0 * * * *

upper triangular matrix lower triangular matrix



Proposition 8.2.7

Let IF be a field, and let A = [ aj j } be a triangular matrix in
nxn

F"%" Then the characteristic polynomial of A is

pa(A) = A=aii)) = (A—ar1)(A—a22)...(A—ann),

=

]

the eigenvalues of A are precisely the entries of A on its main
diagonal, and moreover, the algebraic multiplicity of each
eigenvalue is precisely the number of times that it appears on the
main diagonal of A.? Consequently, the spectrum of A is
{a11,a22,...,ann}, i.e. the multiset formed precisely by the main
diagonal entries of A, with each number appearing in the spectrum
of A the same number of times as on the main diagonal of A.

“However, the geometric multiplicity may possibly be smaller.




@ For example, for the matrix

12000
02000
A = 00113
0 00 3 3
0 000 3

in C®*5, we have the following:
e the characteristic polynomial of A is:

pa(d) = (A=A -2)(A-1A-3)(A-3)
= (A—12(A—2)(A—3)%;

o the spectrum of Ais {1,1,2,3,3}.



Definition

Let F be a field. Given matrices A, B € F"*", we say that A is
similar to B if there exists an invertible matrix P € F"*" s.t.
B =P lAP.




Definition
Let F be a field. Given matrices A, B € F"*", we say that A is

similar to B if there exists an invertible matrix P € F"*" s.t.
B =P lAP.

Theorem 4.5.16

Let IF be a field, let B, C € F"*" be matrices, and let V be an
n-dimensional vector space over the field IF. Then the following are
equivalent:

@ B and C are similar;

@ for all bases B of V and linear functions f : V — V s.t.

B:B[ f ]B, there exists a basis C of V s.t. C:C[ f ]C;

@ for all bases C of V and linear functions f : V — V s.t.

C:C[ f }c' there exists a basis B of V s.t. B:B[ f ]B;

@ there exist bases B and C of V and a linear function
f:V—>Vs.t.B:B[ f}BandC:C[f}

c




Theorem 8.2.9

Let IF be a field, and let A, B € F"*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

@ Warning: Similar matrices A and B need not have the same
eigenspaces, that is, for an eigenvalue )\ of A and B:

Ex(A) < Ex(B)



Theorem 8.2.9

Let F be a field, and let A, B € F"™*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof.



Theorem 8.2.9

Let F be a field, and let A, B € F"™*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof. Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.



Theorem 8.2.9

Let F be a field, and let A, B € F"™*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof. Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.

Since A and B are similar, Theorem 4.5.16 guarantees that there
exists a linear function f : F” — F” and bases A and B of " s.t.

A:A[ f}AandB:B[ f]B'



Theorem 8.2.9

Let F be a field, and let A, B € F"™*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof. Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.

Since A and B are similar, Theorem 4.5.16 guarantees that there
exists a linear function f : F” — F” and bases A and B of " s.t.
A= [ fl and B= [ f ],

But then by Proposition 8.1.7, the linear function f and the matrix
A= [ f ], have exactly the same eigenvalues, with exactly the
same corresponding geometric multiplicities, and the same holds

for f and the matrix B = B[ f ]B.



Theorem 8.2.9

Let F be a field, and let A, B € F"™*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof. Let us first show that A and B have the same eigenvalues
with the same corresponding geometric multiplicities.

Since A and B are similar, Theorem 4.5.16 guarantees that there
exists a linear function f : F” — F” and bases A and B of " s.t.
A= [ fl and B= [ f ],

But then by Proposition 8.1.7, the linear function f and the matrix
A= [ f ], have exactly the same eigenvalues, with exactly the
same corresponding geometric multiplicities, and the same holds
for f and the matrix B= ;[ f |,. So, A and B have exactly the
same eigenvalues with exactly the same corresponding geometric
multiplicities.



Theorem 8.2.9

Let F be a field, and let A, B € F"*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof (continued). It now remains to show that A and B have the
same characteristic polynomial, since this will (by definition) imply
that A and B have the same spectrum, and in particular, that the
eigenvalues of A and B have the same corresponding algebraic
multiplicities.



