Linear Algebra 2

Lecture \#19

Laplace expansion. Cramer's rule. The adjugate matrix

Irena Penev

April 3, 2024

- This lecture has four parts:
- This lecture has four parts:
(1) The multiplicative property of determinants
- This lecture has four parts:
(1) The multiplicative property of determinants
(2) Laplace expansion
- This lecture has four parts:
(1) The multiplicative property of determinants
(2) Laplace expansion
(3) Cramer's rule
- This lecture has four parts:
(1) The multiplicative property of determinants
(2) Laplace expansion
(3) Cramer's rule
(9) The adjugate matrix
(1) The multiplicative property of determinants
(1) The multiplicative property of determinants
- In general, for a field \mathbb{F}, matrices $A, B \in \mathbb{F}^{n \times n}$, and a scalar $\alpha \in \mathbb{F}$, we have that
- $\operatorname{det}(A+B) \not \approx \operatorname{det}(A)+\operatorname{det}(B)$;
- $\operatorname{det}(\alpha A) \neq \alpha \operatorname{det}(A)$.
(1) The multiplicative property of determinants
- In general, for a field \mathbb{F}, matrices $A, B \in \mathbb{F}^{n \times n}$, and a scalar $\alpha \in \mathbb{F}$, we have that
- $\operatorname{det}(A+B) \not \approx \operatorname{det}(A)+\operatorname{det}(B)$;
- $\operatorname{det}(\alpha A) \not \approx \alpha \operatorname{det}(A)$.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

(1) The multiplicative property of determinants

- In general, for a field \mathbb{F}, matrices $A, B \in \mathbb{F}^{n \times n}$, and a scalar $\alpha \in \mathbb{F}$, we have that
- $\operatorname{det}(A+B) \not \approx \operatorname{det}(A)+\operatorname{det}(B)$;
- $\operatorname{det}(\alpha A) \not \approx \alpha \operatorname{det}(A)$.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

- To prove Theorem 7.5.2, we first need a technical proposition (next slide).
(1) The multiplicative property of determinants
- In general, for a field \mathbb{F}, matrices $A, B \in \mathbb{F}^{n \times n}$, and a scalar $\alpha \in \mathbb{F}$, we have that
- $\operatorname{det}(A+B) \nVdash \operatorname{det}(A)+\operatorname{det}(B)$;
- $\operatorname{det}(\alpha A) \not \approx \alpha \operatorname{det}(A)$.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

- To prove Theorem 7.5.2, we first need a technical proposition (next slide).
- Recall that an elementary matrix is any matrix obtained by performing one elementary row operation on an identity matrix I_{n}.
- Here, it is possible that $E=I_{n}$. In this case, we can take R to be the multiplication of the first row by the scalar 1 .

Proposition 7.5.1

Let \mathbb{F} be a field, let $A, E \in \mathbb{F}^{n \times n}$, and assume that E is an elementary matrix. Then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.

Proof.

Proposition 7.5.1

Let \mathbb{F} be a field, let $A, E \in \mathbb{F}^{n \times n}$, and assume that E is an elementary matrix. Then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.

Proof. Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on I_{n}.

Proposition 7.5.1

Let \mathbb{F} be a field, let $A, E \in \mathbb{F}^{n \times n}$, and assume that E is an elementary matrix. Then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.

Proof. Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on I_{n}.

By Proposition 1.11.11(a), EA is the matrix obtained by performing R on A.

Proposition 7.5.1

Let \mathbb{F} be a field, let $A, E \in \mathbb{F}^{n \times n}$, and assume that E is an elementary matrix. Then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.

Proof. Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on I_{n}.

By Proposition 1.11.11(a), EA is the matrix obtained by performing R on A.

Now, by Theorem 7.3.2, there exists some scalar $\alpha \in \mathbb{F} \backslash\{0\}$ s.t. for any matrix $M \in \mathbb{F}^{n \times n}$, if M_{R} is the matrix obtained by performing R on M, then $\operatorname{det}\left(M_{R}\right)=\alpha \operatorname{det}(M)$.

Proposition 7.5.1

Let \mathbb{F} be a field, let $A, E \in \mathbb{F}^{n \times n}$, and assume that E is an elementary matrix. Then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.

Proof. Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on I_{n}.

By Proposition 1.11.11(a), EA is the matrix obtained by performing R on A.

Now, by Theorem 7.3.2, there exists some scalar $\alpha \in \mathbb{F} \backslash\{0\}$ s.t. for any matrix $M \in \mathbb{F}^{n \times n}$, if M_{R} is the matrix obtained by performing R on M, then $\operatorname{det}\left(M_{R}\right)=\alpha \operatorname{det}(M)$. So,

- $\operatorname{det}(E)=\alpha \operatorname{det}\left(I_{n}\right)=\alpha ; \quad$ - $\operatorname{det}(E A)=\alpha \operatorname{det}(A)$.

Proposition 7.5.1

Let \mathbb{F} be a field, let $A, E \in \mathbb{F}^{n \times n}$, and assume that E is an elementary matrix. Then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.

Proof. Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on I_{n}.

By Proposition 1.11.11(a), EA is the matrix obtained by performing R on A.

Now, by Theorem 7.3.2, there exists some scalar $\alpha \in \mathbb{F} \backslash\{0\}$ s.t. for any matrix $M \in \mathbb{F}^{n \times n}$, if M_{R} is the matrix obtained by performing R on M, then $\operatorname{det}\left(M_{R}\right)=\alpha \operatorname{det}(M)$. So,

$$
\text { - } \operatorname{det}(E)=\alpha \operatorname{det}\left(I_{n}\right)=\alpha ; \quad \bullet \operatorname{det}(E A)=\alpha \operatorname{det}(A)
$$

It follows that

$$
\operatorname{det}(E A)=\alpha \operatorname{det}(A)=\operatorname{det}(E) \operatorname{det}(A)
$$

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof. Suppose first that at least one of A, B is non-invertible.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof. Suppose first that at least one of A, B is non-invertible. Then by Corollary 3.3.16, $A B$ is also non-invertible.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof. Suppose first that at least one of A, B is non-invertible.
Then by Corollary 3.3.16, $A B$ is also non-invertible. But by
Theorem 7.4.1, non-invertible matrices have determinant zero, and so $\operatorname{det}(A B)=0=\operatorname{det}(A) \operatorname{det}(B)$.

- If A is non-invertible, then $\operatorname{det}(A)=0$.
- If B is non-invertible, then $\operatorname{det}(B)=0$.
- In either case, $\operatorname{det}(A) \operatorname{det}(B)=0$.

Theorem 7.5.2
Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof (continued). From now on, we assume that A and B are both invertible.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof (continued). From now on, we assume that A and B are both invertible. Therefore, by the Invertible Matrix Theorem, each of them can be written as a product of elementary matrices, say $A=E_{1}^{A} \ldots E_{p}^{A}$ and $B=E_{1}^{B} \ldots E_{q}^{B}$, where $E_{1}^{A}, \ldots, E_{p}^{A}, E_{1}^{B}, \ldots, E_{q}^{B}$ are elementary matrices.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof (continued). From now on, we assume that A and B are both invertible. Therefore, by the Invertible Matrix Theorem, each of them can be written as a product of elementary matrices, say $A=E_{1}^{A} \ldots E_{p}^{A}$ and $B=E_{1}^{B} \ldots E_{q}^{B}$, where $E_{1}^{A}, \ldots, E_{p}^{A}, E_{1}^{B}, \ldots, E_{q}^{B}$ are elementary matrices. So, $A B=E_{1}^{A} \ldots E_{p}^{A} E_{1}^{B} \ldots E_{q}^{B}$.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof (continued). From now on, we assume that A and B are both invertible. Therefore, by the Invertible Matrix Theorem, each of them can be written as a product of elementary matrices, say $A=E_{1}^{A} \ldots E_{p}^{A}$ and $B=E_{1}^{B} \ldots E_{q}^{B}$, where $E_{1}^{A}, \ldots, E_{p}^{A}, E_{1}^{B}, \ldots, E_{q}^{B}$ are elementary matrices. So, $A B=E_{1}^{A} \ldots E_{p}^{A} E_{1}^{B} \ldots E_{q}^{B}$. By repeatedly applying Proposition 7.5.1, we get that

