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1 Determinants and volume
2 Algebraically closed fields
3 Common roots of polynomials via determinants
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1 Determinants and volume

In our study of determinants and volume, we assume
throughout that Rn is equipped with the standard scalar
product · and the induced norm || · ||.

For a parallelogram, we have the familiar formula(
area of

parallelogram

)
= (length of base) × (height).
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We have a similar formula for the volume of a parallelepiped:(
volume of

parallelepiped

)
= (area of base) × (height).
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We would now like to generalize this to arbitrary dimensions
(next slide).
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

For instance, given two vectors v1, v2 ∈ R2, neither of which
is a scalar multiple of the other, the 2-parallelepiped
determined by v1, v2 is just the usual parallelogram
determined by these two vectors.

v1
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

For vectors v1, v2 ∈ Rn, neither of which is a scalar multiple
of each other, the 2-parallelepiped determined by v1, v2 is still
a parallelogram, but this parallelogram lies in the plane
(2-dimensional subspace) Span(v1, v2) of Rn.
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

What happens if one of v1, v2 ∈ Rn is a scalar multiple of the
other, say v2 = αv1 for some scalar α ∈ R?

Then the 2-parallelepiped determined by v1 and v2 is just set{
c1v1 + c2v2 | c1, c2 ∈ R, 0 ≤ c1, c2 ≤ 1

}
=

{
c1v1 + c2αv1 | c1, c2 ∈ R, 0 ≤ c1, c2 ≤ 1

}
=

{
(c1 + c2α)v1 | c1, c2 ∈ R, 0 ≤ c1, c2 ≤ 1

}
=

{
c(1 + α)v1 | c ∈ R, 0 ≤ c ≤ 1

}
,

which is 1-dimensional (a line segment) if v1 ̸= 0, and is
0-dimensional (containing only the zero vector) if v1 = 0.
We can think of these as “degenerate parallelograms.”
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

Similarly, for three linearly independent vectors
v1, v2, v3 ∈ Rn, the 3-parallelepiped defined by v1, v2, v3 is
just the usual parallelepiped whose edges are determined by
these three vectors (see the picture below).
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Definition
Given vectors v1, . . . , vm ∈ Rn, the m-parallelepiped determined by
vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

If {v1, v2, v3} is not linearly independent, then the
3-parallelepiped determined by v1, v2, v3 is either a
parallelogram, or a line segment, or {0}, depending on the
dimension of Span(v1, v2, v3).

Once again, we can think of these as “degenerate
parallelepipeds.”

For more than three vectors, we get higher-dimensional
generalizations.
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vectors v1, . . . , vm is the set{

c1v1 + · · · + cmvm | c1, . . . , cm ∈ R, 0 ≤ c1, . . . , cm ≤ 1
}

.

We would now like to define the “volume” (more precisely, the
“m-volume”) of an m-parallelepiped in Rn.

We do this recursively, as follows (next slide).
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Definition
The 1-volume of the 1-parallelepiped determined by the vector
v1 ∈ Rn is defined to be V1(v1) := ||v1||.
For a positive integer m, the (m + 1)-volume of the
(m + 1)-parallelepiped determined by the vectors
v1, . . . , vm, vm+1 ∈ Rn is defined to be

Vm+1(v1, . . . , vm, vm+1) := Vm(v1, . . . , vm) ||v⊥
m+1||,

where v⊥
m+1 = projSpan(v1,...,vm)⊥(vm+1).a

aEquivalently (by Corollary 6.5.3): v⊥
m+1 = vm+1 − projSpan(v1,...,vm)(vm+1).

In this recursive formula, the m-parallelepiped determined by
the vectors v1, . . . , vm is our “base” and ||v⊥

m+1|| is our
“height.”
So, we get the formula(

(m + 1)-volume of
(m + 1)-parallelepiped

)
= (m-volume of base) × (height).
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Definition
The 1-volume of the 1-parallelepiped determined by the vector
v1 ∈ Rn is defined to be V1(v1) := ||v1||.
For a positive integer m, the (m + 1)-volume of the
(m + 1)-parallelepiped determined by the vectors
v1, . . . , vm, vm+1 ∈ Rn is defined to be

Vm+1(v1, . . . , vm, vm+1) := Vm(v1, . . . , vm) ||v⊥
m+1||,

where v⊥
m+1 = projSpan(v1,...,vm)⊥(vm+1).a

aEquivalently (by Corollary 6.5.3): v⊥
m+1 = vm+1 − projSpan(v1,...,vm)(vm+1).

Note that 1-volume represents (1-dimensional) length,
2-volume represents (2-dimensional) area, and 3-volume
represents (3-dimensional) volume.
For m ≥ 4, m-volume is an m-dimensional generalization of
these concepts.



