## Linear Algebra 2

## Lecture \#20

Applications of determinants: volume and polynomials

Irena Penev

April 10, 2024

- This lecture has three parts:
- This lecture has three parts:
(1) Determinants and volume
- This lecture has three parts:
(1) Determinants and volume
(2) Algebraically closed fields
- This lecture has three parts:
(1) Determinants and volume
(2) Algebraically closed fields
(3) Common roots of polynomials via determinants
(1) Determinants and volume
(1) Determinants and volume
- In our study of determinants and volume, we assume throughout that $\mathbb{R}^{n}$ is equipped with the standard scalar product $\cdot$ and the induced norm $\|\cdot\|$.
(1) Determinants and volume
- In our study of determinants and volume, we assume throughout that $\mathbb{R}^{n}$ is equipped with the standard scalar product $\cdot$ and the induced norm $\|\cdot\|$.
- For a parallelogram, we have the familiar formula

$$
\binom{\text { area of }}{\text { parallelogram }}=\text { (length of base) } \times \text { (height). }
$$



- We have a similar formula for the volume of a parallelepiped:

$$
\left.\binom{\text { volume of }}{\text { parallelepiped }}=\text { (area of base }\right) \times \text { (height) } .
$$



- We have a similar formula for the volume of a parallelepiped:

$$
\left.\binom{\text { volume of }}{\text { parallelepiped }}=\text { (area of base }\right) \times \text { (height) } .
$$



- We would now like to generalize this to arbitrary dimensions (next slide).


## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- For instance, given two vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$, neither of which is a scalar multiple of the other, the 2 -parallelepiped determined by $\mathbf{v}_{1}, \mathbf{v}_{2}$ is just the usual parallelogram determined by these two vectors.



## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- For vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{n}$, neither of which is a scalar multiple of each other, the 2-parallelepiped determined by $\mathbf{v}_{1}, \mathbf{v}_{2}$ is still a parallelogram, but this parallelogram lies in the plane (2-dimensional subspace) $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ of $\mathbb{R}^{n}$.



## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- What happens if one of $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{n}$ is a scalar multiple of the other, say $\mathbf{v}_{2}=\alpha \mathbf{v}_{1}$ for some scalar $\alpha \in \mathbb{R}$ ?


## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- What happens if one of $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{n}$ is a scalar multiple of the other, say $\mathbf{v}_{2}=\alpha \mathbf{v}_{1}$ for some scalar $\alpha \in \mathbb{R}$ ?
- Then the 2-parallelepiped determined by $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ is just set

$$
\begin{aligned}
& \left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} \mid c_{1}, c_{2} \in \mathbb{R}, 0 \leq c_{1}, c_{2} \leq 1\right\} \\
= & \left\{c_{1} \mathbf{v}_{1}+c_{2} \alpha \mathbf{v}_{1} \mid c_{1}, c_{2} \in \mathbb{R}, 0 \leq c_{1}, c_{2} \leq 1\right\} \\
= & \left\{\left(c_{1}+c_{2} \alpha\right) \mathbf{v}_{1} \mid c_{1}, c_{2} \in \mathbb{R}, 0 \leq c_{1}, c_{2} \leq 1\right\} \\
= & \left\{c(1+\alpha) \mathbf{v}_{1} \mid c \in \mathbb{R}, 0 \leq c \leq 1\right\},
\end{aligned}
$$

which is 1 -dimensional (a line segment) if $\mathbf{v}_{1} \neq \mathbf{0}$, and is 0 -dimensional (containing only the zero vector) if $\mathbf{v}_{1}=\mathbf{0}$.

## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- What happens if one of $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{n}$ is a scalar multiple of the other, say $\mathbf{v}_{2}=\alpha \mathbf{v}_{1}$ for some scalar $\alpha \in \mathbb{R}$ ?
- Then the 2-parallelepiped determined by $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ is just set

$$
\begin{aligned}
& \left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} \mid c_{1}, c_{2} \in \mathbb{R}, 0 \leq c_{1}, c_{2} \leq 1\right\} \\
= & \left\{c_{1} \mathbf{v}_{1}+c_{2} \alpha \mathbf{v}_{1} \mid c_{1}, c_{2} \in \mathbb{R}, 0 \leq c_{1}, c_{2} \leq 1\right\} \\
= & \left\{\left(c_{1}+c_{2} \alpha\right) \mathbf{v}_{1} \mid c_{1}, c_{2} \in \mathbb{R}, 0 \leq c_{1}, c_{2} \leq 1\right\} \\
= & \left\{c(1+\alpha) \mathbf{v}_{1} \mid c \in \mathbb{R}, 0 \leq c \leq 1\right\},
\end{aligned}
$$

which is 1 -dimensional (a line segment) if $\mathbf{v}_{1} \neq \mathbf{0}$, and is 0 -dimensional (containing only the zero vector) if $\mathbf{v}_{1}=\mathbf{0}$.

- We can think of these as "degenerate parallelograms."


## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- Similarly, for three linearly independent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{n}$, the 3-parallelepiped defined by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is just the usual parallelepiped whose edges are determined by these three vectors (see the picture below).



## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is not linearly independent, then the 3-parallelepiped determined by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is either a parallelogram, or a line segment, or $\{\mathbf{0}\}$, depending on the dimension of $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$.
- Once again, we can think of these as "degenerate parallelepipeds."


## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is not linearly independent, then the 3-parallelepiped determined by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is either a parallelogram, or a line segment, or $\{\mathbf{0}\}$, depending on the dimension of $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$.
- Once again, we can think of these as "degenerate parallelepipeds."
- For more than three vectors, we get higher-dimensional generalizations.


## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- We would now like to define the "volume" (more precisely, the " $m$-volume") of an $m$-parallelepiped in $\mathbb{R}^{n}$.


## Definition

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$, the $m$-parallelepiped determined by vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is the set

$$
\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \ldots, c_{m} \in \mathbb{R}, 0 \leq c_{1}, \ldots, c_{m} \leq 1\right\}
$$

- We would now like to define the "volume" (more precisely, the " $m$-volume") of an $m$-parallelepiped in $\mathbb{R}^{n}$.
- We do this recursively, as follows (next slide).


## Definition

- The 1-volume of the 1-parallelepiped determined by the vector $\mathbf{v}_{1} \in \mathbb{R}^{n}$ is defined to be $V_{1}\left(\mathbf{v}_{1}\right):=\left\|\mathbf{v}_{1}\right\|$.
- For a positive integer $m$, the $(m+1)$-volume of the $(m+1)$-parallelepiped determined by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1} \in \mathbb{R}^{n}$ is defined to be

$$
V_{m+1}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}\right):=V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)\left\|\mathbf{v}_{m+1}^{\perp}\right\|
$$

where $\mathbf{v}_{m+1}^{\perp}=\operatorname{proj}_{\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)^{\perp}}\left(\mathbf{v}_{m+1}\right) .{ }^{\mathbf{a}}$


## Definition

- The 1-volume of the 1-parallelepiped determined by the vector $\mathbf{v}_{1} \in \mathbb{R}^{n}$ is defined to be $V_{1}\left(\mathbf{v}_{1}\right):=\left\|\mathbf{v}_{1}\right\|$.
- For a positive integer $m$, the $(m+1)$-volume of the $(m+1)$-parallelepiped determined by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1} \in \mathbb{R}^{n}$ is defined to be

$$
V_{m+1}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}\right):=V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)\left\|\mathbf{v}_{m+1}^{\perp}\right\|
$$

where $\mathbf{v}_{m+1}^{\perp}=\operatorname{proj}{\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)^{\perp}}\left(\mathbf{v}_{m+1}\right) .^{\mathbf{a}}$


- In this recursive formula, the m-parallelepiped determined by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is our "base" and $\left\|\mathbf{v}_{m+1}^{\perp}\right\|$ is our "height."


## Definition

- The 1-volume of the 1-parallelepiped determined by the vector $\mathbf{v}_{1} \in \mathbb{R}^{n}$ is defined to be $V_{1}\left(\mathbf{v}_{1}\right):=\left\|\mathbf{v}_{1}\right\|$.
- For a positive integer $m$, the $(m+1)$-volume of the ( $m+1$ )-parallelepiped determined by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1} \in \mathbb{R}^{n}$ is defined to be

$$
V_{m+1}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}\right):=V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)\left\|\mathbf{v}_{m+1}^{\perp}\right\|
$$

where $\mathbf{v}_{m+1}^{\perp}=\operatorname{proj}_{\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)^{\perp}}\left(\mathbf{v}_{m+1}\right) .^{\mathbf{a}}$
${ }^{\text {a }}$ Equivalently (by Corollary 6.5.3): $\mathbf{v}_{m+1}^{\perp}=\mathbf{v}_{m+1}-\operatorname{proj}_{\mathrm{span}_{\text {( }}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)}\left(\mathbf{v}_{m+1}\right)$.

- In this recursive formula, the m-parallelepiped determined by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is our "base" and $\left\|\mathbf{v}_{m+1}^{\perp}\right\|$ is our "height."
- So, we get the formula

$$
\binom{(m+1) \text {-volume of }}{(m+1) \text {-parallelepiped }}=(m \text {-volume of base }) \times(\text { height }) .
$$

## Definition

- The 1-volume of the 1-parallelepiped determined by the vector $\mathbf{v}_{1} \in \mathbb{R}^{n}$ is defined to be $V_{1}\left(\mathbf{v}_{1}\right):=\left\|\mathbf{v}_{1}\right\|$.
- For a positive integer $m$, the $(m+1)$-volume of the ( $m+1$ )-parallelepiped determined by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1} \in \mathbb{R}^{n}$ is defined to be

$$
V_{m+1}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}\right):=V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)\left\|\mathbf{v}_{m+1}^{\perp}\right\|,
$$

where $\mathbf{v}_{m+1}^{\perp}=\operatorname{proj}_{\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)^{\perp}}\left(\mathbf{v}_{m+1}\right) .^{\mathbf{a}}$

[^0]- Note that 1 -volume represents (1-dimensional) length, 2 -volume represents (2-dimensional) area, and 3-volume represents (3-dimensional) volume.
- For $m \geq 4, m$-volume is an $m$-dimensional generalization of these concepts.


## Proposition 7.10.1

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$. Then $V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right) \geq 0$, and equality holds iff $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is a linearly dependent set.

- Proof: Lecture Notes.
- The fact that $V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right) \geq 0$ follows straight from the definition of $m$-volume (we keep computing lengths of vectors).
- The second statement essentially states that the volume of an $m$-parallelepiped is zero iff that $m$-parallelepiped is "degenerate."