- $\operatorname{det}(A)=\operatorname{det}\left(E_{1}^{A}\right) \ldots \operatorname{det}\left(E_{p}^{A}\right)$;
- $\operatorname{det}(B)=\operatorname{det}\left(E_{1}^{B}\right) \ldots \operatorname{det}\left(E_{q}^{B}\right)$;
- $\operatorname{det}(A B)=\operatorname{det}\left(E_{1}^{A}\right) \ldots \operatorname{det}\left(E_{p}^{A}\right) \operatorname{det}\left(E_{1}^{B}\right) \ldots \operatorname{det}\left(E_{q}^{B}\right)$.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof (continued). From now on, we assume that A and B are both invertible. Therefore, by the Invertible Matrix Theorem, each of them can be written as a product of elementary matrices, say $A=E_{1}^{A} \ldots E_{p}^{A}$ and $B=E_{1}^{B} \ldots E_{q}^{B}$, where $E_{1}^{A}, \ldots, E_{p}^{A}, E_{1}^{B}, \ldots, E_{q}^{B}$ are elementary matrices. So, $A B=E_{1}^{A} \ldots E_{p}^{A} E_{1}^{B} \ldots E_{q}^{B}$. By repeatedly applying Proposition 7.5.1, we get that

- $\operatorname{det}(A)=\operatorname{det}\left(E_{1}^{A}\right) \ldots \operatorname{det}\left(E_{p}^{A}\right)$;
- $\operatorname{det}(B)=\operatorname{det}\left(E_{1}^{B}\right) \ldots \operatorname{det}\left(E_{q}^{B}\right)$;
- $\operatorname{det}(A B)=\operatorname{det}\left(E_{1}^{A}\right) \ldots \operatorname{det}\left(E_{p}^{A}\right) \operatorname{det}\left(E_{1}^{B}\right) \ldots \operatorname{det}\left(E_{q}^{B}\right)$.

But now

$$
\operatorname{det}(A B)=\underbrace{\operatorname{det}\left(E_{1}^{A}\right) \ldots \operatorname{det}\left(E_{p}^{A}\right)}_{=\operatorname{det}(A)} \underbrace{\operatorname{det}\left(E_{1}^{B}\right) \ldots \operatorname{det}\left(E_{q}^{B}\right)}_{=\operatorname{det}(B)}=\operatorname{det}(A) \operatorname{det}(B),
$$

which is what we needed to show. \square

Theorem 7.5.2
Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Corollary 7.5.3

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$ be an invertible matrix. Then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Proof.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Corollary 7.5.3

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$ be an invertible matrix. Then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Proof. Since $A A^{-1}=I_{n}$, we see that

$$
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right) \stackrel{\text { Thm. }}{=}=\frac{1.5 .2}{} \operatorname{det}\left(A A^{-1}\right)=\operatorname{det}\left(I_{n}\right)=1
$$

We now see that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$, which is what we needed to show. \square

- Reminder:

Definition

Matrices $A, B \in \mathbb{F}^{n \times n}$ (where \mathbb{F} is a field) are said to be similar if there exists an invertible matrix $P \in \mathbb{F}^{n \times n}$ s.t. $B=P^{-1} A P$.

- Reminder:

Definition

Matrices $A, B \in \mathbb{F}^{n \times n}$ (where \mathbb{F} is a field) are said to be similar if there exists an invertible matrix $P \in \mathbb{F}^{n \times n}$ s.t. $B=P^{-1} A P$.

Corollary 7.5.4

Let \mathbb{F} be a field, and let A and B be similar matrices in $\mathbb{F}^{n \times n}$. Then $\operatorname{det}(A)=\operatorname{det}(B)$.

Proof.

- Reminder:

Definition

Matrices $A, B \in \mathbb{F}^{n \times n}$ (where \mathbb{F} is a field) are said to be similar if there exists an invertible matrix $P \in \mathbb{F}^{n \times n}$ s.t. $B=P^{-1} A P$.

Corollary 7.5.4

Let \mathbb{F} be a field, and let A and B be similar matrices in $\mathbb{F}^{n \times n}$. Then $\operatorname{det}(A)=\operatorname{det}(B)$.

Proof. Since A and B are similar, there exists an invertible matrix $P \in \mathbb{F}^{n \times n}$ s.t. $B=P^{-1} A P$. We then have that

$$
\begin{array}{rlrl}
\operatorname{det}(B) & =\operatorname{det}\left(P^{-1} A P\right) & \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P) & & \text { by Theorem 7.5.2 } \\
& =\frac{1}{\operatorname{det}(P)} \operatorname{det}(A) \operatorname{det}(P) & & \text { by Corollary 7.5.3 } \\
& =\operatorname{det}(A) . & &
\end{array}
$$

- Reminder:

Theorem 4.5.16

Let \mathbb{F} be a field, let $B, C \in \mathbb{F}^{n \times n}$ be matrices, and let V be an n-dimensional vector space over the field \mathbb{F}. Then the following are equivalent:
(a) B and C are similar;
(D) for all bases \mathcal{B} of V and linear functions $f: V \rightarrow V$ s.t. $B={ }_{\mathcal{B}}[f]_{\mathcal{B}}$, there exists a basis \mathcal{C} of V s.t. $C={ }_{\mathcal{C}}[f]_{\mathcal{C}}$;
(0) for all bases \mathcal{C} of V and linear functions $f: V \rightarrow V$ s.t. $C={ }_{\mathcal{C}}[f]_{\mathcal{C}}$, there exists a basis \mathcal{B} of V s.t. $B={ }_{\mathcal{B}}[f]_{\mathcal{B}}$;
(0) there exist bases \mathcal{B} and \mathcal{C} of V and a linear function $f: V \rightarrow V$ s.t. $B={ }_{\mathcal{B}}[f]_{\mathcal{B}}$ and $C={ }_{\mathcal{C}}[f]_{\mathcal{C}}$.

Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $f: V \rightarrow V$ is a linear function. Then we define the determinant of f to be

$$
\operatorname{det}(f):=\operatorname{det}\left({ }_{\mathcal{B}}[f]_{\mathcal{B}}\right),
$$

where \mathcal{B} is any basis of V.

Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $f: V \rightarrow V$ is a linear function. Then we define the determinant of f to be

$$
\operatorname{det}(f):=\operatorname{det}\left({ }_{\mathcal{B}}[f]_{\mathcal{B}}\right),
$$

where \mathcal{B} is any basis of V.

- Let us explain why this is well-defined, that is, why the value of $\operatorname{det}(f)$ that we get depends only on f, and not on the particular choice of the basis \mathcal{B}.

Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $f: V \rightarrow V$ is a linear function. Then we define the determinant of f to be

$$
\operatorname{det}(f):=\operatorname{det}\left({ }_{\mathcal{B}}[f]_{\mathcal{B}}\right),
$$

where \mathcal{B} is any basis of V.

- Let us explain why this is well-defined, that is, why the value of $\operatorname{det}(f)$ that we get depends only on f, and not on the particular choice of the basis \mathcal{B}.
- Suppose that \mathcal{C} is any basis of V.

Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $f: V \rightarrow V$ is a linear function. Then we define the determinant of f to be

$$
\operatorname{det}(f):=\operatorname{det}\left({ }_{\mathcal{B}}[f]_{\mathcal{B}}\right),
$$

where \mathcal{B} is any basis of V.

- Let us explain why this is well-defined, that is, why the value of $\operatorname{det}(f)$ that we get depends only on f, and not on the particular choice of the basis \mathcal{B}.
- Suppose that \mathcal{C} is any basis of V.
- Then by Theorem 4.5.16, matrices ${ }_{\mathcal{B}}[f]_{\mathcal{B}}$ and ${ }_{\mathcal{C}}[f]_{\mathcal{C}}$ are similar, and consequently (by Corollary 7.5.4), they have the same determinant.

Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $f: V \rightarrow V$ is a linear function. Then we define the determinant of f to be

$$
\operatorname{det}(f):=\operatorname{det}\left({ }_{\mathcal{B}}[f]_{\mathcal{B}}\right),
$$

where \mathcal{B} is any basis of V.

- Let us explain why this is well-defined, that is, why the value of $\operatorname{det}(f)$ that we get depends only on f, and not on the particular choice of the basis \mathcal{B}.
- Suppose that \mathcal{C} is any basis of V.
- Then by Theorem 4.5.16, matrices ${ }_{\mathcal{B}}[f]_{\mathcal{B}}$ and ${ }_{\mathcal{C}}[f]_{\mathcal{C}}$ are similar, and consequently (by Corollary 7.5.4), they have the same determinant.
- So, $\operatorname{det}(f)$ is well-defined.

Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field \mathbb{F}, and that $f: V \rightarrow V$ is a linear function. Then we define the determinant of f to be

$$
\operatorname{det}(f):=\operatorname{det}\left({ }_{\mathcal{B}}[f]_{\mathcal{B}}\right),
$$

where \mathcal{B} is any basis of V.

- Remark: Note that we defined determinants only for linear functions whose domain and codomain are one and the same, and moreover, are finite-dimensional and non-null.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Corollary 7.5.5
Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

Proof.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Corollary 7.5.5
Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1 .

Proof. Since A is orthogonal, it satisfies $A^{T} A=I_{n}$ (by definition).

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Corollary 7.5.5

Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

Proof. Since A is orthogonal, it satisfies $A^{T} A=I_{n}$ (by definition). Therefore,

$$
1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(A^{T} A\right) \stackrel{(*)}{=} \operatorname{det}\left(A^{T}\right) \operatorname{det}(A) \stackrel{(* *)}{=} \operatorname{det}(A)^{2},
$$

where $\left(^{*}\right)$ follows from Theorem 7.5.2, and $\left({ }^{* *}\right)$ follows from Theorem 7.1.3.

Theorem 7.5.2

Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Corollary 7.5.5

Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

Proof. Since A is orthogonal, it satisfies $A^{T} A=I_{n}$ (by definition). Therefore,

$$
1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(A^{T} A\right) \stackrel{(*)}{=} \operatorname{det}\left(A^{T}\right) \operatorname{det}(A) \stackrel{(* *)}{=} \operatorname{det}(A)^{2},
$$

where $\left(^{*}\right)$ follows from Theorem 7.5.2, and $\left({ }^{* *}\right)$ follows from Theorem 7.1.3. But now we see that $\operatorname{det}(A)= \pm 1$, which is what we needed to show. \square

Corollary 7.5.5

Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ± 1 need not be orthogonal.

Corollary 7.5.5

Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ± 1 need not be orthogonal.
- For example, the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]
$$

satisfies $\operatorname{det}(A)=1$, but A is not orthogonal.

Corollary 7.5.5

Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ± 1 need not be orthogonal.
- For example, the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]
$$

satisfies $\operatorname{det}(A)=1$, but A is not orthogonal.

- More generally, suppose that A is any invertible matrix in $\mathbb{R}^{n \times n}$.

Corollary 7.5.5

Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ± 1 need not be orthogonal.
- For example, the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]
$$

satisfies $\operatorname{det}(A)=1$, but A is not orthogonal.

- More generally, suppose that A is any invertible matrix in $\mathbb{R}^{n \times n}$.
- Then by Theorem 7.4.1, we have that $\operatorname{det}(A) \neq 0$.

Corollary 7.5.5

Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ± 1 need not be orthogonal.
- For example, the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]
$$

satisfies $\operatorname{det}(A)=1$, but A is not orthogonal.

- More generally, suppose that A is any invertible matrix in $\mathbb{R}^{n \times n}$.
- Then by Theorem 7.4.1, we have that $\operatorname{det}(A) \neq 0$.
- We now form the matrix B by multiplying one row or one column of A by $\frac{1}{\operatorname{det}(A)}$, and we see that $\operatorname{det}(B)=1$.

Corollary 7.5.5

Let A be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then $\operatorname{det}(A)= \pm 1$ (i.e. $\operatorname{det}(A)$ is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ± 1 need not be orthogonal.
- For example, the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]
$$

satisfies $\operatorname{det}(A)=1$, but A is not orthogonal.

- More generally, suppose that A is any invertible matrix in $\mathbb{R}^{n \times n}$.
- Then by Theorem 7.4.1, we have that $\operatorname{det}(A) \neq 0$.
- We now form the matrix B by multiplying one row or one column of A by $\frac{1}{\operatorname{det}(A)}$, and we see that $\operatorname{det}(B)=1$.
- However, B need not be orthogonal.
(2) Laplace expansion

Definition

For a matrix $A=\left[a_{i, j}\right]_{n \times n}$ (where $n \geq 2$) with entries in some field \mathbb{F}, and for indices $p, q \in\{1, \ldots, n\}, A_{p, q}$ is the $(n-1) \times(n-1)$ matrix obtained from A by deleting the p-th row and q-th column.

Definition

For a matrix $A=\left[a_{i, j}\right]_{n \times n}($ where $n \geq 2)$ with entries in some field \mathbb{F}, and for indices $p, q \in\{1, \ldots, n\}, A_{p, q}$ is the $(n-1) \times(n-1)$ matrix obtained from A by deleting the p-th row and q-th column.

- Terminology: The determinants

$$
\operatorname{det}\left(A_{i, j}\right), \quad \text { with } i, j \in\{1, \ldots, n\}
$$

are referred to as the first minors of A, whereas numbers

$$
C_{i, j}:=(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right) \quad \text { with } i, j \in\{1, \ldots, n\}
$$

are referred to as the cofactors of A.

Laplace expansion

Let \mathbb{F} be a field, and let $A=\left[a_{i, j}\right]_{n \times n}($ where $n \geq 2)$ be a matrix in $\mathbb{F}^{n \times n}$. Then both the following hold:
(a) [expansion along the i-th row] for all $i \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

(b) [expansion along the j-th column] for all $j \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

- Remark: If we write $C_{i, j}:=(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right)$ for all $i, j \in\{1, \ldots, n\}$ (so, the $C_{i, j}$'s are the cofactors of A), then the formula from (a) becomes $\operatorname{det}(A)=\sum_{j=1}^{n} a_{i, j} C_{i, j}$, and the formula from (b) becomes $\operatorname{det}(A)=\sum_{i=1}^{n} a_{i, j} C_{i, j}$.
- This is why Laplace expansion is also referred to as "cofactor expansion."

Laplace expansion

Let \mathbb{F} be a field, and let $A=\left[a_{i, j}\right]_{n \times n}$ (where $n \geq 2$) be a matrix in $\mathbb{F}^{n \times n}$. Then both the following hold:
(a) [expansion along the i-th row] for all $i \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right) ;
$$

(D) [expansion along the j-th column] for all $j \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

- First an example, then a proof.

Example 7.6.3

Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
3 & 4 & 5 \\
7 & 0 & 8
\end{array}\right],
$$

with entries understood to be in \mathbb{R}. Compute $\operatorname{det}(A)$ in two ways:
(0) via Laplace expansion along the third row;
(b) via Laplace expansion along the second column.

Solution. (a) Laplace expansion along the third row:

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{lll}
2 & 0 & 1 \\
3 & 4 & 5 \\
7 & 0 & 8
\end{array}\right| \\
& =(-1)^{3+1} 7\left|\begin{array}{ll}
0 & 1 \\
4 & 5
\end{array}\right|+(-1)^{3+2} 0\left|\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right|+(-1)^{3+3} 8\left|\begin{array}{ll}
2 & 0 \\
3 & 4
\end{array}\right| \\
& =7 \underbrace{\left|\begin{array}{ll}
0 & 1 \\
4 & 5
\end{array}\right|}_{=-4}+8 \underbrace{\left|\begin{array}{cc}
2 & 0 \\
3 & 4
\end{array}\right|}_{=8}=36 .
\end{aligned}
$$

Solution (continued). (b) Laplace expansion along the second column:

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{lll}
2 & 0 & 1 \\
3 & 4 & 5 \\
7 & 0 & 8
\end{array}\right| \\
& \left.=(-1)^{1+2} 0\left|\begin{array}{ll}
3 & 5 \\
7 & 8
\end{array}\right|+(-1)^{2+2} 4\left|\begin{array}{ll}
2 & 1 \\
7 & 8
\end{array}\right|+(-1)^{3+2} 0 \right\rvert\, \begin{array}{ll}
2 & 1 \\
3 & 5
\end{array} \\
& =4 \underbrace{\left|\begin{array}{ll}
2 & 1 \\
7 & 8
\end{array}\right|}_{=9}=36 .
\end{aligned}
$$

Example 7.6.3

Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
3 & 4 & 5 \\
7 & 0 & 8
\end{array}\right]
$$

with entries understood to be in \mathbb{R}. Compute $\operatorname{det}(A)$ in two ways:
(0) via Laplace expansion along the third row;
(D) via Laplace expansion along the second column.