Proposition 7.10.1
Let v1, . . . , vm ∈ Rn. Then Vm(v1, . . . , vm) ≥ 0, and equality holds
iff {v1, . . . , vm} is a linearly dependent set.

Proof: Lecture Notes.
The fact that Vm(v1, . . . , vm) ≥ 0 follows straight from the
definition of m-volume (we keep computing lengths of vectors).
The second statement essentially states that the volume of an
m-parallelepiped is zero iff that m-parallelepiped is
“degenerate.”



Definition
The 1-volume of the 1-parallelepiped determined by the vector
v1 ∈ Rn is defined to be V1(v1) := ||v1||.
For a positive integer m, the (m + 1)-volume of the
(m + 1)-parallelepiped determined by the vectors
v1, . . . , vm, vm+1 ∈ Rn is defined to be

Vm+1(v1, . . . , vm, vm+1) := Vm(v1, . . . , vm) ||v⊥
m+1||,

where v⊥
m+1 = projSpan(v1,...,vm)⊥(vm+1).a

aEquivalently (by Corollary 6.5.3): v⊥
m+1 = vm+1 − projSpan(v1,...,vm)(vm+1).

We will prove the following four results about m-volume (next
two slides):



Theorem 7.10.2
Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Note that A is an n × m matrix. It is possible that n ̸= m, and
so det(A) is not necessarily defined.
However, AT A is an m × m matrix, and so det(AT A) is
defined.

Corollary 7.10.3
Let a1, . . . , an ∈ Rn. Then Vn(a1, . . . , an) = |det(

[
a1 . . . an

]
)|.

Note that we have n vectors in Rn. So,
[

a1 . . . an
]

is an
n × n matrix, and therefore, it has a determinant.
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Corollary 7.10.4
Let a1, . . . , am ∈ Rn and σ ∈ Sm. Then
Vm(a1, . . . , am) = Vm(aσ(1), . . . , aσ(m)).

So, merely permuting the vectors that determine an
m-parallelepiped does not change the m-volume of that
m-parallelepiped.

Corollary 7.10.5
Let v1, . . . , vn ∈ Rn, and let A ∈ Rn×n. Then

Vn(Av1, . . . , Avn) = |det(A)| Vn(v1, . . . , vn).

Here, it is important that we have n vectors in Rn.
If we have m vectors in Rn, then this fails.

Counterexample: later!
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Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Proof.

∀i ∈ {1, . . . , m}: Ai :=
[

a1 . . . ai
]
. We will prove

inductively that ∀i ∈ {1, . . . , m}: Vi(a1, . . . , ai) =
√

det(AT
i Ai).

Obviously, this is enough, since Am = A.
For i = 1, we observe that AT

1 A1 =
[

a1
]T [ a1

]
=
[

a1 · a1
]
, and

consequently,√
det(AT

1 A1) = √a1 · a1 = ||a1|| = V1(a1).

We may now assume that m ≥ 2, for otherwise we are done by
what we just showed. Fix i ∈ {1, . . . , m − 1}, and assume
inductively that Vi(a1, . . . , ai) =

√
det(AT

i Ai). WTS
Vi+1(a1, . . . , ai , ai+1) =

√
det(AT

i+1Ai+1).
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Proof (continued). Reminder: Vi(a1, . . . , ai) =
√

det(AT
i Ai);

WTS Vi+1(a1, . . . , ai , ai+1) =
√

det(AT
i+1Ai+1).

a||
i+1 := projSpan(a1,...,ai )(ai+1);

a⊥
i+1 := projSpan(a1,...,ai )⊥(ai+1).

By Corollary 6.5.3, we have that ai+1 = a||
i+1 + a⊥

i+1.

Since a||
i+1 ∈ Span(a1, . . . , ai), ∃c1, . . . , ci ∈ R s.t.

a||
i+1 = c1a1 + · · · + ciai , and consequently,

a⊥
i+1 = ai+1 − a||

i = ai+1 − c1a1 − · · · − ciai .

Now, let Bi+1 be the matrix obtained from Ai+1 by replacing the
rightmost column of Ai+1 by a⊥

i+1, i.e.

Bi+1 :=
[

a1 . . . ai a⊥
i+1

]
.

Then (next slide):
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]
.
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Proof (continued). Reminder: Vi(a1, . . . , ai) =
√

det(AT
i Ai);

WTS Vi+1(a1, . . . , ai , ai+1) =
√

det(AT
i+1Ai+1);

a⊥
i+1 = ai+1 − c1a1 − · · · − ciai .

BT
i+1 =


aT

1
...

aT
i

(a⊥
i+1)T

 =


aT

1
...

aT
i

aT
i+1 − c1aT

1 − · · · − ciaT
i

 .

So, BT
i+1 can be obtained from AT

i+1 via the following sequence of i
elementary row operations:

Ri+1 → Ri+1 − c1R1;
...
Ri+1 → Ri+1 − ciRi .