Theorem 8.2.9

Let F be a field, and let A, B € F"*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof (continued). It now remains to show that A and B have the
same characteristic polynomial, since this will (by definition) imply
that A and B have the same spectrum, and in particular, that the
eigenvalues of A and B have the same corresponding algebraic
multiplicities.

Since A and B are similar, we know that there exists an invertible
matrix P € F"™<" st. B= P~ 1AP.



Theorem 8.2.9

Let F be a field, and let A, B € F"*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof (continued). It now remains to show that A and B have the
same characteristic polynomial, since this will (by definition) imply
that A and B have the same spectrum, and in particular, that the
eigenvalues of A and B have the same corresponding algebraic
multiplicities.

Since A and B are similar, we know that there exists an invertible
matrix P € F"™" st. B = P~YAP. We now compute (next slide):



Theorem 8.2.9

Let IF be a field, and let A, B € F"*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

Proof (continued).

pe(A)

Il
Q.
[0]
—+
>
-~

)

|
(o]

~

= det(P!) det(Al, — A) det(P) by Theorem 7.5.2

= detl(P) det(Al, — A) det(P) by Corollary 7.5.3

= det(\, — A)

= pa(A). 0



Theorem 8.2.9

Let IF be a field, and let A, B € F"*" be similar matrices. Then A
and B have the same characteristic polynomial, as well as the
same eigenvalues, with the same corresponding algebraic
multiplicities, and the same corresponding geometric
multiplicities. Moreover, A and B have the same spectrum.

@ Remark: The converse of Theorem 8.2.9 is false: two
matrices in F"*" (where F is a field) that have the same
characteristic polynomial, as well as the same eigenvalues,
with the same corresponding algebraic multiplicities, and the
same corresponding geometric multiplicities, need not be
similar.

o We will see examples of this when we study the “Jordan
normal form."



Definition

The trace of a square matrix A= [ a;; | with entries in some
field F is defined to be trace(A) := >"i_; aj;, i.e. the trace of A is

the sum of entries on the main diagonal of A.
@ For example, for the matrix

A:[ 5]

in C3*3, we have that trace(A) =1 +5+9 = 15.

~N A=
o o1 N
o S W



Theorem 8.2.10

Let F be a field, let A=[ a;; |, be a matrix in F"*", and
assume that {A1,...,A\,} is the spectrum of A. Then

@ det(A)=A1... A\
@ trace(A) =M1+ + A

Proof (outline).



Theorem 8.2.10

Let F be a field, let A=[ a;; |, be a matrix in F"*", and
assume that {A1,...,A\,} is the spectrum of A. Then

@ det(A)=A1... A\
@ trace(A) =M1+ + A

Proof (outline). (a) Compute pa(0) in two different ways.
(b) Compute the coefficient in front of A"~1 in pa()\) in two
different ways. (Details: Lecture Notes.) OJ



Theorem 8.2.10

Let F be a field, let A=[ a;; |, be a matrix in F"*", and
assume that {A1,...,A\,} is the spectrum of A. Then

@ det(A)=A1... A\
@ trace(A) =M1+ + A

Proof (outline). (a) Compute pa(0) in two different ways.
(b) Compute the coefficient in front of A1 in pa(A) in two
different ways. (Details: Lecture Notes.) OJ
@ Warning: Theorem 8.2.10 only applies if the spectrum of the
matrix A € F"*" contains n eigenvalues (counting algebraic
multiplicities)!
o This will always be the case if the field F is algebraically

closed (for example, if F = C), but need not be the case
otherwise.



© Eigenvalues and invertibility (plus the Invertible Matrix
Theorem, version 4)



© Eigenvalues and invertibility (plus the Invertible Matrix
Theorem, version 4)

Proposition 8.2.11

Let F be a field, and let A € F"*". Then A is invertible iff 0 is not
an eigenvalue of A.

Proof.



© Eigenvalues and invertibility (plus the Invertible Matrix
Theorem, version 4)

Proposition 8.2.11

Let F be a field, and let A € F"*". Then A is invertible iff 0 is not
an eigenvalue of A.

Proof. It suffices to show that 0 is an eigenvalue of A iff A is not
invertible.



© Eigenvalues and invertibility (plus the Invertible Matrix
Theorem, version 4)

Proposition 8.2.11

Let F be a field, and let A € F"*". Then A is invertible iff 0 is not
an eigenvalue of A.