- As a general rule, it is best to expand along a row or column that has a lot of zeros (if such a row or column exists), since that reduces the amount of calculation that we need to perform.
- So, in Example 7.6.3, it was easier to expand along the second column.

Example 7.6.3

Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
3 & 4 & 5 \\
7 & 0 & 8
\end{array}\right]
$$

with entries understood to be in \mathbb{R}. Compute $\operatorname{det}(A)$ in two ways:
(0) via Laplace expansion along the third row;
(D) via Laplace expansion along the second column.

- As a general rule, it is best to expand along a row or column that has a lot of zeros (if such a row or column exists), since that reduces the amount of calculation that we need to perform.
- So, in Example 7.6.3, it was easier to expand along the second column.
- See the Lecture Notes for another example (with a larger matrix).

Laplace expansion

Let \mathbb{F} be a field, and let $A=\left[a_{i, j}\right]_{n \times n}$ (where $n \geq 2$) be a matrix in $\mathbb{F}^{n \times n}$. Then both the following hold:
(a) [expansion along the i-th row] for all $i \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

(b) [expansion along the j-th column] for all $j \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

- Let's prove this!
- We begin with a technical proposition.

Proposition 7.6.1

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{(n-1) \times(n-1)}$ (where $n \geq 2$) and $\mathbf{a} \in \mathbb{F}^{n-1}$. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & \mathbf{0} \\
\hdashline \mathbf{a}^{T} & 1
\end{array}\right]_{n \times n}\right)=\operatorname{det}(A) .
$$

Proof.

Proposition 7.6.1

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{(n-1) \times(n-1)}$ (where $n \geq 2$) and $\mathbf{a} \in \mathbb{F}^{n-1}$. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & \mathbf{0} \\
\hdashline \mathbf{a}^{T} & 1
\end{array}\right]_{n \times n}\right)=\operatorname{det}(A) .
$$

Proof. First, set $\left[\begin{array}{c:c}A & \mathbf{0} \\ \hdashline \mathbf{a}^{-T^{2}} & 1\end{array}\right]_{n \times n}=\left[\begin{array}{l}a_{i, j}\end{array}\right]_{n \times n}$, so that all the following hold:

- $A=\left[a_{i, j}\right]_{(n-1) \times(n-1)}$;
- $a_{n, n}=1$;
- for all $i \in\{1, \ldots, n-1\}, a_{i, n}=0$;
- for all $j \in\{1, \ldots, n-1\}, a_{n, j}$ is the j-th entry of the vector \mathbf{a}.

Proposition 7.6.1

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{(n-1) \times(n-1)}($ where $n \geq 2)$ and $\mathbf{a} \in \mathbb{F}^{n-1}$. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & \mathbf{0} \\
\hdashline \mathbf{a}^{T} & \frac{1}{1}
\end{array}\right]_{n \times n}\right)=\operatorname{det}(A) .
$$

Proof (continued). Next, for all $\sigma \in S_{n-1}$, let $\sigma^{*} \in S_{n}$ be given by

- $\sigma^{*}(i)=\sigma(i)$ for all $i \in\{1, \ldots, n-1\}$,
- $\sigma^{*}(n)=n$.

Proposition 7.6.1

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{(n-1) \times(n-1)}$ (where $n \geq 2$) and $\mathbf{a} \in \mathbb{F}^{n-1}$. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & \mathbf{0} \\
\hdashline \mathbf{a}^{T} & \frac{1}{2}
\end{array}\right]_{n \times n}\right)=\operatorname{det}(A)
$$

Proof (continued). Next, for all $\sigma \in S_{n-1}$, let $\sigma^{*} \in S_{n}$ be given by

- $\sigma^{*}(i)=\sigma(i)$ for all $i \in\{1, \ldots, n-1\}$,
- $\sigma^{*}(n)=n$.

So, for any $\sigma \in S_{n-1}$, the disjoint cycle decomposition of σ^{*} is obtained by adding the one-element cycle (n) to the disjoint cycle decomposition of σ, and consequently, $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{*}\right)$.

Proposition 7.6.1

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{(n-1) \times(n-1)}$ (where $n \geq 2$) and $\mathbf{a} \in \mathbb{F}^{n-1}$. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & \mathbf{0} \\
\hdashline \mathbf{a}^{T} & \frac{1}{2}
\end{array}\right]_{n \times n}\right)=\operatorname{det}(A)
$$

Proof (continued). Next, for all $\sigma \in S_{n-1}$, let $\sigma^{*} \in S_{n}$ be given by

- $\sigma^{*}(i)=\sigma(i)$ for all $i \in\{1, \ldots, n-1\}$,
- $\sigma^{*}(n)=n$.

So, for any $\sigma \in S_{n-1}$, the disjoint cycle decomposition of σ^{*} is obtained by adding the one-element cycle (n) to the disjoint cycle decomposition of σ, and consequently, $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{*}\right)$.
Set

$$
S_{n}^{*}:=\left\{\sigma^{*} \mid \sigma \in S_{n-1}\right\}=\left\{\pi \in S_{n} \mid \pi(n)=n\right\} .
$$

Proposition 7.6.1

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{(n-1) \times(n-1)}$ (where $n \geq 2$) and $\mathbf{a} \in \mathbb{F}^{n-1}$. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & \mathbf{0} \\
\hdashline \mathbf{a}^{T} & \frac{1}{-}
\end{array}\right]_{n \times n}\right)=\operatorname{det}(A)
$$

Proof (continued). Next, for all $\sigma \in S_{n-1}$, let $\sigma^{*} \in S_{n}$ be given by

- $\sigma^{*}(i)=\sigma(i)$ for all $i \in\{1, \ldots, n-1\}$,
- $\sigma^{*}(n)=n$.

So, for any $\sigma \in S_{n-1}$, the disjoint cycle decomposition of σ^{*} is obtained by adding the one-element cycle (n) to the disjoint cycle decomposition of σ, and consequently, $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{*}\right)$.
Set

$$
S_{n}^{*}:=\left\{\sigma^{*} \mid \sigma \in S_{n-1}\right\}=\left\{\pi \in S_{n} \mid \pi(n)=n\right\} .
$$

We then have the following (next slide):

Proof (continued).

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{\sigma \in S_{n-1}} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} \ldots a_{n-1, \sigma(n-1)} \\
& =\sum_{\sigma \in S_{n-1}} \operatorname{sgn}\left(\sigma^{*}\right) a_{1, \sigma^{*}(1)} \ldots a_{n-1, \sigma^{*}(n-1)} \underbrace{a_{n, \sigma^{*}(n)}}_{=1} \\
& =\sum_{\pi \in S_{n}^{*}} \operatorname{sgn}(\pi) a_{1, \pi(1)} \ldots a_{n-1, \pi(n-1)} a_{n, \pi(n)}
\end{aligned}
$$

$\stackrel{(*)}{=} \sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi(1)} \ldots a_{n-1, \pi(n-1)} a_{n, \pi(n)}$ $=\operatorname{det}\left(\left[\begin{array}{c:c}A & 0 \\ \hdashline \mathbf{a}^{T} & 1\end{array}\right]_{n \times n}\right)$,
where $\left(^{*}\right)$ follows from the fact that for all $\pi \in S_{n} \backslash S_{n}^{*}$, we have that $a_{n, \pi(n)}=0 . \square$

Proposition 7.6.1

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{(n-1) \times(n-1)}$ (where $n \geq 2$) and $\mathbf{a} \in \mathbb{F}^{n-1}$. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & \mathbf{0} \\
\hdashline \mathbf{a}^{T} & 1
\end{array}\right]_{n \times n}\right)=\operatorname{det}(A) .
$$

Proposition 7.6.1

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{(n-1) \times(n-1)}$ (where $n \geq 2$) and $\mathbf{a} \in \mathbb{F}^{n-1}$. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & \mathbf{0} \\
\hdashline \mathbf{a}^{T} & 1
\end{array}\right]_{n \times n}\right)=\operatorname{det}(A) .
$$

- Reminder:

Theorem 7.1.3

Let \mathbb{F} be a field. For all $A \in \mathbb{F}^{n \times n}$, we have that $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Laplace expansion

Let \mathbb{F} be a field, and let $A=\left[a_{i, j}\right]_{n \times n}$ (where $n \geq 2$) be a matrix in $\mathbb{F}^{n \times n}$. Then both the following hold:
(a) [expansion along the i-th row] for all $i \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right) ;
$$

(b) [expansion along the j-th column] for all $j \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

Proof.