Let E1, . . . , Ei be the elementary matrices corresponding to these i
elementary row operations, so that BT

i+1 = Ei . . . E1AT
i+1, and

consequently, Bi+1 = Ai+1ET
1 . . . ET

i . By Theorem 7.3.2(c), we see
that det(E1) = · · · = det(Ei) = 1. We now compute (next slide):
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Proof (continued). Reminder: Vi(a1, . . . , ai) =
√

det(AT
i Ai);

WTS Vi+1(a1, . . . , ai , ai+1) =
√

det(AT
i+1Ai+1).

det(BT
i+1Bi+1) = det

(
(Ei . . . E1AT

i+1)(Ai+1ET
1 . . . ET

i )
)

(∗)= det(Ei) . . . det(E1)det(AT
i+1Ai+1)det(ET

1 ) . . . det(ET
i )

(∗∗)= det(Ei)︸ ︷︷ ︸
=1

. . . det(E1)︸ ︷︷ ︸
=1

det(AT
i+1Ai+1) det(E1)︸ ︷︷ ︸

=1

. . . det(Ei)︸ ︷︷ ︸
=1

= det(AT
i+1Ai+1),

where (*) follows from Theorem 7.5.2, and (**) follows from
Theorem 7.1.3.

But note that Bi+1 =
[
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i+1

]
, and so (next slide):
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i
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i+1)T
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i+1
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[

AT
i Ai AT

i a⊥
i+1

(a⊥
i+1)T Ai (a⊥

i+1)T a⊥
i+1

]
(∗)=

[
AT

i Ai 0
0T ||a⊥

i+1||2
]

,

where in (*), we used the fact that a⊥
i+1 is orthogonal to the

columns of A, and so AT a⊥
i+1 = 0, and we also used the fact that

(a⊥
i+1)T a⊥

i+1 = a⊥
i+1 · a⊥

i+1 = ||a⊥
i+1||.

We now compute (next slide):



Proof (continued). Reminder: Vi(a1, . . . , ai) =
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columns of A, and so AT a⊥
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(a⊥
i+1)T a⊥

i+1 = a⊥
i+1 · a⊥

i+1 = ||a⊥
i+1||.
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Proof (continued). Reminder: Vi(a1, . . . , ai) =
√

det(AT
i Ai);

WTS Vi+1(a1, . . . , ai , ai+1) =
√

det(AT
i+1Ai+1).

det(AT
i+1Ai+1) = det(BT

i+1Bi+1)

=
∣∣∣∣ AT

i Ai 0
0T ||a⊥

i+1||2
∣∣∣∣

(∗)= (−1)(i+1)+(i+1) ||a⊥
i+1||2 det(AT

i Ai)

= det(AT
i Ai) ||a⊥

i+1||2

(∗∗)= Vi(a1, . . . , ai)2 ||a⊥
i+1||2

(∗∗∗)= Vi+1(a1, . . . , ai , ai+1)2,

where (*) follows by Laplace expansion along the rightmost
column, (**) follows from the induction hypothesis, and (***)
follows from the definition of Vi+1(a1, . . . , ai , ai+1).



Theorem 7.10.2
Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Proof (continued). Reminder: Vi(a1, . . . , ai) =
√

det(AT
i Ai);

WTS Vi+1(a1, . . . , ai , ai+1) =
√

det(AT
i+1Ai+1).

From the previous slide:

det(AT
i+1Ai+1) = Vi+1(a1, . . . , ai , ai+1)2.

Since Vi+1(a1, . . . , ai , ai+1) ≥ 0 (by Proposition 7.10.1), we may
now take the square root of both sides to obtain

Vi+1(a1, . . . , ai , ai+1) =
√

det(AT
i+1Ai+1).

This completes the induction. □
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√
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Corollary 7.10.3
Let a1, . . . , an ∈ Rn. Then Vn(a1, . . . , an) = |det(

[
a1 . . . an

]
)|.

Proof.

First of all, we note that A :=
[

a1 . . . an
]

is an n × n
matrix (with entries in R), and so it has a determinant. We now
compute:

Vn(a1, . . . , an) =
√

det(AT A) by Theorem 7.10.2

=
√

det(AT )det(A) by Theorem 7.5.2

=
√

det(A)2 by Theorem 7.1.3

= |det(A)|.
□
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Let a1, . . . , am ∈ Rn, and set A :=

[
a1 . . . am

]
. Then

Vm(a1, . . . , am) =
√

det(AT A).

Corollary 7.10.4
Let a1, . . . , am ∈ Rn and σ ∈ Sm. Then
Vm(a1, . . . , am) = Vm(aσ(1), . . . , aσ(m)).

Proof.