## Definition

- The 1-volume of the 1-parallelepiped determined by the vector $\mathbf{v}_{1} \in \mathbb{R}^{n}$ is defined to be $V_{1}\left(\mathbf{v}_{1}\right):=\left\|\mathbf{v}_{1}\right\|$.
- For a positive integer $m$, the $(m+1)$-volume of the $(m+1)$-parallelepiped determined by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1} \in \mathbb{R}^{n}$ is defined to be

$$
V_{m+1}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}\right):=V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)\left\|\mathbf{v}_{m+1}^{\perp}\right\|
$$

where $\mathbf{v}_{m+1}^{\perp}=\operatorname{proj}_{\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)^{\perp}}\left(\mathbf{v}_{m+1}\right) .^{\mathbf{a}}$


- We will prove the following four results about m-volume (next two slides):


## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

- Note that $A$ is an $n \times m$ matrix. It is possible that $n \neq m$, and so $\operatorname{det}(A)$ is not necessarily defined.
- However, $A^{T} A$ is an $m \times m$ matrix, and so $\operatorname{det}\left(A^{T} A\right)$ is defined.


## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

- Note that $A$ is an $n \times m$ matrix. It is possible that $n \neq m$, and so $\operatorname{det}(A)$ is not necessarily defined.
- However, $A^{T} A$ is an $m \times m$ matrix, and so $\operatorname{det}\left(A^{T} A\right)$ is defined.


## Corollary 7.10.3

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{n}$. Then $V_{n}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)=\left|\operatorname{det}\left(\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]\right)\right|$.

- Note that we have $n$ vectors in $\mathbb{R}^{n}$. So, $\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$ is an $n \times n$ matrix, and therefore, it has a determinant.


## Corollary 7.10.4

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ and $\sigma \in S_{m}$. Then
$V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=V_{m}\left(\mathbf{a}_{\sigma(1)}, \ldots, \mathbf{a}_{\sigma(m)}\right)$.

- So, merely permuting the vectors that determine an $m$-parallelepiped does not change the $m$-volume of that $m$-parallelepiped.


## Corollary 7.10.4

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ and $\sigma \in S_{m}$. Then
$V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=V_{m}\left(\mathbf{a}_{\sigma(1)}, \ldots, \mathbf{a}_{\sigma(m)}\right)$.

- So, merely permuting the vectors that determine an $m$-parallelepiped does not change the $m$-volume of that $m$-parallelepiped.


## Corollary 7.10.5

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

- Here, it is important that we have $n$ vectors in $\mathbb{R}^{n}$.
- If we have $m$ vectors in $\mathbb{R}^{n}$, then this fails.
- Counterexample: later!

Theorem 7.10.2
Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Proof.

Theorem 7.10.2
Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Proof. $\forall i \in\{1, \ldots, m\}: A_{i}:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{i}\end{array}\right]$.

Theorem 7.10.2
Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Proof. $\forall i \in\{1, \ldots, m\}: A_{i}:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{i}\end{array}\right]$. We will prove inductively that $\forall i \in\{1, \ldots, m\}: V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$.

For $i=1$, we observe that $A_{1}^{T} A_{1}=\left[\mathbf{a}_{1}\right]^{T}\left[\mathbf{a}_{1}\right]=\left[\mathbf{a}_{1} \cdot \mathbf{a}_{1}\right]$,

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Proof. $\forall i \in\{1, \ldots, m\}: A_{i}:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{i}\end{array}\right]$. We will prove inductively that $\forall i \in\{1, \ldots, m\}: V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$. Obviously, this is enough, since $A_{m}=A$.
For $i=1$, we observe that $A_{1}^{T} A_{1}=\left[\mathbf{a}_{1}\right]^{T}\left[\mathbf{a}_{1}\right]=\left[\mathbf{a}_{1} \cdot \mathbf{a}_{1}\right]$, and consequently,

$$
\sqrt{\operatorname{det}\left(A_{1}^{T} A_{1}\right)}=\sqrt{\mathbf{a}_{1} \cdot \mathbf{a}_{1}}=\left\|\mathbf{a}_{1}\right\|=V_{1}\left(\mathbf{a}_{1}\right)
$$

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Proof. $\forall i \in\{1, \ldots, m\}: A_{i}:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{i}\end{array}\right]$. We will prove inductively that $\forall i \in\{1, \ldots, m\}: V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$. Obviously, this is enough, since $A_{m}=A$.
For $i=1$, we observe that $A_{1}^{T} A_{1}=\left[\mathbf{a}_{1}\right]^{T}\left[\mathbf{a}_{1}\right]=\left[\mathbf{a}_{1} \cdot \mathbf{a}_{1}\right]$, and consequently,

$$
\sqrt{\operatorname{det}\left(A_{1}^{T} A_{1}\right)}=\sqrt{\mathbf{a}_{1} \cdot \mathbf{a}_{1}}=\left\|\mathbf{a}_{1}\right\|=V_{1}\left(\mathbf{a}_{1}\right)
$$

We may now assume that $m \geq 2$, for otherwise we are done by what we just showed.

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Proof. $\forall i \in\{1, \ldots, m\}: A_{i}:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{i}\end{array}\right]$. We will prove inductively that $\forall i \in\{1, \ldots, m\}: V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$. Obviously, this is enough, since $A_{m}=A$.
For $i=1$, we observe that $A_{1}^{T} A_{1}=\left[\mathbf{a}_{1}\right]^{T}\left[\mathbf{a}_{1}\right]=\left[\mathbf{a}_{1} \cdot \mathbf{a}_{1}\right]$, and consequently,

$$
\sqrt{\operatorname{det}\left(A_{1}^{T} A_{1}\right)}=\sqrt{\mathbf{a}_{1} \cdot \mathbf{a}_{1}}=\left\|\mathbf{a}_{1}\right\|=V_{1}\left(\mathbf{a}_{1}\right)
$$

We may now assume that $m \geq 2$, for otherwise we are done by what we just showed. Fix $i \in\{1, \ldots, m-1\}$, and assume inductively that $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$. WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

- $\mathbf{a}_{i+1}^{\|}:=\operatorname{proj}_{\operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)}\left(\mathbf{a}_{i+1}\right)$;
- $\mathbf{a}_{i+1}^{\perp}:=\operatorname{proj}_{\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)^{\perp}}\left(\mathbf{a}_{i+1}\right)$.

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

- $\mathbf{a}_{i+1}^{\|}:=\operatorname{proj}_{\operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)}\left(\mathbf{a}_{i+1}\right)$;
- $\mathbf{a}_{i+1}^{\perp}:=\operatorname{proj}_{\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)^{\perp}}\left(\mathbf{a}_{i+1}\right)$.

By Corollary 6.5.3, we have that $\mathbf{a}_{i+1}=\mathbf{a}_{i+1}^{\|}+\mathbf{a}_{i+1}^{\perp}$.

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

- $\mathbf{a}_{i+1}^{\|}:=\operatorname{proj}_{\operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)}\left(\mathbf{a}_{i+1}\right)$;
- $\mathbf{a}_{i+1}^{\perp}:=\operatorname{proj}_{\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)^{\perp}}\left(\mathbf{a}_{i+1}\right)$.

By Corollary 6.5.3, we have that $\mathbf{a}_{i+1}=\mathbf{a}_{i+1}^{\|}+\mathbf{a}_{i+1}^{\perp}$.
Since $\mathbf{a}_{i+1}^{\|} \in \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right), \exists c_{1}, \ldots, c_{i} \in \mathbb{R}$ s.t. $\mathbf{a}_{i+1}^{\|}=c_{1} \mathbf{a}_{1}+\cdots+c_{i} \mathbf{a}_{i}$, and consequently,

$$
\mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}-\mathbf{a}_{i}^{\|}=\mathbf{a}_{i+1}-c_{1} \mathbf{a}_{1}-\cdots-c_{i} \mathbf{a}_{i} .
$$

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

- $\mathbf{a}_{i+1}^{\|}:=\operatorname{proj}_{\operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}}\right)}\left(\mathbf{a}_{i+1}\right)$;
- $\mathbf{a}_{i+1}^{\perp}:=\operatorname{proj}_{\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)^{\perp}}\left(\mathbf{a}_{i+1}\right)$.

By Corollary 6.5.3, we have that $\mathbf{a}_{i+1}=\mathbf{a}_{i+1}^{\|}+\mathbf{a}_{i+1}^{\perp}$.
Since $\mathbf{a}_{i+1}^{\|} \in \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right), \exists c_{1}, \ldots, c_{i} \in \mathbb{R}$ s.t. $\mathbf{a}_{i+1}^{\|}=c_{1} \mathbf{a}_{1}+\cdots+c_{i} \mathbf{a}_{i}$, and consequently,

$$
\mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}-\mathbf{a}_{i}^{\|}=\mathbf{a}_{i+1}-c_{1} \mathbf{a}_{1}-\cdots-c_{i} \mathbf{a}_{i}
$$

Now, let $B_{i+1}$ be the matrix obtained from $A_{i+1}$ by replacing the rightmost column of $A_{i+1}$ by $\mathbf{a}_{i+1}^{\perp}$, i.e.

$$
B_{i+1}:=\left[\begin{array}{llll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{i} & \mathbf{a}_{i+1}^{\perp}
\end{array}\right] .
$$

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

- $\mathbf{a}_{i+1}^{\|}:=\operatorname{proj}_{\operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)}\left(\mathbf{a}_{i+1}\right)$;
- $\mathbf{a}_{i+1}^{\perp}:=\operatorname{proj}_{\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)^{\perp}}\left(\mathbf{a}_{i+1}\right)$.

By Corollary 6.5.3, we have that $\mathbf{a}_{i+1}=\mathbf{a}_{i+1}^{\|}+\mathbf{a}_{i+1}^{\perp}$.
Since $\mathbf{a}_{i+1}^{\|} \in \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right), \exists c_{1}, \ldots, c_{i} \in \mathbb{R}$ s.t. $\mathbf{a}_{i+1}^{\|}=c_{1} \mathbf{a}_{1}+\cdots+c_{i} \mathbf{a}_{i}$, and consequently,

$$
\mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}-\mathbf{a}_{i}^{\|}=\mathbf{a}_{i+1}-c_{1} \mathbf{a}_{1}-\cdots-c_{i} \mathbf{a}_{i} .
$$

Now, let $B_{i+1}$ be the matrix obtained from $A_{i+1}$ by replacing the rightmost column of $A_{i+1}$ by $\mathbf{a}_{i+1}^{\perp}$, i.e.

$$
B_{i+1}:=\left[\begin{array}{llll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{i} & \mathbf{a}_{i+1}^{\perp}
\end{array}\right] .
$$

Then (next slide):

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$;
$\mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}-c_{1} \mathbf{a}_{1}-\cdots-c_{i} \mathbf{a}_{i}$.

$$
B_{i+1}^{T}=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\left(\mathbf{a}_{i+1}^{\perp}\right)^{T}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\mathbf{a}_{i+1}^{T}-c_{1} \mathbf{a}_{1}^{T}-\cdots-c_{i} \mathbf{a}_{i}^{T}
\end{array}\right] .
$$

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$;
WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$;
$\mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}-c_{1} \mathbf{a}_{1}-\cdots-c_{i} \mathbf{a}_{i}$.

$$
B_{i+1}^{T}=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\left(\mathbf{a}_{i+1}^{\frac{1}{2}}\right)^{T}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\mathbf{a}_{i+1}^{T}-c_{1} \mathbf{a}_{1}^{T}-\cdots-c_{i} \mathbf{a}_{i}^{T}
\end{array}\right] .
$$

So, $B_{i+1}^{T}$ can be obtained from $A_{i+1}^{T}$ via the following sequence of $i$ elementary row operations:

- $R_{i+1} \rightarrow R_{i+1}-c_{1} R_{1} ;$
- $R_{i+1} \rightarrow R_{i+1}-c_{i} R_{i}$.