Laplace expansion

Let \mathbb{F} be a field, and let $A=\left[a_{i, j}\right]_{n \times n}$ (where $n \geq 2$) be a matrix in $\mathbb{F}^{n \times n}$. Then both the following hold:
(a) [expansion along the i-th row] for all $i \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

(b) [expansion along the j-th column] for all $j \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

Proof. In view of Theorem 7.1.3, it is enough to prove (b).

Laplace expansion

Let \mathbb{F} be a field, and let $A=\left[a_{i, j}\right]_{n \times n}$ (where $n \geq 2$) be a matrix in $\mathbb{F}^{n \times n}$. Then both the following hold:
(a) [expansion along the i-th row] for all $i \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

(b) [expansion along the j-th column] for all $j \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

Proof. In view of Theorem 7.1.3, it is enough to prove (b).
Fix $j \in\{1, \ldots, n\}$. We must show that

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right) .
$$

Proof (cont.). Reminder: WTS $\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)$.

Proof (cont.). Reminder: WTS $\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)$.
First, set $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$.

Proof (cont.). Reminder: WTS $\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)$.
First, set $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Then $\mathbf{a}_{j}=\sum_{i=1}^{n} a_{i, j} \mathbf{e}_{i}$,

Proof (cont.). Reminder: WTS $\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)$.
First, set $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Then $\mathbf{a}_{j}=\sum_{i=1}^{n} a_{i, j} \mathbf{e}_{i}$, and so

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{a}_{j} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \sum_{i=1}^{n} a_{i, j} \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right) \\
& \stackrel{(*)}{=} \sum_{i=1}^{n} a_{i, j} \operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right),
\end{aligned}
$$

where $\left(^{*}\right)$ follows from Proposition 7.2.1(a).

Proof (cont.). Reminder: WTS $\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)$.
First, set $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Then $\mathbf{a}_{j}=\sum_{i=1}^{n} a_{i, j} \mathbf{e}_{i}$, and so

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{a}_{j} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \sum_{i=1}^{n} a_{i, j} \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right) \\
& \stackrel{(*)}{=} \sum_{i=1}^{n} a_{i, j} \operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right),
\end{aligned}
$$

where $\left(^{*}\right)$ follows from Proposition 7.2.1(a).
Fix an arbitrary index $i \in\{1, \ldots, n\}$.

Proof (cont.). Reminder: WTS $\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)$.
First, set $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Then $\mathbf{a}_{j}=\sum_{i=1}^{n} a_{i, j} \mathbf{e}_{i}$, and so

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{a}_{j} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \sum_{i=1}^{n} a_{i, j} \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right) \\
& \stackrel{(*)}{=} \sum_{i=1}^{n} a_{i, j} \operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right),
\end{aligned}
$$

where $\left(^{*}\right)$ follows from Proposition 7.2.1(a).
Fix an arbitrary index $i \in\{1, \ldots, n\}$. To complete the proof, it now suffices to show that

$$
\operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right)=(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right)
$$

Proof (continued). Reminder: WTS

$$
\operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\right)=(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right) .
$$

Proof (continued). Reminder: WTS $\operatorname{det}\left(\left[\begin{array}{lllllll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}\end{array}\right]\right)=(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right)$.
By iteratively performing $n-j$ column swaps on the matrix

$$
B_{i}:=\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]
$$

we can obtain the matrix

$$
C_{i}:=\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n} & \mathbf{e}_{i}
\end{array}\right]
$$

Proof (continued). Reminder: WTS $\operatorname{det}\left(\left[\begin{array}{lllllll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}\end{array}\right]\right)=(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right)$.
By iteratively performing $n-j$ column swaps on the matrix

$$
B_{i}:=\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_{i} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n}
\end{array}\right]
$$

we can obtain the matrix

$$
C_{i}:=\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_{n} & \mathbf{e}_{i}
\end{array}\right]
$$

By iteratively performing $n-i$ row swaps on the matrix C_{i}, we can obtain the matrix

$$
\left[\begin{array}{c:c}
A_{i, j} & \mathbf{0} \\
\hdashline \mathbf{a} T & 1
\end{array}\right]
$$

where \mathbf{a}^{T} is the row vector of length $n-1$ obtained from the i-th row of A by deleting its j-th entry.

Proof (continued). Since swapping two rows or two columns has the effect of changing the sign of the determinant, we see that

$$
\begin{aligned}
\operatorname{det}\left(B_{i}\right) & =(-1)^{n-j} \operatorname{det}\left(C_{i}\right) \\
& =(-1)^{n-j}(-1)^{n-i} \operatorname{det}\left(\left[\begin{array}{c:c}
A_{i, j} & \mathbf{0} \\
\hdashline \mathbf{a} & 1 \\
\hdashline
\end{array}\right]\right) \\
& \stackrel{(*)}{=}(-1)^{2 n-i-j} \operatorname{det}\left(A_{i, j}\right) \\
& =(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right)
\end{aligned}
$$

where $\left(^{*}\right)$ follows from Proposition 7.6.1. This completes the argument. \square

Laplace expansion

Let \mathbb{F} be a field, and let $A=\left[a_{i, j}\right]_{n \times n}$ (where $n \geq 2$) be a matrix in $\mathbb{F}^{n \times n}$. Then both the following hold:
(a) [expansion along the i-th row] for all $i \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

(b) [expansion along the j-th column] for all $j \in\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i, j}\right)
$$

Theorem 7.6.6

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$ be square matrices. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & O_{n \times m} \\
\hdashline O_{m \times n} & B
\end{array}\right]\right)=\operatorname{det}(A) \operatorname{det}(B) .
$$

Proof (outline).

Theorem 7.6.6

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$ be square matrices. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & O_{n \times m} \\
\hdashline O_{m \times n} & B^{\prime}
\end{array}\right]\right)=\operatorname{det}(A) \operatorname{det}(B) .
$$

Proof (outline). This can be proven (for example) by induction on n, via Laplace expansion along the leftmost column. The details are left as an exercise. \square

Theorem 7.6.6

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$ be square matrices. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c}
A & O_{n \times m} \\
\hdashline O_{m \times n} & B
\end{array}\right]\right)=\operatorname{det}(A) \operatorname{det}(B) .
$$

Corollary 7.6.7

Let \mathbb{F} be a field, and let $A_{1} \in \mathbb{F}^{n_{1} \times n_{1}}, A_{2} \in \mathbb{F}^{n_{2} \times n_{2}}, \ldots, A_{k} \in \mathbb{F}^{n_{k} \times n_{k}}$ be square matrices. Then

$$
\operatorname{det}\left(\left[\begin{array}{c:c:c:c}
A_{1} & O_{n_{1} \times n_{2}} & \cdots & O_{n_{1} \times n_{k}} \\
\hdashline O_{n_{2} \times n_{1}} & A_{2} & \cdots & O_{n_{2} \times n_{k}} \\
\hdashline \vdots & \vdots & \ddots & \vdots \\
\hdashline O_{n_{k} \times n_{1}} & O_{n_{k} \times n_{2}} & \cdots & A_{k}
\end{array}\right]\right)=\prod_{i=1}^{k} \operatorname{det}\left(A_{i}\right) .
$$