Set A :=
[

a1 . . . am
]

and Aσ :=
[

aσ(1) . . . aσ(m)
]
,

and consider Pσ, the matrix of the permutation σ. By
Theorem 2.3.15(c), we have that Aσ = APT

σ , and by
Proposition 7.1.1, we have that det(Pσ) = sgn(σ). But now (next
slide):
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Proof (continued).

Vm(aσ(1), . . . , aσ(m))
(∗)=

√
det(AT

σ Aσ)

=
√

det
(
(APT

σ )T (APT
σ )
)

=
√

det(PσAT APT
σ )

(∗∗)=
√

det(Pσ)det(AT A)det(PT
σ )

(∗∗∗)=
√

det(Pσ)det(AT A) det(Pσ)

=
√

sgn(σ)2det(AT A)

=
√

det(AT A)
(∗)= Vm(a1, . . . , am),

where both instances of (*) follow from Theorem 7.10.2, (**)
follows from Theorem 7.5.2, and (***) follows from
Theorem 7.1.3. □



Corollary 7.10.5
Let v1, . . . , vn ∈ Rn, and let A ∈ Rn×n. Then

Vn(Av1, . . . , Avn) = |det(A)| Vn(v1, . . . , vn).

Proof.

Set B :=
[

v1 . . . vn
]

and C :=
[

Av1 . . . Avn
]

= AB.
Note that A, B, and C = AB all belong to Rn×n, and so all three
matrices have determinants. We now compute:

Vn(Av1, . . . , Avn) Thm. 7.10.2=
√

det(CT C)

=
√

det
(

(AB)T (AB)
)

=
√

det(BT AT AB)
Thm. 7.5.2=

√
det(BT )det(AT )det(A)det(B)

Thm. 7.1.3=
√

det(A)2det(BT )det(B)
Thm. 7.5.2=

√
det(A)2 det(BT B)

= |det(A)|
√

det(BT B)
Thm. 7.10.2= |det(A)| Vn(v1, . . . , vn). □
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Remark: For a1, . . . , am ∈ Rn (m ̸= n) and A ∈ Rn×n, the
formula from Corollary 7.10.5 fails, i.e.
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For instance, for m = 1 and n = 2, we can take
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so that Av1 = v1.
Then

V1(Av1) = V1(v1) = ||v1|| = 1,
det(A) = 0,

and so V1(Av1) ̸= |det(A)| V1(v1).
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Suppose that Ω is any object in Rn for which n-volume Vn(Ω)
can be defined.

We will not go into the technical details of how this can be
done, but the idea is that we approximate Ω with ever smaller
n-dimensional hypercubes; the sum of n-volumes of those
n-hypercubes (which are simply n-parallelepipeds, and so we
know how to compute their n-volume) will give us an ever
better approximation of the n-volume of Ω that we wish to
define.

Ω

To obtain the actual n-volume of Ω, we take the limit of these
ever-finer approximations. If the limit exists, then Ω will have
an n-volume (defined to be this limit). If the limit does not
exist, then n-volume is undefined for Ω.
It is actually pretty difficult to construct Ω for which volume is
undefined! Any reasonably pretty object Ω will have a volume,
although that volume may possibly be zero.
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Now, suppose we are given a matrix A ∈ Rn×n.

We consider the linear function fA : Rn → Rn whose standard
matrix is A (i.e. for all x ∈ Rn, we have fA(x) = Ax).
Then each of the small n-hypercubes gets mapped onto a
small n-parallelepiped; if the small n-hypercubes each had
volume V , then by Corollary 7.10.5, the small
n-parallelepipeds that these n-hypercubes get mapped onto
via fA will have volume |det(A)| V .

fA(x) = Ax

Ω fA[Ω]

So, we get the following formula for the n-volume of the
image of Ω under fA:

Vn(fA[Ω]) = |det(A)| Vn(Ω).
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Example 7.10.6
Let a and b be positive real numbers. Compute the area (i.e.
2-volume) of the region bounded by the ellipse whose equation is

x2
1

a2 + x2
2

b2 = 1.

a−a

b

−b

x1

x2



Solution. We need compute the area of the region

E :=
{[ x1

x2

]
| x1, x2 ∈ R,

x2
1

a2 + x2
2

b2 ≤ 1
}

.

Consider the unit disk

D :=
{[ x1

x2

]
| x1, x2 ∈ R, x2

1 + x2
2 ≤ 1

}
and the matrix

A =
[

a 0
0 b

]
.

Let fA : R2 → R2 be the linear function whose standard matrix is
A, so that for all

[
x1 x2

]T ∈ R2, we have

fA
([ x1

x2

])
=

[
a 0
0 b

] [
x1
x2

]
=

[
ax1
bx2

]
.