Let $E_{1}, \ldots, E_{i}$ be the elementary matrices corresponding to these $i$ elementary row operations,

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$;
WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$;
$\mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}-c_{1} \mathbf{a}_{1}-\cdots-c_{i} \mathbf{a}_{i}$.

$$
B_{i+1}^{T}=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\left(\mathbf{a}_{i+1}^{\frac{1}{2}}\right)^{T}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\mathbf{a}_{i+1}^{T}-c_{1} \mathbf{a}_{1}^{T}-\cdots-c_{i} \mathbf{a}_{i}^{T}
\end{array}\right] .
$$

So, $B_{i+1}^{T}$ can be obtained from $A_{i+1}^{T}$ via the following sequence of $i$ elementary row operations:

- $R_{i+1} \rightarrow R_{i+1}-c_{1} R_{1} ;$
- $R_{i+1} \rightarrow R_{i+1}-c_{i} R_{i}$.

Let $E_{1}, \ldots, E_{i}$ be the elementary matrices corresponding to these $i$ elementary row operations, so that $B_{i+1}^{T}=E_{i} \ldots E_{1} A_{i+1}^{T}$, and consequently, $B_{i+1}=A_{i+1} E_{1}^{T} \ldots E_{i}^{T}$.

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$;
WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$;
$\mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}-c_{1} \mathbf{a}_{1}-\cdots-c_{i} \mathbf{a}_{i}$.

$$
B_{i+1}^{T}=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\left(\mathbf{a}_{i+1}^{\perp}\right)^{T}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\mathbf{a}_{i+1}^{T}-c_{1} \mathbf{a}_{1}^{T}-\cdots-c_{i} \mathbf{a}_{i}^{T}
\end{array}\right] .
$$

So, $B_{i+1}^{T}$ can be obtained from $A_{i+1}^{T}$ via the following sequence of $i$ elementary row operations:

- $R_{i+1} \rightarrow R_{i+1}-c_{1} R_{1} ;$
- $R_{i+1} \rightarrow R_{i+1}-c_{i} R_{i}$.

Let $E_{1}, \ldots, E_{i}$ be the elementary matrices corresponding to these $i$ elementary row operations, so that $B_{i+1}^{T}=E_{i} \ldots E_{1} A_{i+1}^{T}$, and consequently, $B_{i+1}=A_{i+1} E_{1}^{T} \ldots E_{i}^{T}$. By Theorem 7.3.2(c), we see that $\operatorname{det}\left(E_{1}\right)=\cdots=\operatorname{det}\left(E_{i}\right)=1$.

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$;
WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$;
$\mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}-c_{1} \mathbf{a}_{1}-\cdots-c_{i} \mathbf{a}_{i}$.

$$
B_{i+1}^{T}=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\left(\mathbf{a}_{i+1}^{\perp}\right)^{T}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{i}^{T} \\
\mathbf{a}_{i+1}^{T}-c_{1} \mathbf{a}_{1}^{T}-\cdots-c_{i} \mathbf{a}_{i}^{T}
\end{array}\right] .
$$

So, $B_{i+1}^{T}$ can be obtained from $A_{i+1}^{T}$ via the following sequence of $i$ elementary row operations:

- $R_{i+1} \rightarrow R_{i+1}-c_{1} R_{1} ;$
- $R_{i+1} \rightarrow R_{i+1}-c_{i} R_{i}$.

Let $E_{1}, \ldots, E_{i}$ be the elementary matrices corresponding to these $i$ elementary row operations, so that $B_{i+1}^{T}=E_{i} \ldots E_{1} A_{i+1}^{T}$, and consequently, $B_{i+1}=A_{i+1} E_{1}^{T} \ldots E_{i}^{T}$. By Theorem 7.3.2(c), we see that $\operatorname{det}\left(E_{1}\right)=\cdots=\operatorname{det}\left(E_{i}\right)=1$. We now compute (next slide):
$\operatorname{Proof}$ (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

$$
\operatorname{det}\left(B_{i+1}^{T} B_{i+1}\right)=\operatorname{det}\left(\left(E_{i} \ldots E_{1} A_{i+1}^{T}\right)\left(A_{i+1} E_{1}^{T} \ldots E_{i}^{T}\right)\right)
$$

$\stackrel{(*)}{=} \operatorname{det}\left(E_{i}\right) \ldots \operatorname{det}\left(E_{1}\right) \operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right) \operatorname{det}\left(E_{1}^{T}\right) \ldots \operatorname{det}\left(E_{i}^{T}\right)$

$$
\begin{aligned}
& \stackrel{(* *)}{=} \underbrace{\operatorname{det}\left(E_{i}\right)}_{=1} \cdots \underbrace{\operatorname{det}\left(E_{1}\right)}_{=1} \operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right) \underbrace{\operatorname{det}\left(E_{1}\right)}_{=1} \cdots \underbrace{\operatorname{det}\left(E_{i}\right)}_{=1} \\
& =\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right),
\end{aligned}
$$

where $\left(^{*}\right)$ follows from Theorem 7.5.2, and $\left({ }^{* *}\right)$ follows from Theorem 7.1.3.

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

$$
\operatorname{det}\left(B_{i+1}^{T} B_{i+1}\right)=\operatorname{det}\left(\left(E_{i} \ldots E_{1} A_{i+1}^{T}\right)\left(A_{i+1} E_{1}^{T} \ldots E_{i}^{T}\right)\right)
$$

$\stackrel{(*)}{=} \operatorname{det}\left(E_{i}\right) \ldots \operatorname{det}\left(E_{1}\right) \operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right) \operatorname{det}\left(E_{1}^{T}\right) \ldots \operatorname{det}\left(E_{i}^{T}\right)$

$$
\begin{aligned}
& \stackrel{(* *)}{=} \underbrace{\operatorname{det}\left(E_{i}\right)}_{=1} \cdots \underbrace{\operatorname{det}\left(E_{1}\right)}_{=1} \operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right) \underbrace{\operatorname{det}\left(E_{1}\right)}_{=1} \cdots \underbrace{\operatorname{det}\left(E_{i}\right)}_{=1} \\
& =\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right),
\end{aligned}
$$

where $\left(^{*}\right)$ follows from Theorem 7.5.2, and $\left({ }^{* *}\right)$ follows from Theorem 7.1.3.

But note that $B_{i+1}=\left[A_{i}{ }^{\prime} \mathbf{a}_{i+1}^{\perp}\right]$, and so (next slide):

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

$$
\begin{aligned}
B_{i+1}^{T} B_{i+1} & =\left[\begin{array}{c:c}
A_{i}^{T} \\
\hdashline\left(\mathbf{a}_{i+1}^{T}\right)^{T}
\end{array}\right]\left[\begin{array}{l:l}
A_{i} & \mathbf{a}_{\dot{i+1}}^{\perp}
\end{array}\right] \\
& =\left[\begin{array}{c:c}
A_{i}^{T} A_{i} & A_{i}^{T} \mathbf{a}_{i+1}^{\perp} \\
\hdashline\left(\mathbf{a}_{i+1}^{T}\right)^{T} \bar{A}_{i} & \left(\mathbf{a}_{i+1}^{T}\right)^{T} \mathbf{a}_{i+1}^{\perp}-
\end{array}\right] \\
& \stackrel{(*)}{=}\left[\begin{array}{c:c}
A_{i}^{T} A_{i} & \mathbf{0} \\
\hdashline \mathbf{0}^{T} & \left\|\mathbf{a}_{i+1}^{T}\right\|^{-}
\end{array}\right],
\end{aligned}
$$

where in $\left(^{*}\right)$, we used the fact that $\mathbf{a}_{i+1}^{\perp}$ is orthogonal to the columns of $A$, and so $A^{T} \mathbf{a}_{i+1}^{\perp}=\mathbf{0}$, and we also used the fact that $\left(\mathbf{a}_{i+1}^{\perp}\right)^{T} \mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}^{\perp} \cdot \mathbf{a}_{i+1}^{\perp}=\left\|\mathbf{a}_{i+1}^{\perp}\right\|$.

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

$$
\begin{aligned}
B_{i+1}^{T} B_{i+1} & =\left[\begin{array}{c:c}
A_{i}^{T} \\
\hdashline\left(\mathbf{a}_{i+1}^{T}\right)^{T}
\end{array}\right]\left[\begin{array}{c:c}
A_{i} & \mathbf{a}_{i+1}^{\perp}
\end{array}\right] \\
& =\left[\begin{array}{c:c}
A_{i}^{T} A_{i} & A_{i}^{T} \mathbf{a}_{i+1}^{\perp} \\
\hdashline\left(\mathbf{a}_{i+1}^{T}\right)^{T} \bar{A}_{i} & \left(\mathbf{a}_{i+1}^{T}\right)^{T} \mathbf{a}_{i+1}^{\perp}-
\end{array}\right] \\
& \stackrel{(*)}{=}\left[\begin{array}{c:c}
A_{i}^{T} A_{i} & \mathbf{0} \\
\hdashline \mathbf{0}^{T} & \left\|\mathbf{a}_{i+1}^{T}\right\|^{2}
\end{array}\right],
\end{aligned}
$$

where in $\left(^{*}\right)$, we used the fact that $\mathbf{a}_{i+1}^{\perp}$ is orthogonal to the columns of $A$, and so $A^{T} \mathbf{a}_{i+1}^{\perp}=\mathbf{0}$, and we also used the fact that $\left(\mathbf{a}_{i+1}^{\perp}\right)^{T} \mathbf{a}_{i+1}^{\perp}=\mathbf{a}_{i+1}^{\perp} \cdot \mathbf{a}_{i+1}^{\perp}=\left\|\mathbf{a}_{i+1}^{\perp}\right\|$.
We now compute (next slide):

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$;
WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.

$$
\begin{aligned}
& \operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)=\operatorname{det}\left(B_{i+1}^{T} B_{i+1}\right) \\
& =\left|\begin{array}{c:c}
A_{i}^{T} A_{i} & \mathbf{0} \\
\hdashline \mathbf{0}^{T^{T}} & \left\|\mathbf{a}_{i+1}^{T}\right\|^{-}
\end{array}\right| \\
& \stackrel{(*)}{=} \quad(-1)^{(i+1)+(i+1)}\left\|\mathbf{a}_{i+1}^{\perp}\right\|^{2} \operatorname{det}\left(A_{i}^{T} A_{i}\right) \\
& =\operatorname{det}\left(A_{i}^{T} A_{i}\right)\left\|\mathbf{a}_{i+1}^{\perp}\right\|^{2} \\
& \stackrel{(* *)}{=} \quad V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)^{2}\left\|\mathbf{a}_{i+1}^{\perp}\right\|^{2} \\
& \stackrel{(* * *)}{=} V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)^{2},
\end{aligned}
$$

where (*) follows by Laplace expansion along the rightmost column, $\left({ }^{* *}\right)$ follows from the induction hypothesis, and $\left({ }^{* * *}\right)$ follows from the definition of $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)$.