Proof. This follows from Theorem 7.6.6 via an easy induction on k. \square

- Intermission: Fraction notation in fields.
- Intermission: Fraction notation in fields.
- Let \mathbb{F} be a field.
- Intermission: Fraction notation in fields.
- Let \mathbb{F} be a field.
- For $a \in \mathbb{F} \backslash\{0\}$, we sometimes use the notation $\frac{1}{a}$ instead of a^{-1} (the multiplicative inverse of a in the field \mathbb{F}).
- For instance, in \mathbb{Z}_{3}, we have $\frac{1}{1}=1^{-1}=1$ and $\frac{1}{2}=2^{-1}=2$ (because in \mathbb{Z}_{3}, we have that $2 \cdot 2=1$).
- Intermission: Fraction notation in fields.
- Let \mathbb{F} be a field.
- For $a \in \mathbb{F} \backslash\{0\}$, we sometimes use the notation $\frac{1}{a}$ instead of a^{-1} (the multiplicative inverse of a in the field \mathbb{F}).
- For instance, in \mathbb{Z}_{3}, we have $\frac{1}{1}=1^{-1}=1$ and $\frac{1}{2}=2^{-1}=2$ (because in \mathbb{Z}_{3}, we have that $2 \cdot 2=1$).
- In a similar vein, for scalars $a, b \in \mathbb{F}$ such that $b \neq 0$, we sometimes write $\frac{a}{b}$ instead of $b^{-1} a$.
- For example, in \mathbb{Z}_{5}, we have that $3^{-1}=2$ (because $3 \cdot 2=1$), and so $\frac{4}{3}=3^{-1} \cdot 4=2 \cdot 4=3$.
- Intermission: Fraction notation in fields.
- Let \mathbb{F} be a field.
- For $a \in \mathbb{F} \backslash\{0\}$, we sometimes use the notation $\frac{1}{a}$ instead of a^{-1} (the multiplicative inverse of a in the field \mathbb{F}).
- For instance, in \mathbb{Z}_{3}, we have $\frac{1}{1}=1^{-1}=1$ and $\frac{1}{2}=2^{-1}=2$ (because in \mathbb{Z}_{3}, we have that $2 \cdot 2=1$).
- In a similar vein, for scalars $a, b \in \mathbb{F}$ such that $b \neq 0$, we sometimes write $\frac{a}{b}$ instead of $b^{-1} a$.
- For example, in \mathbb{Z}_{5}, we have that $3^{-1}=2$ (because $3 \cdot 2=1$), and so $\frac{4}{3}=3^{-1} \cdot 4=2 \cdot 4=3$.
- It is sometimes more convenient to use the notation $\frac{1}{a}$ instead of a^{-1}, and $\frac{a}{b}$ instead of $b^{-1} a$.
- Intermission: Fraction notation in fields.
- Let \mathbb{F} be a field.
- For $a \in \mathbb{F} \backslash\{0\}$, we sometimes use the notation $\frac{1}{a}$ instead of a^{-1} (the multiplicative inverse of a in the field \mathbb{F}).
- For instance, in \mathbb{Z}_{3}, we have $\frac{1}{1}=1^{-1}=1$ and $\frac{1}{2}=2^{-1}=2$ (because in \mathbb{Z}_{3}, we have that $2 \cdot 2=1$).
- In a similar vein, for scalars $a, b \in \mathbb{F}$ such that $b \neq 0$, we sometimes write $\frac{a}{b}$ instead of $b^{-1} a$.
- For example, in \mathbb{Z}_{5}, we have that $3^{-1}=2$ (because $3 \cdot 2=1$), and so $\frac{4}{3}=3^{-1} \cdot 4=2 \cdot 4=3$.
- It is sometimes more convenient to use the notation $\frac{1}{a}$ instead of a^{-1}, and $\frac{a}{b}$ instead of $b^{-1} a$.
- However, when working over a finite field such as \mathbb{Z}_{p} (for a prime number p), we never leave a fraction as a final answer, and instead, we always simplify.
(3) Cramer's rule
(3) Cramer's rule
- Before stating Cramer's rule, we set up some notation.
(3) Cramer's rule
- Before stating Cramer's rule, we set up some notation.
- For a matrix $A \in \mathbb{F}^{n \times n}$, a vector $\mathbf{b} \in \mathbb{F}^{n}$, and an index $j \in\{1, \ldots, n\}$, we denote by $A_{j}(\mathbf{b})$ the matrix obtained from A by replacing the j-th column of A with \mathbf{b}.
- For example, for

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

we have that

$$
A_{1}(\mathbf{b})=\left[\begin{array}{lll}
4 & 1 & 1 \\
5 & 2 & 2 \\
6 & 0 & 3
\end{array}\right], \quad A_{2}(\mathbf{b})=\left[\begin{array}{lll}
1 & 4 & 1 \\
0 & 5 & 2 \\
0 & 6 & 3
\end{array}\right], \quad A_{3}(\mathbf{b})=\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 2 & 5 \\
0 & 0 & 6
\end{array}\right]
$$

(3) Cramer's rule

- Before stating Cramer's rule, we set up some notation.
- For a matrix $A \in \mathbb{F}^{n \times n}$, a vector $\mathbf{b} \in \mathbb{F}^{n}$, and an index $j \in\{1, \ldots, n\}$, we denote by $A_{j}(\mathbf{b})$ the matrix obtained from A by replacing the j-th column of A with \mathbf{b}.
- For example, for

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

we have that

$$
A_{1}(\mathbf{b})=\left[\begin{array}{lll}
4 & 1 & 1 \\
5 & 2 & 2 \\
6 & 0 & 3
\end{array}\right], \quad A_{2}(\mathbf{b})=\left[\begin{array}{lll}
1 & 4 & 1 \\
0 & 5 & 2 \\
0 & 6 & 3
\end{array}\right], \quad A_{3}(\mathbf{b})=\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 2 & 5 \\
0 & 0 & 6
\end{array}\right]
$$

- In what follows, it will be convenient to use the fraction notation in fields.

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T}
$$

- First an example, then a proof.

Example 7.7.1

Let

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 2 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

with entries understood to be in \mathbb{Z}_{3}. Solve the matrix-vector equation $A \mathbf{x}=\mathbf{b}$.

Solution.

Example 7.7.1

Let

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 2 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

with entries understood to be in \mathbb{Z}_{3}. Solve the matrix-vector equation $A \mathbf{x}=\mathbf{b}$.

Solution. Note that $\operatorname{det}(A)=2$, and in particular, A is invertible (by Theorem 7.4.1). So, Cramer's rule applies. We compute:

- $\operatorname{det}\left(A_{1}(\mathbf{b})\right)=\left|\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 1 & 1\end{array}\right|=2$;
- $\operatorname{det}\left(A_{2}(\mathbf{b})\right)=\left|\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 1\end{array}\right|=1$;
- $\operatorname{det}\left(A_{3}(\mathbf{b})\right)=\left|\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0\end{array}\right|=0$.

Example 7.7.1

Let

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 2 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

with entries understood to be in \mathbb{Z}_{3}. Solve the matrix-vector equation $A \mathbf{x}=\mathbf{b}$.

Solution (continued). By Cramer's rule, $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\begin{aligned}
\mathbf{x} & =\left[\begin{array}{lll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{3}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T} \\
& =\left[\begin{array}{lll}
\frac{2}{2} & \frac{1}{2} & \frac{0}{2}
\end{array}\right]^{T} \\
& =\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(\boldsymbol{A})} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(\boldsymbol{A})} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(\boldsymbol{A})}
\end{array}\right]^{T} .
$$

Proof.

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T} .
$$

Proof. Since A is invertible, we know that the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely, $\mathbf{x}=A^{-1} \mathbf{b}$.

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T} .
$$

Proof. Since A is invertible, we know that the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely, $\mathbf{x}=A^{-1} \mathbf{b}$. Now, for this solution \mathbf{x}, we set $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$.

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(\boldsymbol{A})}
\end{array}\right]^{T} .
$$

Proof. Since A is invertible, we know that the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely, $\mathbf{x}=A^{-1} \mathbf{b}$. Now, for this solution \mathbf{x}, we set $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$. WTS

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T} .
$$

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T} .
$$

Proof. Since A is invertible, we know that the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely, $\mathbf{x}=A^{-1} \mathbf{b}$. Now, for this solution \mathbf{x}, we set $\mathbf{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$. WTS

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T} .
$$

Fix an index $j \in\{1, \ldots, n\}$. WTS

$$
x_{j}=\frac{\operatorname{det}\left(A_{j}(\mathbf{b})\right)}{\operatorname{det}(A)}
$$

Proof (continued). Set $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$. Then:

$$
\begin{aligned}
\operatorname{det}\left(A_{j}(\mathbf{b})\right) & =\operatorname{det}\left(\left[\begin{array}{llllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{b} & \mathbf{a}_{j+1} & \ldots \\
\mathbf{a}_{n}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{llllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & A \mathbf{x} & \mathbf{a}_{j+1} & \ldots \\
\mathbf{a}_{n}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{llllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \sum_{i=1}^{n} x_{i} \mathbf{a}_{i} & \mathbf{a}_{j+1} & \ldots \mathbf{a}_{n}
\end{array}\right]\right)
\end{aligned}
$$

$$
\stackrel{(*)}{=} \quad \sum_{i=1}^{n} x_{i} \operatorname{det}\left(\left[\begin{array}{llllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{a}_{i} & \mathbf{a}_{j+1} & \ldots \\
\mathbf{a}_{n}
\end{array}\right]\right)
$$

$$
\stackrel{(* *)}{=} \quad x_{j} \operatorname{det}\left(\left[\begin{array}{llllll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{j-1} & \mathbf{a}_{j} & \mathbf{a}_{j+1} & \ldots \mathbf{a}_{n}
\end{array}\right]\right)
$$

$$
=\quad x_{j} \operatorname{det}(A)
$$

where $\left({ }^{*}\right)$ follows from Proposition 7.2.1(a), and $\left({ }^{* *}\right)$ follows from the fact that any matrix with two identical columns has determinant zero (by Proposition 7.1.5).