WTA fA[D] = E .
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Solution (continued). We now see that

fA[D] =
{

fA
([ x1

x2

])
| x1, x2 ∈ R, x2

1 + x2
2 ≤ 1

}

=
{[ ax1

bx2

]
| x1, x2 ∈ R, x2

1 + x2
2 ≤ 1

}

=
{[ y1

y2

]
| y1, y2 ∈ R, ( y1

a )2 + ( y2
b )2 ≤ 1

}

=
{[ y1

y2

]
| y1, y2 ∈ R,

y2
1

a2 + y2
2

b2 ≤ 1
}

= E .

−1 1 a−a

−1

1
b

−b

D E = fA[D]

x1x1

x2x2

fA(x) = Ax

A =

 a 0

0 b
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Solution (continued). Reminder: fA[D] = E .

Therefore, the area of E is

area(E ) = |det(A)|︸ ︷︷ ︸
=ab

area(D)︸ ︷︷ ︸
=12π

= abπ.

□
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2 Algebraically closed fields (subsec. 2.4.5 of the Lecture Notes)

Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

The Fundamental Theorem of Algebra
Any non-constant polynomial with complex coefficients has a
complex root.

By the Fundamental Theorem of Algebra, the field C is
algebraically closed.
On the other hand, R is not algebraically closed, and similarly,
neither is Q.

For example, the polynomial x2 + 1 has no roots in R (and in
particular, it has no roots in Q).
It does, however, have two complex roots, namely, i and −i .
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Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

No finite field is algebraically closed.

To see this, consider any finite field F = {f1, . . . , ft} (t ≥ 2),
and consider the polynomial

p(x) = (x − f1) . . . (x − ft) + 1,

which is a polynomial of degree t with coefficients in F.
Then for each i ∈ {1, . . . , t}, we have that p(fi) = 1, and
consequently, fi is not a root of p(x).
Since F = {f1, . . . , ft}, we see that p(x) has no roots in F.

Thus, of the fields that we have seen so far, namely, Q, R, C,
and Zp (where p is a prime number), only the field C is
algebraically closed.
Other algebraically closed fields do exist, but we will not study
them in this course.
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Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

It can be shown (though we will not give a formal proof) that
any non-constant polynomial with coefficients in an
algebraically closed field F can be factored into linear terms in
a unique way.



More precisely, if p(x) is a polynomial of degree n ≥ 1, and
with coefficients in an algebraically closed field F, then there
exist numbers a, α1, . . . , αℓ in F s.t. a ̸= 0 and s.t. α1, . . . , αℓ

are pairwise distinct, and positive integers n1, . . . , nℓ satisfying
n1 + · · · + nℓ = n, s.t.

p(x) = a(x − α1)n1 . . . (x − αℓ)nℓ .

Moreover, a, α1, . . . , αℓ, n1, . . . , nℓ are uniquely determined by
the polynomial p(x), up to a permutation of the αi ’s and the
corresponding ni ’s.

Here, a is the leading coefficient of p(x), i.e. the coefficient in
front of xn. Numbers α1, . . . , αℓ are the roots of p(x) with
multiplicities n1, . . . , nℓ, respectively.
If we think of each αi as being a root “ni times” (due to its
multiplicity), then we see that the n-th degree polynomial
p(x) has exactly n roots in F.
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Definition
An algebraically closed field is a field F that has the property that
every non-constant polynomial with coefficients in F has a root in
F.

The discussion from the previous slide is often summarized as
follows:

Every n-th degree polynomial (with n ≥ 1) with coefficients in
an algebraically closed field has exactly n roots in that field,
when multiplicities are taken into account.



3 Common roots of polynomials via determinants

Any non-constant polynomial with coefficients in an
algebraically closed field F has a root in F. However, there is
no general formula for computing such a root.
So, it may be surprising that, given arbitrary polynomials p(x)
and q(x) with coefficients in an algebraically closed field F,
we can use determinants to determine whether p(x) and q(x)
have a common root, i.e. whether there exists a number
x0 ∈ F for which we have p(x0) = 0 and q(x0) = 0 (next
slide).
However, the determinant in question will only tell us whether
such a common root exists; it provides no information on how
one might actually compute such a root.
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Theorem 7.11.1
Let F be an algebraically closed field. Let m and n be positive
integers, and let p(x) =

∑m
i=0 aix i (am ̸= 0) and q(x) =

∑n
i=0 bix i

(bn ̸= 0) be polynomials with coefficients in F. Let P be the
n × (n + m) matrix whose j-th row (for j ∈ {1, . . . , n}) is[

0 . . . 0︸ ︷︷ ︸
j−1

am am−1 . . . a0 0 . . . 0︸ ︷︷ ︸
n−j

]
,

and let Q be the m × (n + m) matrix whose j-th row (for
j ∈ {1, . . . , m}) is[

0 . . . 0︸ ︷︷ ︸
j−1

bn bn−1 . . . b0 0 . . . 0︸ ︷︷ ︸
m−j

]
.