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.
From the previous slide:

$$
\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)=V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)^{2}
$$

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

Proof (continued). Reminder: $V_{i}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right)=\sqrt{\operatorname{det}\left(A_{i}^{T} A_{i}\right)}$; WTS $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)}$.
From the previous slide:

$$
\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)=V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)^{2}
$$

Since $V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right) \geq 0$ (by Proposition 7.10.1), we may now take the square root of both sides to obtain

$$
V_{i+1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \mathbf{a}_{i+1}\right)=\sqrt{\operatorname{det}\left(A_{i+1}^{T} A_{i+1}\right)} .
$$

This completes the induction.

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

## Corollary 7.10.3

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{n}$. Then $V_{n}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)=\left|\operatorname{det}\left(\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]\right)\right|$.
Proof.

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

## Corollary 7.10.3

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{n}$. Then $V_{n}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)=\left|\operatorname{det}\left(\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]\right)\right|$.
Proof. First of all, we note that $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$ is an $n \times n$ matrix (with entries in $\mathbb{R}$ ), and so it has a determinant.

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

## Corollary 7.10.3

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{n}$. Then $V_{n}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)=\left|\operatorname{det}\left(\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]\right)\right|$.
Proof. First of all, we note that $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$ is an $n \times n$ matrix (with entries in $\mathbb{R}$ ), and so it has a determinant. We now compute:

$$
\begin{array}{rlrl}
V_{n}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) & =\sqrt{\operatorname{det}\left(A^{T} A\right)} & & \text { by Theorem } 7.10 .2 \\
& =\sqrt{\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)} & & \text { by Theorem 7.5.2 } \\
& =\sqrt{\operatorname{det}(A)^{2}} & & \text { by Theorem 7.1.3 } \\
& =|\operatorname{det}(A)| . &
\end{array}
$$

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

## Corollary 7.10.4

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ and $\sigma \in S_{m}$. Then
$V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=V_{m}\left(\mathbf{a}_{\sigma(1)}, \ldots, \mathbf{a}_{\sigma(m)}\right)$.
Proof.

## Theorem 7.10.2

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, and set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$. Then

$$
V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)}
$$

## Corollary 7.10.4

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ and $\sigma \in S_{m}$. Then $V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=V_{m}\left(\mathbf{a}_{\sigma(1)}, \ldots, \mathbf{a}_{\sigma(m)}\right)$.

Proof. Set $A:=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$ and $A_{\sigma}:=\left[\begin{array}{lll}\mathbf{a}_{\sigma(1)} & \ldots & \mathbf{a}_{\sigma(m)}\end{array}\right]$, and consider $P_{\sigma}$, the matrix of the permutation $\sigma$. By Theorem 2.3.15(c), we have that $A_{\sigma}=A P_{\sigma}^{T}$, and by Proposition 7.1.1, we have that $\operatorname{det}\left(P_{\sigma}\right)=\operatorname{sgn}(\sigma)$. But now (next slide):

Proof (continued).

$$
\begin{aligned}
V_{m}\left(\mathbf{a}_{\sigma(1)}, \ldots, \mathbf{a}_{\sigma(m)}\right) & \stackrel{(*)}{=} \sqrt{\operatorname{det}\left(A_{\sigma}^{T} A_{\sigma}\right)} \\
& =\sqrt{\operatorname{det}\left(\left(A P_{\sigma}^{T}\right)^{T}\left(A P_{\sigma}^{T}\right)\right)} \\
& =\sqrt{\operatorname{det}\left(P_{\sigma} A^{T} A P_{\sigma}^{T}\right)} \\
& \stackrel{(* *)}{=} \sqrt{\operatorname{det}\left(P_{\sigma}\right) \operatorname{det}\left(A^{T} A\right) \operatorname{det}\left(P_{\sigma}^{T}\right)} \\
& \stackrel{(* * *)}{=} \sqrt{\operatorname{det}\left(P_{\sigma}\right) \operatorname{det}\left(A^{T} A\right) \operatorname{det}\left(P_{\sigma}\right)} \\
& =\sqrt{\operatorname{sgn}(\sigma)^{2} \operatorname{det}\left(A^{T} A\right)} \\
& =\sqrt{\operatorname{det}\left(A^{T} A\right)} \\
& \stackrel{(*)}{=} V_{m}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right),
\end{aligned}
$$

where both instances of $\left({ }^{*}\right)$ follow from Theorem 7.10.2, $\left({ }^{* *}\right)$ follows from Theorem 7.5.2, and $\left({ }^{* * *}\right)$ follows from Theorem 7.1.3. $\square$

Corollary 7.10.5
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

Proof.

Corollary 7.10.5
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

Proof. Set $B:=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $C:=\left[\begin{array}{lll}A \mathbf{v}_{1} & \ldots & A \mathbf{v}_{n}\end{array}\right]=A B$.

## Corollary 7.10.5

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

Proof. Set $B:=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $C:=\left[\begin{array}{lll}A \mathbf{v}_{1} & \ldots & A \mathbf{v}_{n}\end{array}\right]=A B$. Note that $A, B$, and $C=A B$ all belong to $\mathbb{R}^{n \times n}$, and so all three matrices have determinants.

## Corollary 7.10.5

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

Proof. Set $B:=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$ and $C:=\left[\begin{array}{lll}A \mathbf{v}_{1} & \ldots & A \mathbf{v}_{n}\end{array}\right]=A B$. Note that $A, B$, and $C=A B$ all belong to $\mathbb{R}^{n \times n}$, and so all three matrices have determinants. We now compute:

$$
\begin{aligned}
& V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right) \quad \stackrel{\text { Thm. }}{=} \quad \sqrt{\operatorname{det}\left(C^{T} C\right)} \\
& =\sqrt{\operatorname{det}\left((A B)^{T}(A B)\right)} \\
& =\sqrt{\operatorname{det}\left(B^{T} A^{T} A B\right)} \\
& \stackrel{T h m . ~ 7.5 .2}{=} \sqrt{\operatorname{det}\left(B^{T}\right) \operatorname{det}\left(A^{T}\right) \operatorname{det}(A) \operatorname{det}(B)} \\
& \stackrel{T h m . ~ 7.1 .3}{=} \quad \sqrt{\operatorname{det}(A)^{2} \operatorname{det}\left(B^{T}\right) \operatorname{det}(B)} \\
& \stackrel{T h m . ~ 7.5 .2}{=} \sqrt{\operatorname{det}(A)^{2} \operatorname{det}\left(B^{\top} B\right)} \\
& =\quad|\operatorname{det}(A)| \sqrt{\operatorname{det}\left(B^{\top} B\right)} \\
& \text { Thm. } .7 .10 .2 \quad|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) .
\end{aligned}
$$

## Corollary 7.10.5

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

## Corollary 7.10.5

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

- Remark: For $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}(m \neq n)$ and $A \in \mathbb{R}^{n \times n}$, the formula from Corollary 7.10.5 fails, i.e.

$$
V_{m}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{m}\right) \not \neq|\operatorname{det}(A)| V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)
$$

## Corollary 7.10.5

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

- Remark: For $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}(m \neq n)$ and $A \in \mathbb{R}^{n \times n}$, the formula from Corollary 7.10.5 fails, i.e.

$$
V_{m}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{m}\right) \not \neq|\operatorname{det}(A)| V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)
$$

- For instance, for $m=1$ and $n=2$, we can take

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

so that $A \mathbf{v}_{1}=\mathbf{v}_{1}$.

## Corollary 7.10.5

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$, and let $A \in \mathbb{R}^{n \times n}$. Then

$$
V_{n}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}\right)=|\operatorname{det}(A)| V_{n}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

- Remark: For $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}(m \neq n)$ and $A \in \mathbb{R}^{n \times n}$, the formula from Corollary 7.10.5 fails, i.e.

$$
V_{m}\left(A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{m}\right) \not \neq|\operatorname{det}(A)| V_{m}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)
$$

- For instance, for $m=1$ and $n=2$, we can take

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

so that $A \mathbf{v}_{1}=\mathbf{v}_{1}$.

- Then

$$
\begin{aligned}
& \text { - } V_{1}\left(A \mathbf{v}_{1}\right)=V_{1}\left(\mathbf{v}_{1}\right)=\left\|\mathbf{v}_{1}\right\|=1 \text {, } \\
& \text { - } \operatorname{det}(A)=0 \text {, } \\
& \text { and so } V_{1}\left(A \mathbf{v}_{1}\right) \neq|\operatorname{det}(A)| V_{1}\left(\mathbf{v}_{1}\right) \text {. }
\end{aligned}
$$

- Suppose that $\Omega$ is any object in $\mathbb{R}^{n}$ for which $n$-volume $V_{n}(\Omega)$ can be defined.
- Suppose that $\Omega$ is any object in $\mathbb{R}^{n}$ for which $n$-volume $V_{n}(\Omega)$ can be defined.
- We will not go into the technical details of how this can be done, but the idea is that we approximate $\Omega$ with ever smaller $n$-dimensional hypercubes; the sum of $n$-volumes of those $n$-hypercubes (which are simply $n$-parallelepipeds, and so we know how to compute their $n$-volume) will give us an ever better approximation of the $n$-volume of $\Omega$ that we wish to define.

- Suppose that $\Omega$ is any object in $\mathbb{R}^{n}$ for which $n$-volume $V_{n}(\Omega)$ can be defined.
- We will not go into the technical details of how this can be done, but the idea is that we approximate $\Omega$ with ever smaller $n$-dimensional hypercubes; the sum of $n$-volumes of those $n$-hypercubes (which are simply $n$-parallelepipeds, and so we know how to compute their $n$-volume) will give us an ever better approximation of the $n$-volume of $\Omega$ that we wish to define.

- To obtain the actual $n$-volume of $\Omega$, we take the limit of these ever-finer approximations. If the limit exists, then $\Omega$ will have an $n$-volume (defined to be this limit). If the limit does not exist, then $n$-volume is undefined for $\Omega$.
- Suppose that $\Omega$ is any object in $\mathbb{R}^{n}$ for which $n$-volume $V_{n}(\Omega)$ can be defined.
- We will not go into the technical details of how this can be done, but the idea is that we approximate $\Omega$ with ever smaller $n$-dimensional hypercubes; the sum of $n$-volumes of those $n$-hypercubes (which are simply $n$-parallelepipeds, and so we know how to compute their n-volume) will give us an ever better approximation of the $n$-volume of $\Omega$ that we wish to define.