Proof. It suffices to show that 0 is an eigenvalue of A iff A is not
invertible. We have the following sequence of equivalent

statements:
0 is eigenvalue of A Thp 822 det(0/, — A) =0
= det(—A) =0
Prop. 7.2.3

(—1)"det(A) = 0

= det(A) =0
Th{"":7}4'1 A is not invertible

g



Proposition 8.2.11

Let F be a field, and let A € F"*". Then A is invertible iff 0 is not
an eigenvalue of A.

@ We now add the eigenvalue condition from Proposition 8.2.11
to our previous version of the Invertible Matrix Theorem to
obtain the fourth and final version of that theorem (next three
slides).

o It uses all 26 letters of the English alphabet!



The Invertible Matrix Theorem (version 4)

Let F be a field, and let A € F"*" be a square matrix. Further, let
f:F" — F" be given by f(x) = Ax for all x € F".? Then the
following are equivalent:

©e o e @6 e

A is invertible (i.e. A has an inverse);

AT is invertible;

RREF(A) = Ip;

RREF( { A In } ) = [ In B } for some matrix B € F"<";
rank(A) = n;

rank(AT) = n;

is a product of elementary matrices;

“Since f is a matrix transformation, Proposition 1.10.4 guarantees that f is

linear. Moreover, A is the standard matrix of f.




The Invertible Matrix Theorem (version 4, continued)

© © ©

the homogeneous matrix-vector equation Ax = 0 has only the
trivial solution (i.e. the solution x = 0);

there exists some vector b € F" s.t. the matrix-vector
equation Ax = b has a unique solution;

for all vectors b € F”, the matrix-vector equation Ax = b has
a unique solution;

for all vectors b € F", the matrix-vector equation Ax = b has
at most one solution;

for all vectors b € F”, the matrix-vector equation Ax = b is
consistent;

f is one-to-one;
f is onto;

f is an isomorphism;



The Invertible Matrix Theorem (version 4, continued)

©

© 606606006600 -e

there exists a matrix B € F"™" s.t. BA= I, (i.e. A has a left
inverse);

there exists a matrix C € F"*" s.t. AC = I, (i.e. A has a right
inverse);

the columns of A are linearly independent;

the columns of A span F” (i.e. Col(A) = F");
the columns of A form a basis of F”;

the rows of A are linearly independent;

the rows of A span F1X” (i.e. Row(A) = F1*n);
the rows of A form a basis of F1*";

Nul(A) = {0} (i.e. dim(Nul(A)) = 0);

det(A) # 0;

0 is not an eigenvalue of A.



@ Reminder:

e Suppose that V is a non-trivial, finite-dimensional vector space
over a field IF, and that f : V — V is a linear function. Then
we define the determinant of f to be

det(f) = det( 4[ £ ]),

where B is any basis of V.



@ Reminder:
e Suppose that V is a non-trivial, finite-dimensional vector space
over a field F, and that f : V — V is a linear function. Then
we define the determinant of f to be

det(f) = det( 4[ £ ]),

where B is any basis of V.

o As we explained in section 7.5, the reason that det(f) is well
defined is because, by Theorem 4.5.16, all matrices of the form
sl f ]z are similar, and therefore (by Corollary 7.5.4) have
the same determinant.



Definition

Let V is a non-trivial, finite-dimensional vector space over a field
F. The characteristic polynomial of a linear function f : V — V' is
defined to be the polynomial

pr(A) = det(Mdy —f) = det( [ Adyv—f] ),

where B is any basis of V.?

?As usual, Idy is the identity function on V/, i.e. it is the function
Idy : V — V given by Idy(v) = v for all v € V.
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only on f, and not on the particular choice of the basis B.



Definition

Let V is a non-trivial, finite-dimensional vector space over a field
F. The characteristic polynomial of a linear function f : V — V' is
defined to be the polynomial

pr(A) = det(Mdy —f) = det( [ Adyv—f] ),

where B is any basis of V.?

?As usual, Idy is the identity function on V/, i.e. it is the function
Idy : V — V given by Idy(v) = v for all v € V.