Then p(x) and q(x) have a common root in F iff

det
([ P

Q

])
= 0.

First a more detailed explanation of how out matrix is formed,
then an example, then a proof.



For example, if m = 3 and n = 5, so that
p(x) = a3x3 + a2x2 + a1x + a0,
q(x) = b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,

then we have

[
P
Q

]
=



a3 a2 a1 a0 0 0 0 0
0 a3 a2 a1 a0 0 0 0
0 0 a3 a2 a1 a0 0 0
0 0 0 a3 a2 a1 a0 0
0 0 0 0 a3 a2 a1 a0
b5 b4 b3 b2 b1 b0 0 0
0 b5 b4 b3 b2 b1 b0 0
0 0 b5 b4 b3 b2 b1 b0


8×8

.



Example 7.11.2
Determine whether the polynomials p(x) = 5x3 − 2x2 + x − 4 and
q(x) = 7x2 − 6x − 1 have a common complex root.

Proof.

In this case, it is easy to see that p(1) = 0 and q(1) = 0,
and so 1 is a common root of p(x) and q(x). However, let us use
Theorem 7.11.1, in order to illustrate how this theorem can be
applied.

Using the notation of Theorem 7.11.1, we have that m = 3, n = 2,
and the matrices P and Q are given by

P =
[

5 −2 1 −4 0
0 5 −2 1 −4

]
;

Q =

 7 −6 −1 0 0
0 7 −6 −1 0
0 0 7 −6 −1

.
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Example 7.11.2
Determine whether the polynomials p(x) = 5x3 − 2x2 + x − 4 and
q(x) = 7x2 − 6x − 1 have a common complex root.

Proof (continued). We now have that

det
( [ P

Q

] )
=

∣∣∣∣∣∣∣∣∣∣∣

5 −2 1 −4 0
0 5 −2 1 −4
7 −6 −1 0 0
0 7 −6 −1 0
0 0 7 −6 −1

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Theorem 7.11.2 now guarantees that p(x) and q(x) have a
common complex root. □



Theorem 7.11.1
Let F be an algebraically closed field. Let m and n be positive
integers, and let p(x) =

∑m
i=0 aix i (am ̸= 0) and q(x) =
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i=0 bix i

(bn ̸= 0) be polynomials with coefficients in F. Let P be the
n × (n + m) matrix whose j-th row (for j ∈ {1, . . . , n}) is[
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and let Q be the m × (n + m) matrix whose j-th row (for
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0 . . . 0︸ ︷︷ ︸
j−1

bn bn−1 . . . b0 0 . . . 0︸ ︷︷ ︸
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.

Then p(x) and q(x) have a common root in F iff

det
([ P

Q

])
= 0.

Let’s prove the theorem!



Proof.
Claim. Polynomials p(x) and q(x) have a common root in
F iff there exist non-zero polynomials r(x) and s(x) with
coefficients in F that satisfy the following:

deg
(
r(x)

)
≤ n − 1;

deg
(
s(x)

)
≤ m − 1;

r(x)p(x) + s(x)q(x) = 0.

Proof of the Claim.

Suppose first that p(x) and q(x) have a
common root in F, say α. Then we set

r(x) := q(x)
x−α and s(x) := − p(x)

x−α ,

and we observe that deg
(
r(x)

)
= deg

(
q(x)

)
− 1 = n − 1,

deg
(
s(x)

)
= deg

(
p(x)

)
− 1 = m − 1, and

r(x)p(x) + s(x)q(x) = q(x)p(x)
x−α − p(x)q(x)

x−α = 0.
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Proof of the Claim (continued). Suppose conversely there exist
non-zero polynomials r(x) and s(x) with coefficients in F s.t.

deg
(
r(x)

)
≤ n − 1;

deg
(
s(x)

)
≤ m − 1;

r(x)p(x) + s(x)q(x) = 0.
WTS p(x) and q(x) have a common root in F.

Then r(x)p(x) and s(x)q(x) are non-constant polynomials with
coefficients in F, and they have exactly the same roots with the
same corresponding multiplicities.

Since deg
(
p(x)

)
= m, we know that p(x) has exactly m roots in F

(when multiplicities are taken into account).
Here, we are using the fact that F is algebraically closed.

But deg
(
s(x)

)
≤ m − 1, and so at least one of the roots of p(x)

either fails to be a root of s(x), or is a root of s(x) but has smaller
multiplicity in s(x) than in p(x). This root of p(x) must therefore
be a root of q(x). ♦
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Proof (continued). We have now proven the Claim below:
Claim. Polynomials p(x) and q(x) have a common root in
F iff there exist non-zero polynomials r(x) and s(x) with
coefficients in F that satisfy the following:

deg
(
r(x)

)
≤ n − 1;

deg
(
s(x)

)
≤ m − 1;

r(x)p(x) + s(x)q(x) = 0.