- To obtain the actual $n$-volume of $\Omega$, we take the limit of these ever-finer approximations. If the limit exists, then $\Omega$ will have an $n$-volume (defined to be this limit). If the limit does not exist, then $n$-volume is undefined for $\Omega$.
- It is actually pretty difficult to construct $\Omega$ for which volume is undefined! Any reasonably pretty object $\Omega$ will have a volume, although that volume may possibly be zero.
- Now, suppose we are given a matrix $A \in \mathbb{R}^{n \times n}$.
- Now, suppose we are given a matrix $A \in \mathbb{R}^{n \times n}$.
- We consider the linear function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose standard matrix is $A$ (i.e. for all $\mathbf{x} \in \mathbb{R}^{n}$, we have $f_{A}(\mathbf{x})=A \mathbf{x}$ ).
- Now, suppose we are given a matrix $A \in \mathbb{R}^{n \times n}$.
- We consider the linear function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose standard matrix is $A$ (i.e. for all $\mathbf{x} \in \mathbb{R}^{n}$, we have $f_{A}(\mathbf{x})=A \mathbf{x}$ ).
- Then each of the small $n$-hypercubes gets mapped onto a small $n$-parallelepiped; if the small $n$-hypercubes each had volume $V$, then by Corollary 7.10.5, the small $n$-parallelepipeds that these $n$-hypercubes get mapped onto via $f_{A}$ will have volume $|\operatorname{det}(A)| V$.


- Now, suppose we are given a matrix $A \in \mathbb{R}^{n \times n}$.
- We consider the linear function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose standard matrix is $A$ (i.e. for all $\mathbf{x} \in \mathbb{R}^{n}$, we have $f_{A}(\mathbf{x})=A \mathbf{x}$ ).
- Then each of the small $n$-hypercubes gets mapped onto a small $n$-parallelepiped; if the small $n$-hypercubes each had volume $V$, then by Corollary 7.10.5, the small $n$-parallelepipeds that these $n$-hypercubes get mapped onto via $f_{A}$ will have volume $|\operatorname{det}(A)| V$.


- So, we get the following formula for the $n$-volume of the image of $\Omega$ under $f_{A}$ :

$$
V_{n}\left(f_{A}[\Omega]\right)=|\operatorname{det}(A)| V_{n}(\Omega)
$$

## Example 7.10.6

Let $a$ and $b$ be positive real numbers. Compute the area (i.e. 2 -volume) of the region bounded by the ellipse whose equation is

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1
$$



Solution. We need compute the area of the region

$$
E:=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, \frac{x_{1}^{2}}{\partial^{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1\right\} .
$$

Solution. We need compute the area of the region

$$
E:=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1\right\} .
$$

Consider the unit disk

$$
D:=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

and the matrix

$$
A=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] .
$$

Solution. We need compute the area of the region

$$
E:=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1\right\} .
$$

Consider the unit disk

$$
D:=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

and the matrix

$$
A=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] .
$$

Let $f_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear function whose standard matrix is $A$, so that for all $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T} \in \mathbb{R}^{2}$, we have

$$
f_{A}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
a x_{1} \\
b x_{2}
\end{array}\right] .
$$

Solution. We need compute the area of the region

$$
E:=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1\right\} .
$$

Consider the unit disk

$$
D:=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

and the matrix

$$
A=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] .
$$

Let $f_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear function whose standard matrix is $A$, so that for all $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T} \in \mathbb{R}^{2}$, we have

$$
f_{A}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
a x_{1} \\
b x_{2}
\end{array}\right] .
$$

WTA $f_{A}[D]=E$.

Solution (continued). We now see that

$$
\begin{aligned}
& f_{A}[D]=\left\{\left.f_{A}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, x_{1}^{2}+x_{2}^{2} \leq 1\right\} \\
& =\left\{\left.\left[\begin{array}{l}
a x_{1} \\
b x_{2}
\end{array}\right] \right\rvert\, x_{1}, x_{2} \in \mathbb{R}, x_{1}^{2}+x_{2}^{2} \leq 1\right\} \\
& =\left\{\left.\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \right\rvert\, y_{1}, y_{2} \in \mathbb{R},\left(\frac{y_{1}}{a}\right)^{2}+\left(\frac{y_{2}}{b}\right)^{2} \leq 1\right\} \\
& =\left\{\left.\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \right\rvert\, y_{1}, y_{2} \in \mathbb{R}, \frac{y_{1}^{2}}{\partial^{2}}+\frac{y_{2}^{2}}{b^{2}} \leq 1\right\} \\
& =E \text {. }
\end{aligned}
$$

## Example 7.10.6

Let $a$ and $b$ be positive real numbers. Compute the area (i.e. 2 -volume) of the region bounded by the ellipse whose equation is

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1
$$



Solution (continued). Reminder: $f_{A}[D]=E$.

## Example 7.10.6

Let $a$ and $b$ be positive real numbers. Compute the area (i.e. 2 -volume) of the region bounded by the ellipse whose equation is

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1
$$



Solution (continued). Reminder: $f_{A}[D]=E$.
Therefore, the area of $E$ is

$$
\operatorname{area}(E)=\underbrace{|\operatorname{det}(A)|}_{=a b} \underbrace{\operatorname{area}(D)}_{=1^{2} \pi}=a b \pi .
$$

(2) Algebraically closed fields (subsec. 2.4.5 of the Lecture Notes)
(2) Algebraically closed fields (subsec. 2.4.5 of the Lecture Notes)

## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.
(2) Algebraically closed fields (subsec. 2.4.5 of the Lecture Notes)

## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

## The Fundamental Theorem of Algebra

Any non-constant polynomial with complex coefficients has a complex root.

- By the Fundamental Theorem of Algebra, the field $\mathbb{C}$ is algebraically closed.
(2) Algebraically closed fields (subsec. 2.4.5 of the Lecture Notes)


## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

## The Fundamental Theorem of Algebra

Any non-constant polynomial with complex coefficients has a complex root.

- By the Fundamental Theorem of Algebra, the field $\mathbb{C}$ is algebraically closed.
- On the other hand, $\mathbb{R}$ is not algebraically closed, and similarly, neither is $\mathbb{Q}$.
- For example, the polynomial $x^{2}+1$ has no roots in $\mathbb{R}$ (and in particular, it has no roots in $\mathbb{Q}$ ).
- It does, however, have two complex roots, namely, $i$ and $-i$.


## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

- No finite field is algebraically closed.


## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

- No finite field is algebraically closed.
- To see this, consider any finite field $\mathbb{F}=\left\{f_{1}, \ldots, f_{t}\right\}(t \geq 2)$, and consider the polynomial

$$
p(x)=\left(x-f_{1}\right) \ldots\left(x-f_{t}\right)+1,
$$

which is a polynomial of degree $t$ with coefficients in $\mathbb{F}$.

## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

- No finite field is algebraically closed.
- To see this, consider any finite field $\mathbb{F}=\left\{f_{1}, \ldots, f_{t}\right\}(t \geq 2)$, and consider the polynomial

$$
p(x)=\left(x-f_{1}\right) \ldots\left(x-f_{t}\right)+1,
$$

which is a polynomial of degree $t$ with coefficients in $\mathbb{F}$.

- Then for each $i \in\{1, \ldots, t\}$, we have that $p\left(f_{i}\right)=1$, and consequently, $f_{i}$ is not a root of $p(x)$.


## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

- No finite field is algebraically closed.
- To see this, consider any finite field $\mathbb{F}=\left\{f_{1}, \ldots, f_{t}\right\}(t \geq 2)$, and consider the polynomial

$$
p(x)=\left(x-f_{1}\right) \ldots\left(x-f_{t}\right)+1,
$$

which is a polynomial of degree $t$ with coefficients in $\mathbb{F}$.

- Then for each $i \in\{1, \ldots, t\}$, we have that $p\left(f_{i}\right)=1$, and consequently, $f_{i}$ is not a root of $p(x)$.
- Since $\mathbb{F}=\left\{f_{1}, \ldots, f_{t}\right\}$, we see that $p(x)$ has no roots in $\mathbb{F}$.


## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

- No finite field is algebraically closed.
- To see this, consider any finite field $\mathbb{F}=\left\{f_{1}, \ldots, f_{t}\right\}(t \geq 2)$, and consider the polynomial

$$
p(x)=\left(x-f_{1}\right) \ldots\left(x-f_{t}\right)+1,
$$

which is a polynomial of degree $t$ with coefficients in $\mathbb{F}$.

- Then for each $i \in\{1, \ldots, t\}$, we have that $p\left(f_{i}\right)=1$, and consequently, $f_{i}$ is not a root of $p(x)$.
- Since $\mathbb{F}=\left\{f_{1}, \ldots, f_{t}\right\}$, we see that $p(x)$ has no roots in $\mathbb{F}$.
- Thus, of the fields that we have seen so far, namely, $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, and $\mathbb{Z}_{p}$ (where $p$ is a prime number), only the field $\mathbb{C}$ is algebraically closed.


## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

- No finite field is algebraically closed.
- To see this, consider any finite field $\mathbb{F}=\left\{f_{1}, \ldots, f_{t}\right\}(t \geq 2)$, and consider the polynomial

$$
p(x)=\left(x-f_{1}\right) \ldots\left(x-f_{t}\right)+1,
$$

which is a polynomial of degree $t$ with coefficients in $\mathbb{F}$.

- Then for each $i \in\{1, \ldots, t\}$, we have that $p\left(f_{i}\right)=1$, and consequently, $f_{i}$ is not a root of $p(x)$.
- Since $\mathbb{F}=\left\{f_{1}, \ldots, f_{t}\right\}$, we see that $p(x)$ has no roots in $\mathbb{F}$.
- Thus, of the fields that we have seen so far, namely, $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, and $\mathbb{Z}_{p}$ (where $p$ is a prime number), only the field $\mathbb{C}$ is algebraically closed.
- Other algebraically closed fields do exist, but we will not study them in this course.


## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

- It can be shown (though we will not give a formal proof) that any non-constant polynomial with coefficients in an algebraically closed field $\mathbb{F}$ can be factored into linear terms in a unique way.
- More precisely, if $p(x)$ is a polynomial of degree $n \geq 1$, and with coefficients in an algebraically closed field $\mathbb{F}$, then there exist numbers $a, \alpha_{1}, \ldots, \alpha_{\ell}$ in $\mathbb{F}$ s.t. $a \neq 0$ and s.t. $\alpha_{1}, \ldots, \alpha_{\ell}$ are pairwise distinct, and positive integers $n_{1}, \ldots, n_{\ell}$ satisfying $n_{1}+\cdots+n_{\ell}=n$, s.t.

$$
p(x)=a\left(x-\alpha_{1}\right)^{n_{1}} \ldots\left(x-\alpha_{\ell}\right)^{n_{\ell}} .
$$

Moreover, a, $\alpha_{1}, \ldots, \alpha_{\ell}, n_{1}, \ldots, n_{\ell}$ are uniquely determined by the polynomial $p(x)$, up to a permutation of the $\alpha_{i}$ 's and the corresponding $n_{i}$ 's.