@ As per our discussion above, the polynomial ps()\) depends
only on f, and not on the particular choice of the basis B.
@ The characteristic equation of f is the equation

det(Aldy — f) = 0.

So, the roots of the characteristic polynomial of f are
precisely the solutions of the characteristic equation of f.



Proposition 8.2.12
Let V be a non-trivial, finite-dimensional vector space over a field
IF, let B be any basis of V, let f : V — V be a linear function, and

set B:= ,[ f |,. Then ps(A) = pp(N).

Proof.



Proposition 8.2.12

Let V be a non-trivial, finite-dimensional vector space over a field
IF, let B be any basis of V, let f : V — V be a linear function, and
set B:= ,[ f |,. Then ps(A) = pp(N).

Proof. We compute:

pr(A) = det(Aldy —f) by definition
= det( 5[ Ay~ ],;) by definition
= det()\B[ Idy }B—B[ f }B) by Theorem 4.5.3

= det(\, — B)

= pe(N) by definition.



@ Reminder:

Theorem 8.2.2

Let F be a field, let A € F"™ " and let \yg € F. Then
Ex(A) = Nul(>\0l,, — A) = NuI(A — )\ol,,).
Moreover, the following are equivalent:

@ g is an eigenvalue of A;

@ Mo is a root of the characteristic polynomial of A, i.e.
pa(Ao) = 0;

@ o is a solution of the characteristic equation of A, i.e.
det(Xolh — A) = 0.




@ Reminder:

Theorem 8.2.2

Let F be a field, let A € F"™ " and let \yg € F. Then
Ex(A) = Nul(>\0l,, — A) = NuI(A — )\ol,,).
Moreover, the following are equivalent:

@ g is an eigenvalue of A;

@ Mo is a root of the characteristic polynomial of A, i.e.
pa(Ao) = 0;

@ o is a solution of the characteristic equation of A, i.e.
det(Xolh — A) = 0.

@ Analogously, we have the following (next slide):



Theorem 8.2.13

Let V be a non-trivial, finite-dimensional vector space over a field
I, let f : V — V be a linear function, and let \g € F. Then

E)\O(f) = Ker(Aoldef) = Ker(ff)\0|dv)'

Moreover, the following are equivalent:

@ o is an eigenvalue of f;

@ Mg is a root of the characteristic polynomial of f, i.e.
pr(Ao) = 0;

@ Mg is a solution of the characteristic equation of f, i.e.
det()\oldv = f) =0.

@ Proof: Lecture Notes. (Similar to the proof of
Theorem 8.2.2.)




Proposition 8.2.14

Let V be a non-trivial, finite-dimensional vector space over a field
I, let f : V — V be a linear function, and let B be any basis of V.
Then f and [ f ], have the same characteristic polynomial,
and the same spectrum. Moreover, f and [ f |, have exactly
the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

Proof.
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Let V be a non-trivial, finite-dimensional vector space over a field
I, let f : V — V be a linear function, and let B be any basis of V.
Then f and [ f ], have the same characteristic polynomial,
and the same spectrum. Moreover, f and [ f |, have exactly
the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

A

Proof. The fact that f and B[ f ]B have the same eigenvalues,
with the same geometric multiplicities, follows immediately from
Proposition 8.1.7.
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Let V be a non-trivial, finite-dimensional vector space over a field
I, let f : V — V be a linear function, and let B be any basis of V.
Then f and [ f ], have the same characteristic polynomial,
and the same spectrum. Moreover, f and [ f |, have exactly
the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

Proof. The fact that f and B[ f ]B have the same eigenvalues,
with the same geometric multiplicities, follows immediately from
Proposition 8.1.7.

The fact that they have the same characteristic polynomial (and
consequently the same spectrum) follows immediately from
Proposition 8.2.12.

A



Proposition 8.2.14

Let V be a non-trivial, finite-dimensional vector space over a field
I, let f : V — V be a linear function, and let B be any basis of V.
Then f and [ f ], have the same characteristic polynomial,
and the same spectrum. Moreover, f and [ f |, have exactly
the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

Proof. The fact that f and B[ f ]B have the same eigenvalues,
with the same geometric multiplicities, follows immediately from
Proposition 8.1.7.