Proof (continued). In view of the Claim, it now suffices to
determine if there exist non-zero polynomials r(x) =

∑n−1
i=0 cix i

and s(x) =
∑m−1

i=0 dix i s.t. r(x)p(x) + s(x)q(x) = 0.

So, we need to determine if there exist
c0, . . . , cn−1, d0, . . . , dm−1 ∈ F s.t. at least one of c0, . . . , cn−1 is
non-zero and at least one of d0, . . . , dm−1 is non-zero, and s.t.

( n−1∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( m∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+
(m−1∑

i=0
dix i

︸ ︷︷ ︸
=s(x)

)( n∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0.

But obviously, if c0, . . . , cn−1 are all zero, then d0, . . . , dm−1 are
all zero, and vice versa. So, we in fact need to determine if the
above equality holds for some numbers
c0, . . . , cn−1, d0, . . . , dm−1 ∈ F, at least one of which is non-zero.
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Proof (continued). Reminder:

( n−1∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( m∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+
(m−1∑

i=0
dix i

︸ ︷︷ ︸
=s(x)

)( n∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0.

We now write the polynomial on the left-hand-side in the standard
form, and we set all the coefficients that we obtain equal to zero.

We can do this since our polynomial is identically zero, i.e. it
is zero as a polynomial. This means precisely that all its
coefficients are zero.



Proof (continued). Reminder:

( n−1∑
i=0

cix i
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=s(x)

)( n∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0.

This yields a system of n + m linear equations in the variables
cn−1, . . . , c0, dm−1, . . . , d0 (we treat am, . . . , a0, bn, . . . , b0 as
constants).

In each equation, we arrange the variables
cn−1, . . . , c0, dm−1, . . . , d0 in this order from left to right. We
arrange the equations for the coefficients in front of
xn+m−1, . . . , x1, x0 from top to bottom. We then rewrite this
linear system as a matrix-vector equation

A
[

cn−1 . . . c0 dm−1 . . . d0
]T = 0,

and we observe that the coefficient matrix A satisfies AT =
[

P
Q

]
.

Intermission: Let’s look at an example with m = 3 and n = 5.
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=s(x)

)( n∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0.

This yields a system of n + m linear equations in the variables
cn−1, . . . , c0, dm−1, . . . , d0 (we treat am, . . . , a0, bn, . . . , b0 as
constants).
In each equation, we arrange the variables
cn−1, . . . , c0, dm−1, . . . , d0 in this order from left to right. We
arrange the equations for the coefficients in front of
xn+m−1, . . . , x1, x0 from top to bottom. We then rewrite this
linear system as a matrix-vector equation

A
[

cn−1 . . . c0 dm−1 . . . d0
]T = 0,

and we observe that the coefficient matrix A satisfies AT =
[

P
Q

]
.

Intermission: Let’s look at an example with m = 3 and n = 5.



Intermission: Example with m = 3 and n = 5. Then
p(x) = a3x3 + a2x2 + a1x + a0,
q(x) = b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,
r(x) = c4x4 + c3x3 + c2x2 + c1x + c0,
s(t) = d2x2 + d1x + d0,

then our equation becomes

( 4∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( 3∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+
( 2∑

i=0
dix i

︸ ︷︷ ︸
=s(x)

)( 5∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0

which yields the system of linear equations on the next slide (we
consider the coefficients in front of x7, x6, x5, x4, x3, x2, x1, x0

from top to bottom, and we arrange the variables
c4, c3, c2, c1, c0, d2, d1, d0 from left to right).



Intermission (continued): Example with m = 3 and n = 5.
Reminder: our equation was

( 4∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( 3∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+
( 2∑

i=0
dix i

︸ ︷︷ ︸
=s(x)

)( 5∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0

c4 c3 c2 c1 c0 d2 d1 d0

x7 a3c4 + b5d2 = 0
x6 a2c4 + a3c3 + b4d2 + b5d1 = 0
x5 a1c4 + a2c3 + a3c2 + b3d2 + b4d1 + b5d0 = 0
x4 a0c4 + a1c3 + a2c2 + a3c1 + b2d2 + b3d1 + b4d0 = 0
x3 a0c3 + a1c2 + a2c1 + a3c0 + b1d2 + b2d1 + b3d0 = 0
x2 a0c2 + a1c1 + a2c0 + b0d2 + b1d1 + b2d0 = 0
x1 a0c1 + a1c0 + b0d1 + b1d0 = 0
x0 a0c0 + b0d0 = 0

This linear system, in turn, translates into the following
matrix-vector equation (next slide):