- More precisely, if $p(x)$ is a polynomial of degree $n \geq 1$, and with coefficients in an algebraically closed field $\mathbb{F}$, then there exist numbers $a, \alpha_{1}, \ldots, \alpha_{\ell}$ in $\mathbb{F}$ s.t. $a \neq 0$ and s.t. $\alpha_{1}, \ldots, \alpha_{\ell}$ are pairwise distinct, and positive integers $n_{1}, \ldots, n_{\ell}$ satisfying $n_{1}+\cdots+n_{\ell}=n$, s.t.

$$
p(x)=a\left(x-\alpha_{1}\right)^{n_{1}} \ldots\left(x-\alpha_{\ell}\right)^{n_{\ell}} .
$$

Moreover, a, $\alpha_{1}, \ldots, \alpha_{\ell}, n_{1}, \ldots, n_{\ell}$ are uniquely determined by the polynomial $p(x)$, up to a permutation of the $\alpha_{i}$ 's and the corresponding $n_{i}$ 's.

- Here, $a$ is the leading coefficient of $p(x)$, i.e. the coefficient in front of $x^{n}$. Numbers $\alpha_{1}, \ldots, \alpha_{\ell}$ are the roots of $p(x)$ with multiplicities $n_{1}, \ldots, n_{\ell}$, respectively.
- More precisely, if $p(x)$ is a polynomial of degree $n \geq 1$, and with coefficients in an algebraically closed field $\mathbb{F}$, then there exist numbers $a, \alpha_{1}, \ldots, \alpha_{\ell}$ in $\mathbb{F}$ s.t. $a \neq 0$ and s.t. $\alpha_{1}, \ldots, \alpha_{\ell}$ are pairwise distinct, and positive integers $n_{1}, \ldots, n_{\ell}$ satisfying $n_{1}+\cdots+n_{\ell}=n$, s.t.

$$
p(x)=a\left(x-\alpha_{1}\right)^{n_{1}} \ldots\left(x-\alpha_{\ell}\right)^{n_{\ell}} .
$$

Moreover, a, $\alpha_{1}, \ldots, \alpha_{\ell}, n_{1}, \ldots, n_{\ell}$ are uniquely determined by the polynomial $p(x)$, up to a permutation of the $\alpha_{i}$ 's and the corresponding $n_{i}$ 's.

- Here, $a$ is the leading coefficient of $p(x)$, i.e. the coefficient in front of $x^{n}$. Numbers $\alpha_{1}, \ldots, \alpha_{\ell}$ are the roots of $p(x)$ with multiplicities $n_{1}, \ldots, n_{\ell}$, respectively.
- If we think of each $\alpha_{i}$ as being a root " $n_{i}$ times" (due to its multiplicity), then we see that the $n$-th degree polynomial $p(x)$ has exactly $n$ roots in $\mathbb{F}$.


## Definition

An algebraically closed field is a field $\mathbb{F}$ that has the property that every non-constant polynomial with coefficients in $\mathbb{F}$ has a root in $\mathbb{F}$.

- The discussion from the previous slide is often summarized as follows:

Every $n$-th degree polynomial (with $n \geq 1$ ) with coefficients in an algebraically closed field has exactly $n$ roots in that field, when multiplicities are taken into account.
(3) Common roots of polynomials via determinants
(3) Common roots of polynomials via determinants

- Any non-constant polynomial with coefficients in an algebraically closed field $\mathbb{F}$ has a root in $\mathbb{F}$. However, there is no general formula for computing such a root.
(3) Common roots of polynomials via determinants
- Any non-constant polynomial with coefficients in an algebraically closed field $\mathbb{F}$ has a root in $\mathbb{F}$. However, there is no general formula for computing such a root.
- So, it may be surprising that, given arbitrary polynomials $p(x)$ and $q(x)$ with coefficients in an algebraically closed field $\mathbb{F}$, we can use determinants to determine whether $p(x)$ and $q(x)$ have a common root, i.e. whether there exists a number $x_{0} \in \mathbb{F}$ for which we have $p\left(x_{0}\right)=0$ and $q\left(x_{0}\right)=0$ (next slide).
(3) Common roots of polynomials via determinants
- Any non-constant polynomial with coefficients in an algebraically closed field $\mathbb{F}$ has a root in $\mathbb{F}$. However, there is no general formula for computing such a root.
- So, it may be surprising that, given arbitrary polynomials $p(x)$ and $q(x)$ with coefficients in an algebraically closed field $\mathbb{F}$, we can use determinants to determine whether $p(x)$ and $q(x)$ have a common root, i.e. whether there exists a number $x_{0} \in \mathbb{F}$ for which we have $p\left(x_{0}\right)=0$ and $q\left(x_{0}\right)=0$ (next slide).
- However, the determinant in question will only tell us whether such a common root exists; it provides no information on how one might actually compute such a root.


## Theorem 7.11.1

Let $\mathbb{F}$ be an algebraically closed field. Let $m$ and $n$ be positive integers, and let $p(x)=\sum_{i=0}^{m} a_{i} x^{i}\left(a_{m} \neq 0\right)$ and $q(x)=\sum_{i=0}^{n} b_{i} x^{i}$ ( $b_{n} \neq 0$ ) be polynomials with coefficients in $\mathbb{F}$. Let $P$ be the $n \times(n+m)$ matrix whose $j$-th row (for $j \in\{1, \ldots, n\}$ ) is

$$
[\begin{array}{llllll}
\underbrace{0}_{j-1} \ldots & \ldots
\end{array} a_{m} \quad a_{m-1} \quad \ldots . \quad a_{0} \underbrace{\begin{array}{llll}
0 & \ldots & 0
\end{array}}_{n-j}]
$$

and let $Q$ be the $m \times(n+m)$ matrix whose $j$-th row (for $j \in\{1, \ldots, m\})$ is

$$
\left[\begin{array}{llllll}
\underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{j-1} b_{n} & b_{n-1} & \ldots & b_{0} & \underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{m-j}] . . . . ~
\end{array}\right.
$$

Then $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$ iff

$$
\operatorname{det}\left(\left[\begin{array}{c}
P \\
\hdashline \bar{Q}^{-}
\end{array}\right]\right)=0
$$

- First a more detailed explanation of how out matrix is formed, then an example, then a proof.
- For example, if $m=3$ and $n=5$, so that
- $p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$,
- $q(x)=b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$,
then we have

$$
\left[\begin{array}{c}
P \\
\hdashline \bar{Q}
\end{array}\right]=\left[\begin{array}{cccccccc}
a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\
0 & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\
0 & 0 & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\
0 & 0 & 0 & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\
0 & 0 & 0 & 0 & a_{3} & a_{2} & a_{1} & a_{0} \\
\hdashline \bar{b}_{5} & b_{4} & \bar{b}_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\
0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\
0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0}
\end{array}\right]_{8 \times 8} .
$$

## Example 7.11.2

Determine whether the polynomials $p(x)=5 x^{3}-2 x^{2}+x-4$ and $q(x)=7 x^{2}-6 x-1$ have a common complex root.

Proof.

## Example 7.11.2

Determine whether the polynomials $p(x)=5 x^{3}-2 x^{2}+x-4$ and $q(x)=7 x^{2}-6 x-1$ have a common complex root.

Proof. In this case, it is easy to see that $p(1)=0$ and $q(1)=0$, and so 1 is a common root of $p(x)$ and $q(x)$. However, let us use Theorem 7.11.1, in order to illustrate how this theorem can be applied.

Using the notation of Theorem 7.11.1, we have that $m=3, n=2$, and the matrices $P$ and $Q$ are given by

- $P=\left[\begin{array}{rrrrr}5 & -2 & 1 & -4 & 0 \\ 0 & 5 & -2 & 1 & -4\end{array}\right]$;
- $Q=\left[\begin{array}{rrrrr}7 & -6 & -1 & 0 & 0 \\ 0 & 7 & -6 & -1 & 0 \\ 0 & 0 & 7 & -6 & -1\end{array}\right]$.


## Example 7.11.2

Determine whether the polynomials $p(x)=5 x^{3}-2 x^{2}+x-4$ and $q(x)=7 x^{2}-6 x-1$ have a common complex root.

Proof (continued). We now have that

$$
\operatorname{det}\left(\left[\begin{array}{c}
P \\
\hdashline \bar{Q}
\end{array}\right]\right)=\left|\begin{array}{rrrrr}
5 & -2 & 1 & -4 & 0 \\
0 & 5 & -2 & 1 & -4 \\
\hdashline \overline{7} & -6 & -1 & - & - \\
0 & 7 & -6 & -1 & 0 \\
0 & 0 & 7 & -6 & -1
\end{array}\right|=0
$$

Theorem 7.11.2 now guarantees that $p(x)$ and $q(x)$ have a common complex root. $\square$

## Theorem 7.11.1

Let $\mathbb{F}$ be an algebraically closed field. Let $m$ and $n$ be positive integers, and let $p(x)=\sum_{i=0}^{m} a_{i} x^{i}\left(a_{m} \neq 0\right)$ and $q(x)=\sum_{i=0}^{n} b_{i} x^{i}$ ( $b_{n} \neq 0$ ) be polynomials with coefficients in $\mathbb{F}$. Let $P$ be the $n \times(n+m)$ matrix whose $j$-th row (for $j \in\{1, \ldots, n\}$ ) is

$$
[\begin{array}{lllll}
\underbrace{0}_{j-1} & \ldots & 0
\end{array} a_{m} \quad a_{m-1} \quad \ldots \quad a_{0} \underbrace{\begin{array}{llll}
0 & \ldots & 0
\end{array}}_{n-j}]
$$

and let $Q$ be the $m \times(n+m)$ matrix whose $j$-th row (for $j \in\{1, \ldots, m\})$ is

$$
\left[\begin{array}{lllllll}
\underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{j-1} b_{n} & b_{n-1} & \ldots & b_{0} & \underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{m-j}] . . . . ~
\end{array}\right.
$$

Then $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$ iff

$$
\operatorname{det}\left(\left[\begin{array}{c}
P \\
\hline \bar{Q}^{-}
\end{array}\right]\right)=0
$$

- Let's prove the theorem!

Proof.
Claim. Polynomials $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$ iff there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ that satisfy the following:

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

Proof of the Claim.

## Proof.

Claim. Polynomials $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$ iff there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ that satisfy the following:

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

Proof of the Claim. Suppose first that $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$, say $\alpha$.