The fact that they have the same characteristic polynomial (and
consequently the same spectrum) follows immediately from
Proposition 8.2.12. Since f and ,[ f ], have the same spectrum,
their eigenvalues have the same algebraic multiplicities. [

A



Proposition 8.2.14

Let V be a non-trivial, finite-dimensional vector space over a field
F, let f : V — V be a linear function, and let B be any basis of V.
Then f and [ f |, have the same characteristic polynomial,
and the same spectrum. Moreover, f and ,[ f |, have exactly
the same eigenvalues, with exactly the same corresponding
geometric multiplicities, and exactly the same corresponding
algebraic multiplicities.

@ As a special case for linear functions of the form f : F" — [F”
(where I is a field) and their standard matrices, we have the
following proposition (next slide).



Proposition 8.2.15

Let F be a field, let f : F” — F" be a linear function, and let A be
the standard matrix of . Then f and A have the same
characteristic polynomial and the same spectrum. Moreover, for
each eigenvalue A of f and A, all the following hold:

@ the algebraic multiplicity of A as an eigenvalue of f is the
same as the algebraic multiplicity of A as an eigenvalue of A;

@ the geometric multiplicity of A as an eigenvalue of f is the
same as the geometric multiplicity of A as an eigenvalue of A;

o E\(f) = Ex(A).

A

Proof.
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Let F be a field, let f : F” — F" be a linear function, and let A be
the standard matrix of . Then f and A have the same
characteristic polynomial and the same spectrum. Moreover, for
each eigenvalue A of f and A, all the following hold:

@ the algebraic multiplicity of A as an eigenvalue of f is the
same as the algebraic multiplicity of A as an eigenvalue of A;

@ the geometric multiplicity of A as an eigenvalue of f is the
same as the geometric multiplicity of A as an eigenvalue of A;

o E\(f) = Ex(A).

A

Proof. Since A is the standard matrix of f, we have that

A=, [ f ]5 , where &, is the standard basis of F”".



Proposition 8.2.15

Let F be a field, let f : F” — F" be a linear function, and let A be
the standard matrix of . Then f and A have the same
characteristic polynomial and the same spectrum. Moreover, for
each eigenvalue A of f and A, all the following hold:

@ the algebraic multiplicity of A as an eigenvalue of f is the
same as the algebraic multiplicity of A as an eigenvalue of A;

@ the geometric multiplicity of A as an eigenvalue of f is the
same as the geometric multiplicity of A as an eigenvalue of A;

o E\(f) = Ex(A).

A

Proof. Since A is the standard matrix of f, we have that
A= [ f ], where &, is the standard basis of F". The result now
follows immediately from Propositions 8.1.5 and 8.2.14. [J



@ The relationship between algebraic and geometric
multiplicities of eigenvalues



@ The relationship between algebraic and geometric
multiplicities of eigenvalues

@ Let's now prove Theorem 8.2.3!

Theorem 8.2.3

Let F be a field, and let A € F"*". Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

@ Schematically, Theorem 8.2.3 states that for an eigenvalue A
of A:

geometric multiplicity of A < algebraic multiplicity of A.



@ The relationship between algebraic and geometric
multiplicities of eigenvalues

@ Let's now prove Theorem 8.2.3!

Theorem 8.2.3

Let F be a field, and let A € F"*". Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

@ Schematically, Theorem 8.2.3 states that for an eigenvalue A
of A:

geometric multiplicity of A < algebraic multiplicity of A.

@ In fact, it will be a bit more convenient to prove this theorem
for linear functions first (see Theorem 8.2.17 below), and to
then derive Theorem 8.2.3 as in immediate corollary.



Theorem 8.2.17

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V — V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Proof.
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Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V — V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Proof. Suppose that \g is an eigenvalue of f of geometric
multiplicity k.
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F, and let f : V — V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Proof. Suppose that A\ is an eigenvalue of f of geometric
multiplicity k. We must show that the eigenvalue Ay has algebraic
multiplicity at least k, that is, that (A — Xo)* | pr(N).



Theorem 8.2.17

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V — V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Proof. Suppose that A\ is an eigenvalue of f of geometric
multiplicity k. We must show that the eigenvalue Ay has algebraic
multiplicity at least k, that is, that (A — Xo)* | pr(N).