Intermission (continued): Example with m = 3 and n = 5.
Reminder: our equation was

( 4∑
i=0

cix i

︸ ︷︷ ︸
=r(x)

)( 3∑
i=0

aix i

︸ ︷︷ ︸
=p(x)

)
+
( 2∑

i=0
dix i

︸ ︷︷ ︸
=s(x)

)( 5∑
i=0

bix i

︸ ︷︷ ︸
=q(x)

)
= 0

c4 c3 c2 c1 c0 d2 d1 d0

x7 a3c4 + b5d2 = 0
x6 a2c4 + a3c3 + b4d2 + b5d1 = 0
x5 a1c4 + a2c3 + a3c2 + b3d2 + b4d1 + b5d0 = 0
x4 a0c4 + a1c3 + a2c2 + a3c1 + b2d2 + b3d1 + b4d0 = 0
x3 a0c3 + a1c2 + a2c1 + a3c0 + b1d2 + b2d1 + b3d0 = 0
x2 a0c2 + a1c1 + a2c0 + b0d2 + b1d1 + b2d0 = 0
x1 a0c1 + a1c0 + b0d1 + b1d0 = 0
x0 a0c0 + b0d0 = 0

This linear system, in turn, translates into the following
matrix-vector equation (next slide):



Intermission (continued): Example with m = 3 and n = 5.

a3 0 0 0 0 b5 0 0
a2 a3 0 0 0 b4 b5 0
a1 a2 a3 0 0 b3 b4 b5
a0 a1 a2 a3 0 b2 b3 b4
0 a0 a1 a2 a3 b1 b2 b3
0 0 a0 a1 a2 b0 b1 b2
0 0 0 a0 a1 0 b0 b1
0 0 0 0 a0 0 0 b0





c4
c3
c2
c1
c0
d2
d1
d0


= 0.

The transpose of the coefficient matrix that we obtained is
precisely the matrix

[
P
Q

]
=



a3 a2 a1 a0 0 0 0 0
0 a3 a2 a1 a0 0 0 0
0 0 a3 a2 a1 a0 0 0
0 0 0 a3 a2 a1 a0 0
0 0 0 0 a3 a2 a1 a0
b5 b4 b3 b2 b1 b0 0 0
0 b5 b4 b3 b2 b1 b0 0
0 0 b5 b4 b3 b2 b1 b0


8×8

.



Intermission (continued): Example with m = 3 and n = 5.

a3 0 0 0 0 b5 0 0
a2 a3 0 0 0 b4 b5 0
a1 a2 a3 0 0 b3 b4 b5
a0 a1 a2 a3 0 b2 b3 b4
0 a0 a1 a2 a3 b1 b2 b3
0 0 a0 a1 a2 b0 b1 b2
0 0 0 a0 a1 0 b0 b1
0 0 0 0 a0 0 0 b0





c4
c3
c2
c1
c0
d2
d1
d0


= 0.

The transpose of the coefficient matrix that we obtained is
precisely the matrix

[
P
Q

]
=



a3 a2 a1 a0 0 0 0 0
0 a3 a2 a1 a0 0 0 0
0 0 a3 a2 a1 a0 0 0
0 0 0 a3 a2 a1 a0 0
0 0 0 0 a3 a2 a1 a0
b5 b4 b3 b2 b1 b0 0 0
0 b5 b4 b3 b2 b1 b0 0
0 0 b5 b4 b3 b2 b1 b0


8×8

.



Proof (continued). We now have the following sequence of
equivalent statements:

p(x) and q(x) have
a common root in F ⇐⇒ A

[
cn−1 . . . c0 dm−1 . . . d0

]T = 0
has a non-zero solution

(∗)⇐⇒ A is non-invertible

(∗)⇐⇒ AT =
[

P
Q

]
is non-invertible

(∗)⇐⇒ det
([ P

Q

])
= 0,

where all three instances of (*) follow from the Invertible Matrix
Theorem. □



Theorem 7.11.1
Let F be an algebraically closed field. Let m and n be positive
integers, and let p(x) =

∑m
i=0 aix i (am ̸= 0) and q(x) =

∑n
i=0 bix i

(bn ̸= 0) be polynomials with coefficients in F. Let P be the
n × (n + m) matrix whose j-th row (for j ∈ {1, . . . , n}) is[

0 . . . 0︸ ︷︷ ︸
j−1

am am−1 . . . a0 0 . . . 0︸ ︷︷ ︸
n−j

]
,

and let Q be the m × (n + m) matrix whose j-th row (for
j ∈ {1, . . . , m}) is[

0 . . . 0︸ ︷︷ ︸
j−1

bn bn−1 . . . b0 0 . . . 0︸ ︷︷ ︸
m−j

]
.

Then p(x) and q(x) have a common root in F iff

det
([ P

Q

])
= 0.