## Proof.

Claim. Polynomials $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$ iff there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ that satisfy the following:

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

Proof of the Claim. Suppose first that $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$, say $\alpha$. Then we set

$$
r(x):=\frac{q(x)}{x-\alpha} \quad \text { and } \quad s(x):=-\frac{p(x)}{x-\alpha},
$$

and we observe that $\operatorname{deg}(r(x))=\operatorname{deg}(q(x))-1=n-1$, $\operatorname{deg}(s(x))=\operatorname{deg}(p(x))-1=m-1$, and

$$
r(x) p(x)+s(x) q(x)=\frac{q(x) p(x)}{x-\alpha}-\frac{p(x) q(x)}{x-\alpha}=0
$$

Proof of the Claim (continued). Suppose conversely there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ s.t.

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

WTS $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$.

Proof of the Claim (continued). Suppose conversely there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ s.t.

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

WTS $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$.
Then $r(x) p(x)$ and $s(x) q(x)$ are non-constant polynomials with coefficients in $\mathbb{F}$, and they have exactly the same roots with the same corresponding multiplicities.

Proof of the Claim (continued). Suppose conversely there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ s.t.

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

WTS $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$.
Then $r(x) p(x)$ and $s(x) q(x)$ are non-constant polynomials with coefficients in $\mathbb{F}$, and they have exactly the same roots with the same corresponding multiplicities.

Since $\operatorname{deg}(p(x))=m$, we know that $p(x)$ has exactly $m$ roots in $\mathbb{F}$ (when multiplicities are taken into account).

- Here, we are using the fact that $\mathbb{F}$ is algebraically closed.

Proof of the Claim (continued). Suppose conversely there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ s.t.

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

WTS $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$.
Then $r(x) p(x)$ and $s(x) q(x)$ are non-constant polynomials with coefficients in $\mathbb{F}$, and they have exactly the same roots with the same corresponding multiplicities.

Since $\operatorname{deg}(p(x))=m$, we know that $p(x)$ has exactly $m$ roots in $\mathbb{F}$ (when multiplicities are taken into account).

- Here, we are using the fact that $\mathbb{F}$ is algebraically closed.

But $\operatorname{deg}(s(x)) \leq m-1$, and so at least one of the roots of $p(x)$ either fails to be a root of $s(x)$, or is a root of $s(x)$ but has smaller multiplicity in $s(x)$ than in $p(x)$.

Proof of the Claim (continued). Suppose conversely there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ s.t.

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

WTS $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$.
Then $r(x) p(x)$ and $s(x) q(x)$ are non-constant polynomials with coefficients in $\mathbb{F}$, and they have exactly the same roots with the same corresponding multiplicities.

Since $\operatorname{deg}(p(x))=m$, we know that $p(x)$ has exactly $m$ roots in $\mathbb{F}$ (when multiplicities are taken into account).

- Here, we are using the fact that $\mathbb{F}$ is algebraically closed.

But $\operatorname{deg}(s(x)) \leq m-1$, and so at least one of the roots of $p(x)$ either fails to be a root of $s(x)$, or is a root of $s(x)$ but has smaller multiplicity in $s(x)$ than in $p(x)$. This root of $p(x)$ must therefore be a root of $q(x)$.

Proof (continued). We have now proven the Claim below:
Claim. Polynomials $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$ iff there exist non-zero polynomials $r(x)$ and $s(x)$ with coefficients in $\mathbb{F}$ that satisfy the following:

- $\operatorname{deg}(r(x)) \leq n-1$;
- $\operatorname{deg}(s(x)) \leq m-1$;
- $r(x) p(x)+s(x) q(x)=0$.

Proof (continued). In view of the Claim, it now suffices to determine if there exist non-zero polynomials $r(x)=\sum_{i=0}^{n-1} c_{i} x^{i}$ and $s(x)=\sum_{i=0}^{m-1} d_{i} x^{i}$ s.t. $r(x) p(x)+s(x) q(x)=0$.

Proof (continued). In view of the Claim, it now suffices to determine if there exist non-zero polynomials $r(x)=\sum_{i=0}^{n-1} c_{i} x^{i}$ and $s(x)=\sum_{i=0}^{m-1} d_{i} x^{i}$ s.t. $r(x) p(x)+s(x) q(x)=0$.
So, we need to determine if there exist $c_{0}, \ldots, c_{n-1}, d_{0}, \ldots, d_{m-1} \in \mathbb{F}$ s.t. at least one of $c_{0}, \ldots, c_{n-1}$ is non-zero and at least one of $d_{0}, \ldots, d_{m-1}$ is non-zero, and s.t.

$$
(\underbrace{\sum_{i=0}^{n-1} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{m} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{m-1} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{n} b_{i} x^{i}}_{=q(x)})=0
$$

Proof (continued). In view of the Claim, it now suffices to determine if there exist non-zero polynomials $r(x)=\sum_{i=0}^{n-1} c_{i} x^{i}$ and $s(x)=\sum_{i=0}^{m-1} d_{i} x^{i}$ s.t. $r(x) p(x)+s(x) q(x)=0$.
So, we need to determine if there exist $c_{0}, \ldots, c_{n-1}, d_{0}, \ldots, d_{m-1} \in \mathbb{F}$ s.t. at least one of $c_{0}, \ldots, c_{n-1}$ is non-zero and at least one of $d_{0}, \ldots, d_{m-1}$ is non-zero, and s.t.

$$
(\underbrace{\sum_{i=0}^{n-1} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{m} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{m-1} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{n} b_{i} x^{i}}_{=q(x)})=0
$$

But obviously, if $c_{0}, \ldots, c_{n-1}$ are all zero, then $d_{0}, \ldots, d_{m-1}$ are all zero, and vice versa.

Proof (continued). In view of the Claim, it now suffices to determine if there exist non-zero polynomials $r(x)=\sum_{i=0}^{n-1} c_{i} x^{i}$ and $s(x)=\sum_{i=0}^{m-1} d_{i} x^{i}$ s.t. $r(x) p(x)+s(x) q(x)=0$.
So, we need to determine if there exist $c_{0}, \ldots, c_{n-1}, d_{0}, \ldots, d_{m-1} \in \mathbb{F}$ s.t. at least one of $c_{0}, \ldots, c_{n-1}$ is non-zero and at least one of $d_{0}, \ldots, d_{m-1}$ is non-zero, and s.t.

$$
(\underbrace{\sum_{i=0}^{n-1} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{m} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{m-1} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{n} b_{i} x^{i}}_{=q(x)})=0 .
$$

But obviously, if $c_{0}, \ldots, c_{n-1}$ are all zero, then $d_{0}, \ldots, d_{m-1}$ are all zero, and vice versa. So, we in fact need to determine if the above equality holds for some numbers $c_{0}, \ldots, c_{n-1}, d_{0}, \ldots, d_{m-1} \in \mathbb{F}$, at least one of which is non-zero.

Proof (continued). Reminder:

$$
(\underbrace{\sum_{i=0}^{n-1} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{m} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{m-1} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{n} b_{i} x^{i}}_{=q(x)})=0 .
$$

We now write the polynomial on the left-hand-side in the standard form, and we set all the coefficients that we obtain equal to zero.

- We can do this since our polynomial is identically zero, i.e. it is zero as a polynomial. This means precisely that all its coefficients are zero.


## Proof (continued). Reminder:

$$
(\underbrace{\sum_{i=0}^{n-1} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{m} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{m-1} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{n} b_{i} x^{i}}_{=q(x)})=0 .
$$

This yields a system of $n+m$ linear equations in the variables $c_{n-1}, \ldots, c_{0}, d_{m-1}, \ldots, d_{0}$ (we treat $a_{m}, \ldots, a_{0}, b_{n}, \ldots, b_{0}$ as constants).

Proof (continued). Reminder:

$$
(\underbrace{\sum_{i=0}^{n-1} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{m} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{m-1} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{n} b_{i} x^{i}}_{=q(x)})=0 .
$$

This yields a system of $n+m$ linear equations in the variables $c_{n-1}, \ldots, c_{0}, d_{m-1}, \ldots, d_{0}$ (we treat $a_{m}, \ldots, a_{0}, b_{n}, \ldots, b_{0}$ as constants).
In each equation, we arrange the variables
$c_{n-1}, \ldots, c_{0}, d_{m-1}, \ldots, d_{0}$ in this order from left to right. We arrange the equations for the coefficients in front of $x^{n+m-1}, \ldots, x^{1}, x^{0}$ from top to bottom.

Proof (continued). Reminder:

$$
(\underbrace{\sum_{i=0}^{n-1} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{m} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{m-1} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{n} b_{i} x^{i}}_{=q(x)})=0 .
$$

This yields a system of $n+m$ linear equations in the variables $c_{n-1}, \ldots, c_{0}, d_{m-1}, \ldots, d_{0}$ (we treat $a_{m}, \ldots, a_{0}, b_{n}, \ldots, b_{0}$ as constants).
In each equation, we arrange the variables
$c_{n-1}, \ldots, c_{0}, d_{m-1}, \ldots, d_{0}$ in this order from left to right. We arrange the equations for the coefficients in front of $x^{n+m-1}, \ldots, x^{1}, x^{0}$ from top to bottom. We then rewrite this linear system as a matrix-vector equation

$$
A\left[\begin{array}{lll:ll}
c_{n-1} & \ldots & c_{0} & d_{m-1} & \ldots \\
d_{0}
\end{array}\right]^{T}=\mathbf{0}
$$

and we observe that the coefficient matrix $A$ satisfies $A^{T}=\left[\begin{array}{c}P \\ -\bar{Q}^{-}\end{array}\right]$.

- Intermission: Let's look at an example with $m=3$ and $n=5$.

Intermission: Example with $m=3$ and $n=5$. Then

- $p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$,
- $q(x)=b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$,
- $r(x)=c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}$,
- $s(t)=d_{2} x^{2}+d_{1} x+d_{0}$,
then our equation becomes

$$
(\underbrace{\sum_{i=0}^{4} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{3} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{2} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{5} b_{i} x^{i}}_{=q(x)})=0
$$

which yields the system of linear equations on the next slide (we consider the coefficients in front of $x^{7}, x^{6}, x^{5}, x^{4}, x^{3}, x^{2}, x^{1}, x^{0}$ from top to bottom, and we arrange the variables $c_{4}, c_{3}, c_{2}, c_{1}, c_{0}, d_{2}, d_{1}, d_{0}$ from left to right).