The goal is to find a basis B of V for which it can easily be shown
that (A — Ag)* divides the polynomial pg()), where B= [ f |
this is enough because, by Proposition 8.2.12, ps(\) = pg(A).

B;



Proof (continued). Reminder: g is an eigenvalue of f; WTS there

exists a basis B of V s.t. (A —Xo)* | pa(A), where B= [ f ] .
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exists a basis B of V s.t. (A —Xo)* | pa(A), where B= [ f ] .
Since the geometric multiplicity of the eigenvalue Ay of f is k, we
see that the eigenspace Ej (f) has a k-element basis, say
{b1,...,by}.
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exists a basis B of V s.t. (A —Xo)* | pa(A), where B= [ f ] .

Since the geometric multiplicity of the eigenvalue Ay of f is k, we
see that the eigenspace Ej (f) has a k-element basis, say
{b1,....bg}. In particular, {by,..., by} is a linearly independent

set of vectors in V, and so by Theorem 8.2.19, it can be extended
to a basis B = {bl. RPN TP S .,bn} of V.



Proof (continued). Reminder: g is an eigenvalue of f; WTS there
exists a basis B of V s.t. (A —Xo)* | pa(A), where B= [ f ] .

Since the geometric multiplicity of the eigenvalue Ay of f is k, we
see that the eigenspace Ej (f) has a k-element basis, say
{b1,...,bg}. In particular, {by,... by} is a linearly independent

set of vectors in V, and so by Theorem 8.2.19, it can be extended
to a basis B ={by,...,bg,bgi1,...,b,} of V. We now compute:

B = 4l fly
N RRICORP [ Fbe) |, [ Flbew) ], [ f(ba) ], ]
(%) [ [ Aob1 } [ Aoby ]B [ f(bks1) ] [ f(bs) }B }
= [ Aoef e [ fbii1) |, [ £(ba) ], ]
= ot [ ], e [e0 ], .

where (*) follows from Theorem 4.5.1, and (**) follows from the
fact that by, ..., by, € Ey(f).



Proof (continued). Reminder: g is an eigenvalue of f; WTS there
exists a basis B of V s.t. (A — Xo)¥ | pg()), where B = sl ]

We showed:

B



Proof (continued). Reminder: g is an eigenvalue of f; WTS there
exists a basis B of V s.t. (A — Xo)¥ | pg()), where B = sl ]

5
We showed:
_ _ Aolk ‘
B Wl = [l e Ty e [0,
Thus, pg(]) is of the form
A— Ao 0 0 ; *
0 A— o 0 [
. | .
| . . .
_ 0 0 oA =Xo " oxox L %
ps(A) = 777077770777.7..7770777: I S ’
0 0 0 Ik
. |
X |
0 0 0 T T

where the red submatrix in the upper-left corner (to the left of the
vertical dotted line, and above the horizontal dotted line) is of size
k x k. By iteratively performing Laplace expansion along the first
column, we see that pg()\) has a factor (A — \g)¥. O



Theorem 8.2.17

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V — V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.
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Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V — V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Theorem 8.2.3

Let IF be a field, and let A € F"*". Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Proof.
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Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V — V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Theorem 8.2.3

Let IF be a field, and let A € F"*". Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Proof. Let fs : F" — F" be given by fa(x) = Ax for all x € F".
Then f4 is linear (by Prop. 1.10.4), and its standard matrix is A.



Theorem 8.2.17

Let V be a non-trivial, finite-dimensional vector space over a field
F, and let f : V — V be a linear function. Then the geometric
multiplicity of any eigenvalue of f is no greater than the algebraic
multiplicity of that eigenvalue.

Theorem 8.2.3

Let IF be a field, and let A € F"*". Then the geometric multiplicity
of any eigenvalue of A is no greater than the algebraic multiplicity
of that eigenvalue.

Proof. Let fs : F" — F" be given by fa(x) = Ax for all x € F".
Then f4 is linear (by Prop. 1.10.4), and its standard matrix is A.

By Proposition 8.2.15, A and f4 have exactly the same eigenvalues,
with the same corresponding geometric multiplicities, and the same
corresponding algebraic multiplicities. The result now follows from
Theorem 8.2.17 applied to the linear function f4.