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T}
$$

Proof (continued). We have now shown that

$$
\operatorname{det}\left(A_{j}(\mathbf{b})\right)=x_{j} \operatorname{det}(A)
$$

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T}
$$

Proof (continued). We have now shown that

$$
\operatorname{det}\left(A_{j}(\mathbf{b})\right)=x_{j} \operatorname{det}(A)
$$

Since A is invertible, Theorem 7.4.1 guarantees that $\operatorname{det}(A) \neq 0$.

Cramer's rule

Let \mathbb{F} be a field, and let A be an invertible matrix in $\mathbb{F}^{n \times n}$, and let $\mathbf{b} \in \mathbb{F}^{n}$. Then the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ has a unique solution, namely

$$
\mathbf{x}=\left[\begin{array}{llll}
\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)} & \frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)} & \ldots & \frac{\operatorname{det}\left(A_{n}(\mathbf{b})\right)}{\operatorname{det}(A)}
\end{array}\right]^{T}
$$

Proof (continued). We have now shown that

$$
\operatorname{det}\left(A_{j}(\mathbf{b})\right)=x_{j} \operatorname{det}(A)
$$

Since A is invertible, Theorem 7.4.1 guarantees that $\operatorname{det}(A) \neq 0$. So, we can divide both sides of the equality above by $\operatorname{det}(A)$ to obtain

$$
x_{j}=\frac{\operatorname{det}\left(A_{j}(\mathbf{b})\right)}{\operatorname{det}(A)}
$$

This completes the argument. \square
(9) The adjugate matrix

Definition

Given a field \mathbb{F} and a matrix $A \in \mathbb{F}^{n \times n}(n \geq 2)$, with cofactors $C_{i, j}=(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right)$ (for $\left.i, j \in\{1, \ldots, n\}\right)$, the cofactor matrix of A is the matrix $\left[C_{i, j}\right]_{n \times n}$. The adjugate matrix (also called the classical adjoint) of A, denoted by $\operatorname{adj}(A)$, is the transponse of the cofactor matrix of A, i.e.

$$
\operatorname{adj}(A):=\left(\left[C_{i, j}\right]_{n \times n}\right)^{T}
$$

So, the i, j-th entry of $\operatorname{adj}(A)$ is the cofactor $C_{j, i}$ (note the swapping of the indices).

Example 7.8.1

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

with entries understood to be in \mathbb{R}. Compute the cofactor and adjugate matrices of the matrix A.

Solution.

Example 7.8.1

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

with entries understood to be in \mathbb{R}. Compute the cofactor and adjugate matrices of the matrix A.

Solution. For all $i, j \in\{1,2,3\}$, we let $C_{i, j}=(-1)^{i+j} \operatorname{det}\left(A_{i, j}\right)$. We compute (next slide):

Solution (continued). Reminder: $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$.

- $\quad c_{1,1}=(-1)^{1+1}\left|\begin{array}{ll}2 & 2 \\ 0 & 3\end{array}\right|=6$;
- $\quad c_{1,2}=(-1)^{1+2}\left|\begin{array}{ll}0 & 2 \\ 0 & 3\end{array}\right|=0$;
- $\quad c_{1,3}=(-1)^{1+3}\left|\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right|=0$;
- $c_{2,1}=(-1)^{2+1}\left|\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right|=-3$;
- $\quad c_{2,2}=(-1)^{2+2}\left|\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right|=3$;
- $c_{2,3}=(-1)^{2+3}\left|\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right|=0$;
- $\quad c_{3,1}=(-1)^{3+1}\left|\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right|=0$;
- $c_{3,2}=(-1)^{3+2}\left|\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right|=-2$;
- $\quad c_{3,3}=(-1)^{3+3}\left|\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right|=2$.

Example 7.8.1

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right],
$$

with entries understood to be in \mathbb{R}. Compute the cofactor and adjugate matrices of the matrix A.

Solution (continued). So, the cofactor matrix of A is

$$
\left[\begin{array}{lll}
C_{1,1} & C_{1,2} & C_{1,3} \\
C_{2,1} & C_{2,2} & C_{2,3} \\
C_{3,1} & C_{3,2} & C_{3,3}
\end{array}\right]=\left[\begin{array}{rrr}
6 & 0 & 0 \\
-3 & 3 & 0 \\
0 & -2 & 2
\end{array}\right] .
$$

Example 7.8.1

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

with entries understood to be in \mathbb{R}. Compute the cofactor and adjugate matrices of the matrix A.

Solution (continued). So, the cofactor matrix of A is

$$
\left[\begin{array}{lll}
C_{1,1} & C_{1,2} & C_{1,3} \\
C_{2,1} & C_{2,2} & C_{2,3} \\
C_{3,1} & C_{3,2} & C_{3,3}
\end{array}\right]=\left[\begin{array}{rrr}
6 & 0 & 0 \\
-3 & 3 & 0 \\
0 & -2 & 2
\end{array}\right] .
$$

The adjugate matrix of A is the transpose of the cofactor matrix, i.e.

$$
\operatorname{adj}(A)=\left[\begin{array}{rrr}
6 & -3 & 0 \\
0 & 3 & -2 \\
0 & 0 & 2
\end{array}\right]
$$

Theorem 7.8.2

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}(n \geq 2)$. Then

$$
\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n} .
$$

Consequently, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.
Proof.

Theorem 7.8.2

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}(n \geq 2)$. Then

$$
\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n} .
$$

Consequently, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.
Proof. Let us first show that the first statement implies the second.

Theorem 7.8.2

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}(n \geq 2)$. Then

$$
\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n} .
$$

Consequently, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.
Proof. Let us first show that the first statement implies the second. Indeed, if A is invertible, then $\operatorname{det}(A) \neq 0$, and so if the first statement holds, then we get that

$$
\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right) A=A\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right)=I_{n},
$$

and consequently, $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

Theorem 7.8.2

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}(n \geq 2)$. Then

$$
\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n} .
$$

Consequently, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.
Proof. Let us first show that the first statement implies the second. Indeed, if A is invertible, then $\operatorname{det}(A) \neq 0$, and so if the first statement holds, then we get that

$$
\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right) A=A\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right)=I_{n},
$$

and consequently, $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.
It remains to prove the first statement, i.e. that $\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n}$.

Theorem 7.8.2

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}(n \geq 2)$. Then

$$
\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n} .
$$

Consequently, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.
Proof. Let us first show that the first statement implies the second. Indeed, if A is invertible, then $\operatorname{det}(A) \neq 0$, and so if the first statement holds, then we get that

$$
\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right) A=A\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right)=I_{n},
$$

and consequently, $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.
It remains to prove the first statement, i.e. that $\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n}$. We will prove that $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$; the proof of $A \operatorname{adj}(A)=\operatorname{det}(A) I_{n}$ is in the Lecture Notes.

Proof (continued). Reminder: WTS $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$.

Proof (continued). Reminder: WTS $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$.
We will prove this by showing that the matrices $\operatorname{adj}(A) A$ and $\operatorname{det}(A) I_{n}$ have the same corresponding entries.

Proof (continued). Reminder: WTS $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$.
We will prove this by showing that the matrices $\operatorname{adj}(A) A$ and $\operatorname{det}(A) I_{n}$ have the same corresponding entries. Fix indices $i, j \in\{1, \ldots, n\}$.

Proof (continued). Reminder: WTS $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$.
We will prove this by showing that the matrices $\operatorname{adj}(A) A$ and $\operatorname{det}(A) I_{n}$ have the same corresponding entries. Fix indices $i, j \in\{1, \ldots, n\}$. The i, j-th entry of the matrix $\operatorname{det}(A) I_{n}$ is $\operatorname{det}(A)$ if $i=j$, and is zero if $i \neq j$.