Intermission (continued): Example with $m=3$ and $n=5$.
Reminder: our equation was

$$
(\underbrace{\sum_{i=0}^{4} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{3} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{2} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{5} b_{i} x^{i}}_{=q(x)})=0
$$

|  | $c_{4}$ |  | $c_{3}$ |  | $c_{2}$ |  | $c_{1}$ |  | $c_{0}$ |  | $d_{2}$ |  | $d_{1}$ |  | $d_{0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x^{7}$ | $a_{3} c_{4}$ |  |  |  |  |  |  |  |  | + | $b_{5} d_{2}$ |  |  |  |  | $=$ | 0 |
| $x^{6}$ | $a_{2} c_{4}$ | + | $a_{3} c_{3}$ |  |  |  |  |  |  | $+$ | $b_{4} d_{2}$ | $+$ | $b_{5} d_{1}$ |  |  | $=$ | 0 |
| $x^{5}$ | $a_{1} c_{4}$ | + | $a_{2} c_{3}$ | + | $a_{3} c_{2}$ |  |  |  |  | + | $b_{3} d_{2}$ | + | $b_{4} d_{1}$ | + | $b_{5} d_{0}$ | $=$ | 0 |
| $x^{4}$ | $a_{0} c_{4}$ | + | $a_{1} c_{3}$ | + | $a_{2} c_{2}$ | + | $a_{3} c_{1}$ |  |  | + | $b_{2} d_{2}$ | + | $b_{3} d_{1}$ | + | $b_{4} d_{0}$ | $=$ | 0 |
| $x^{3}$ |  |  | $a_{0} c_{3}$ | + | $a_{1} c_{2}$ | + | $a_{2} c_{1}$ | + | $a_{3} c_{0}$ | + | $b_{1} d_{2}$ | $+$ | $b_{2} d_{1}$ | $+$ | $b_{3} d_{0}$ | $=$ | 0 |
| $x^{2}$ |  |  |  |  | $a_{0} c_{2}$ | + | $a_{1} c_{1}$ | + | $a_{2} c_{0}$ | + | $b_{0} d_{2}$ | $+$ | $b_{1} d_{1}$ | + | $b_{2} d_{0}$ | $=$ | 0 |
| $x^{1}$ |  |  |  |  |  |  | $a_{0} c_{1}$ | $+$ | $a_{1} c_{0}$ |  |  | $+$ | $b_{0} d_{1}$ | + | $b_{1} d_{0}$ | = | 0 |
| $x^{0}$ |  |  |  |  |  |  |  |  | $a_{0} c_{0}$ |  |  |  |  | $+$ | $b_{0} d_{0}$ | $=$ | 0 |

Intermission (continued): Example with $m=3$ and $n=5$. Reminder: our equation was

$$
(\underbrace{\sum_{i=0}^{4} c_{i} x^{i}}_{=r(x)})(\underbrace{\sum_{i=0}^{3} a_{i} x^{i}}_{=p(x)})+(\underbrace{\sum_{i=0}^{2} d_{i} x^{i}}_{=s(x)})(\underbrace{\sum_{i=0}^{5} b_{i} x^{i}}_{=q(x)})=0
$$

|  | $c_{4}$ |  | $c_{3}$ |  | $c_{2}$ |  | $c_{1}$ |  | $c_{0}$ |  | $d_{2}$ |  | $d_{1}$ |  | $d_{0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x^{7}$ | $a_{3} C_{4}$ |  |  |  |  |  |  |  |  |  | $b_{5} d_{2}$ |  |  |  |  | $=$ | 0 |
| $x^{6}$ | $a_{2} c_{4}$ | + | $a_{3} c_{3}$ |  |  |  |  |  |  | + | $b_{4} d_{2}$ | + | $b_{5} d_{1}$ |  |  | $=$ | 0 |
| $x^{5}$ | $a_{1} c_{4}$ | + | $a_{2} C_{3}$ | $+$ | $a_{3} C_{2}$ |  |  |  |  | $1+$ | $b_{3} d_{2}$ | + | $b_{4} d_{1}$ | + | $b_{5} d_{0}$ | $=$ | 0 |
| $x^{4}$ | $a_{0} c_{4}$ | + | $a_{1} c_{3}$ | $+$ | $a_{2} c_{2}$ | + | $a_{3} c_{1}$ |  |  | + | $b_{2} d_{2}$ | + | $b_{3} d_{1}$ | + | $b_{4} d_{0}$ | $=$ | 0 |
| $x^{3}$ |  |  | $a_{0} c_{3}$ | $+$ | $a_{1} c_{2}$ | + | $a_{2} c_{1}$ | + | $a_{3} c_{0}$ | $1+$ | $b_{1} d_{2}$ | + | $b_{2} d_{1}$ | + | $b_{3} d_{0}$ | $=$ | 0 |
| $x^{2}$ |  |  |  |  | $a_{0} c_{2}$ | + | $a_{1} c_{1}$ | + | $a_{2} c_{0}$ | + | $b_{0} d_{2}$ | + | $b_{1} d_{1}$ | + | $b_{2} d_{0}$ | $=$ | 0 |
| $x^{1}$ |  |  |  |  |  |  | $a_{0} c_{1}$ | $+$ | $a_{1} c_{0}$ |  |  | + | $b_{0} d_{1}$ | + | $b_{1} d_{0}$ | $=$ | 0 |
| $x^{0}$ |  |  |  |  |  |  |  |  | $a_{0} c_{0}$ |  |  |  |  | + | $b_{0} d_{0}$ | $=$ | 0 |

This linear system, in turn, translates into the following matrix-vector equation (next slide):

Intermission (continued): Example with $m=3$ and $n=5$.

$$
\left[\begin{array}{ccccc:ccc}
a_{3} & 0 & 0 & 0 & 0 & b_{5} & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 & 0 & b_{4} & b_{5} & 0 \\
a_{1} & a_{2} & a_{3} & 0 & 0 & b_{3} & b_{4} & b_{5} \\
a_{0} & a_{1} & a_{2} & a_{3} & 0 & b_{2} & b_{3} & b_{4} \\
0 & a_{0} & a_{1} & a_{2} & a_{3} & b_{1} & b_{2} & b_{3} \\
0 & 0 & a_{0} & a_{1} & a_{2} & b_{0} & b_{1} & b_{2} \\
0 & 0 & 0 & a_{0} & a_{1} & 0 & b_{0} & b_{1} \\
0 & 0 & 0 & 0 & a_{0} & 0 & 0 & b_{0}
\end{array}\right]\left[\begin{array}{c}
c_{4} \\
c_{3} \\
c_{2} \\
c_{1} \\
c_{0} \\
\hdashline d_{2} \\
d_{1} \\
d_{0}
\end{array}\right]=\mathbf{0 .}
$$

Intermission (continued): Example with $m=3$ and $n=5$.

$$
\left[\begin{array}{ccccc:ccc}
a_{3} & 0 & 0 & 0 & 0 & b_{5} & 0 & 0 \\
a_{2} & a_{3} & 0 & 0 & 0 & b_{4} & b_{5} & 0 \\
a_{1} & a_{2} & a_{3} & 0 & 0 & b_{3} & b_{4} & b_{5} \\
a_{0} & a_{1} & a_{2} & a_{3} & 0 & b_{2} & b_{3} & b_{4} \\
0 & a_{0} & a_{1} & a_{2} & a_{3} & b_{1} & b_{2} & b_{3} \\
0 & 0 & a_{0} & a_{1} & a_{2} & b_{0} & b_{1} & b_{2} \\
0 & 0 & 0 & a_{0} & a_{1} & 0 & b_{0} & b_{1} \\
0 & 0 & 0 & 0 & a_{0} & 0 & 0 & b_{0}
\end{array}\right]\left[\begin{array}{c}
c_{4} \\
c_{3} \\
c_{2} \\
c_{1} \\
c_{0} \\
\hdashline d_{2} \\
d_{1} \\
d_{0}
\end{array}\right]=\mathbf{0 .}
$$

The transpose of the coefficient matrix that we obtained is precisely the matrix

$$
\left[\begin{array}{c}
P \\
-\bar{Q}^{-}
\end{array}\right]=\left[\begin{array}{cccccccc}
a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\
0 & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\
0 & 0 & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\
0 & 0 & 0 & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\
0 & 0 & 0 & 0 & a_{3} & a_{2} & a_{1} & a_{0} \\
\hdashline b_{5}^{-} & b_{4}^{-} & b_{3} & b_{2}^{-} & b_{1} & \bar{b}_{0} & 0 & 0 \\
0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\
0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0}
\end{array}\right]_{8 \times 8} .
$$

Proof (continued). We now have the following sequence of equivalent statements:

$$
\left.\begin{array}{l}
p(x) \text { and } q(x) \text { have } \\
\text { a common root in } \mathbb{F}
\end{array} \Longleftrightarrow \begin{array}{lll:l}
A\left[\begin{array}{llll}
c_{n-1} & \ldots & c_{0} & d_{m-1}
\end{array}\right. & \ldots & d_{0}
\end{array}\right]^{T}=\mathbf{0} 0
$$

$\stackrel{(*)}{\Longleftrightarrow} A$ is non-invertible

$$
\begin{aligned}
& \stackrel{(*)}{\Longleftrightarrow} \quad A^{T}=\left[\begin{array}{c}
P \\
-\bar{Q}
\end{array}\right] \text { is non-invertible } \\
& \stackrel{(*)}{\Longleftrightarrow} \quad \operatorname{det}\left(\left[\begin{array}{c}
P \\
-\bar{Q}-
\end{array}\right]\right)=0,
\end{aligned}
$$

where all three instances of $\left({ }^{*}\right)$ follow from the Invertible Matrix Theorem. $\square$

## Theorem 7.11.1

Let $\mathbb{F}$ be an algebraically closed field. Let $m$ and $n$ be positive integers, and let $p(x)=\sum_{i=0}^{m} a_{i} x^{i}\left(a_{m} \neq 0\right)$ and $q(x)=\sum_{i=0}^{n} b_{i} x^{i}$ ( $b_{n} \neq 0$ ) be polynomials with coefficients in $\mathbb{F}$. Let $P$ be the $n \times(n+m)$ matrix whose $j$-th row (for $j \in\{1, \ldots, n\}$ ) is

$$
\left[\begin{array}{llllll}
\underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{j-1} a_{m} & a_{m-1} & \ldots & a_{0} & \underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{n-j}] \text {, }, \text {, }
\end{array}\right.
$$

and let $Q$ be the $m \times(n+m)$ matrix whose $j$-th row (for $j \in\{1, \ldots, m\})$ is

$$
\left[\begin{array}{llllll}
\underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{j-1} b_{n} & b_{n-1} & \ldots & b_{0} & \underbrace{\begin{array}{lll}
0 & \ldots & 0
\end{array}}_{m-j}] . . . . ~
\end{array}\right.
$$

Then $p(x)$ and $q(x)$ have a common root in $\mathbb{F}$ iff

$$
\operatorname{det}\left(\left[\begin{array}{c}
P \\
\hdashline \bar{Q}^{-}
\end{array}\right]\right)=0
$$


[^0]:    ${ }^{\text {a }}$ Equivalently (by Corollary 6.5.3): $\mathbf{v}_{m+1}^{\perp}=\mathbf{v}_{m+1}-\operatorname{proj}_{\mathrm{Span}^{\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)}}\left(\mathbf{v}_{m+1}\right)$.