Proof (continued). Reminder: WTS $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$.
We will prove this by showing that the matrices $\operatorname{adj}(A) A$ and $\operatorname{det}(A) I_{n}$ have the same corresponding entries. Fix indices $i, j \in\{1, \ldots, n\}$. The i, j-th entry of the matrix $\operatorname{det}(A) I_{n}$ is $\operatorname{det}(A)$ if $i=j$, and is zero if $i \neq j$. We must show this holds for the i, j-th entry of the matrices $\operatorname{adj}(A) A$ as well.

Proof (continued). Reminder: WTS $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$.
We will prove this by showing that the matrices $\operatorname{adj}(A) A$ and $\operatorname{det}(A) I_{n}$ have the same corresponding entries. Fix indices $i, j \in\{1, \ldots, n\}$. The i, j-th entry of the matrix $\operatorname{det}(A) I_{n}$ is $\operatorname{det}(A)$ if $i=j$, and is zero if $i \neq j$. We must show this holds for the i, j-th entry of the matrices $\operatorname{adj}(A) A$ as well.
The i-th row of $\operatorname{adj}(A)$ is $\left[\begin{array}{lll}C_{1, i} & \ldots & C_{n, i}\end{array}\right]$, and the j-th column of A is $\left[\begin{array}{lll}a_{1, j} & \ldots & a_{n, j}\end{array}\right]^{T}$.

Proof (continued). Reminder: WTS $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$.
We will prove this by showing that the matrices $\operatorname{adj}(A) A$ and $\operatorname{det}(A) I_{n}$ have the same corresponding entries. Fix indices $i, j \in\{1, \ldots, n\}$. The i, j-th entry of the matrix $\operatorname{det}(A) I_{n}$ is $\operatorname{det}(A)$ if $i=j$, and is zero if $i \neq j$. We must show this holds for the i, j-th entry of the matrices $\operatorname{adj}(A) A$ as well.
The i-th row of $\operatorname{adj}(A)$ is $\left[\begin{array}{lll}C_{1, i} & \ldots & C_{n, i}\end{array}\right]$, and the j-th column of A is $\left[\begin{array}{lll}a_{1, j} & \ldots & a_{n, j}\end{array}\right]^{T}$. So, the i, j-th entry of $\operatorname{adj}(A) A$ is $\sum_{k=1}^{n} a_{k, j} C_{k, i}$.

Proof (continued). Reminder: WTS $\operatorname{adj}(A) A=\operatorname{det}(A) I_{n}$.
We will prove this by showing that the matrices $\operatorname{adj}(A) A$ and $\operatorname{det}(A) I_{n}$ have the same corresponding entries. Fix indices $i, j \in\{1, \ldots, n\}$. The i, j-th entry of the matrix $\operatorname{det}(A) I_{n}$ is $\operatorname{det}(A)$ if $i=j$, and is zero if $i \neq j$. We must show this holds for the i, j-th entry of the matrices $\operatorname{adj}(A) A$ as well.

The i-th row of $\operatorname{adj}(A)$ is $\left[\begin{array}{lll}C_{1, i} & \ldots & C_{n, i}\end{array}\right]$, and the j-th column of A is $\left[\begin{array}{lll}a_{1, j} & \ldots & a_{n, j}\end{array}\right]^{T}$. So, the i, j-th entry of $\operatorname{adj}(A) A$ is $\sum_{k=1}^{n} a_{k, j} C_{k, i}$. We need to show that this number is equal to $\operatorname{det}(A)$ if $i=j$ and is zero if $i \neq j$.

Now, let B_{1} be the matrix obtained by replacing the i-th column of A by the j-th column of A. Then $\operatorname{det}\left(B_{1}\right)=\sum_{k=1}^{n} a_{k, j} C_{k, i}$ (via Laplace expansion along the i-th column of B_{1}). But if $i=j$, then $\operatorname{det}\left(B_{1}\right)=\operatorname{det}(A)$ (because $B_{1}=A$), and if $i \neq j$, then $\operatorname{det}\left(B_{1}\right)=0$ (because B_{1} has two identical columns, namely, the i-th and j-th column). \square

Theorem 7.8.2

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}(n \geq 2)$. Then

$$
\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n} .
$$

Consequently, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

Example 7.8.3

Show that the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

(with entries understood to be in \mathbb{R}) is invertible, and using Theorem 7.8.2, find its inverse A^{-1}.

Solution.

Example 7.8.3

Show that the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

(with entries understood to be in \mathbb{R}) is invertible, and using Theorem 7.8.2, find its inverse A^{-1}.

Solution. The matrix A is upper triangular, and so its determinant can be computed by multiplying the entries along the main diagonal. So, $\operatorname{det}(A)=1 \cdot 2 \cdot 3=6$.

Example 7.8.3

Show that the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

(with entries understood to be in \mathbb{R}) is invertible, and using Theorem 7.8.2, find its inverse A^{-1}.

Solution. The matrix A is upper triangular, and so its determinant can be computed by multiplying the entries along the main diagonal. So, $\operatorname{det}(A)=1 \cdot 2 \cdot 3=6$. Since $\operatorname{det}(A) \neq 0$, Theorem 7.4.1 guarantees that A is invertible.

Solution (continued). Reminder: $\operatorname{det}(A)=6, A$ is invertible.

Solution (continued). Reminder: $\operatorname{det}(A)=6, A$ is invertible. In Example 7.8.1, we compute the adjugate matrix of A :

$$
\operatorname{adj}(A)=\left[\begin{array}{rrr}
6 & -3 & 0 \\
0 & 3 & -2 \\
0 & 0 & 2
\end{array}\right] .
$$

So, by Theorem 7.8.5, we have that

$$
\begin{aligned}
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A) & =\frac{1}{6}\left[\begin{array}{rrr}
6 & -3 & 0 \\
0 & 3 & -2 \\
0 & 0 & 2
\end{array}\right] \\
& =\left[\begin{array}{rrr}
1 & -1 / 2 & 0 \\
0 & 1 / 2 & -1 / 3 \\
0 & 0 & 1 / 3
\end{array}\right] .
\end{aligned}
$$

Theorem 7.8.2

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}(n \geq 2)$. Then

$$
\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n} .
$$

Consequently, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

Theorem 7.8.2

Let \mathbb{F} be a field, and let $A \in \mathbb{F}^{n \times n}(n \geq 2)$. Then

$$
\operatorname{adj}(A) A=A \operatorname{adj}(A)=\operatorname{det}(A) I_{n}
$$

Consequently, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

Corollary 7.8.4

Let \mathbb{F} be a field, and let $a, b, c, d \in \mathbb{F}$. Then the matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if and only if $a d \neq b c$, and in this case, the inverse of A is given by the formula

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

Corollary 7.8.4

Let \mathbb{F} be a field, and let $a, b, c, d \in \mathbb{F}$. Then the matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if and only if $a d \neq b c$, and in this case, the inverse of A is given by the formula

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

Proof (outline).

Corollary 7.8.4

Let \mathbb{F} be a field, and let $a, b, c, d \in \mathbb{F}$. Then the matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if and only if $a d \neq b c$, and in this case, the inverse of A is given by the formula

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

Proof (outline). It is easy to see that

$$
\operatorname{det}(A)=a d-b c \quad \text { and } \quad \operatorname{adj}(A)=\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

Corollary 7.8.4

Let \mathbb{F} be a field, and let $a, b, c, d \in \mathbb{F}$. Then the matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if and only if $a d \neq b c$, and in this case, the inverse of A is given by the formula

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

Proof (outline). It is easy to see that

$$
\operatorname{det}(A)=a d-b c \quad \text { and } \quad \operatorname{adj}(A)=\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

We know that A is invertible iff $\operatorname{det}(A) \neq 0$, which happens precisely when $a d \neq b c$.

Corollary 7.8.4

Let \mathbb{F} be a field, and let $a, b, c, d \in \mathbb{F}$. Then the matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if and only if $a d \neq b c$, and in this case, the inverse of A is given by the formula

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

Proof (outline). It is easy to see that

$$
\operatorname{det}(A)=a d-b c \quad \text { and } \quad \operatorname{adj}(A)=\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

We know that A is invertible iff $\operatorname{det}(A) \neq 0$, which happens precisely when $a d \neq b c$. In this case, Theorem 7.8.2 guarantees that

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right],
$$

which is what we needed to show. \square

