Linear Algebra 2

Lecture #19

# Laplace expansion. Cramer's rule. The adjugate matrix

Irena Penev

April 3, 2024

• This lecture has four parts:

- This lecture has four parts:
  - The multiplicative property of determinants

- This lecture has four parts:
  - The multiplicative property of determinants
  - 2 Laplace expansion

- This lecture has four parts:
  - The multiplicative property of determinants
  - 2 Laplace expansion
  - Cramer's rule

- This lecture has four parts:
  - The multiplicative property of determinants
  - 2 Laplace expansion
  - Cramer's rule
  - The adjugate matrix

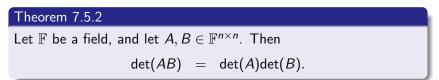
# The multiplicative property of determinants

- The multiplicative property of determinants
  - In general, for a field  $\mathbb F$ , matrices  $A,B\in\mathbb F^{n\times n}$ , and a scalar  $\alpha\in\mathbb F,$  we have that
    - det(A + B) > det(A) + det(B);
    - $det(\alpha A) \not\asymp \alpha det(A)$ .

- The multiplicative property of determinants
  - In general, for a field  $\mathbb{F}$ , matrices  $A, B \in \mathbb{F}^{n \times n}$ , and a scalar  $\alpha \in \mathbb{F}$ , we have that
    - det(A + B) > det(A) + det(B);
    - $det(\alpha A) \not\asymp \alpha det(A)$ .

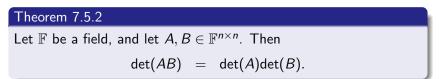
Theorem 7.5.2 Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then det(AB) = det(A)det(B).

- The multiplicative property of determinants
  - In general, for a field  $\mathbb{F}$ , matrices  $A, B \in \mathbb{F}^{n \times n}$ , and a scalar  $\alpha \in \mathbb{F}$ , we have that
    - det(A + B) > det(A) + det(B);
    - $det(\alpha A) \not\asymp \alpha det(A)$ .



• To prove Theorem 7.5.2, we first need a technical proposition (next slide).

- The multiplicative property of determinants
  - In general, for a field  $\mathbb{F}$ , matrices  $A, B \in \mathbb{F}^{n \times n}$ , and a scalar  $\alpha \in \mathbb{F}$ , we have that
    - det(A + B) > det(A) + det(B);
    - $det(\alpha A) \not\asymp \alpha det(A)$ .



- To prove Theorem 7.5.2, we first need a technical proposition (next slide).
- Recall that an *elementary matrix* is any matrix obtained by performing one elementary row operation on an identity matrix  $I_n$ .
  - Here, it is possible that  $E = I_n$ . In this case, we can take R to be the multiplication of the first row by the scalar 1.

Let  $\mathbb{F}$  be a field, let  $A, E \in \mathbb{F}^{n \times n}$ , and assume that E is an elementary matrix. Then det(EA) = det(E)det(A).

Proof.

Let  $\mathbb{F}$  be a field, let  $A, E \in \mathbb{F}^{n \times n}$ , and assume that E is an elementary matrix. Then det(EA) = det(E)det(A).

*Proof.* Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on  $I_n$ .

Let  $\mathbb{F}$  be a field, let  $A, E \in \mathbb{F}^{n \times n}$ , and assume that E is an elementary matrix. Then det(EA) = det(E)det(A).

*Proof.* Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on  $I_n$ .

By Proposition 1.11.11(a), EA is the matrix obtained by performing R on A.

Let  $\mathbb{F}$  be a field, let  $A, E \in \mathbb{F}^{n \times n}$ , and assume that E is an elementary matrix. Then det(EA) = det(E)det(A).

*Proof.* Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on  $I_n$ .

By Proposition 1.11.11(a), *EA* is the matrix obtained by performing R on A.

Now, by Theorem 7.3.2, there exists some scalar  $\alpha \in \mathbb{F} \setminus \{0\}$  s.t. for any matrix  $M \in \mathbb{F}^{n \times n}$ , if  $M_R$  is the matrix obtained by performing R on M, then  $\det(M_R) = \alpha \det(M)$ .

Let  $\mathbb{F}$  be a field, let  $A, E \in \mathbb{F}^{n \times n}$ , and assume that E is an elementary matrix. Then det(EA) = det(E)det(A).

*Proof.* Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on  $I_n$ .

By Proposition 1.11.11(a), EA is the matrix obtained by performing R on A.

Now, by Theorem 7.3.2, there exists some scalar  $\alpha \in \mathbb{F} \setminus \{0\}$  s.t. for any matrix  $M \in \mathbb{F}^{n \times n}$ , if  $M_R$  is the matrix obtained by performing R on M, then  $\det(M_R) = \alpha \det(M)$ . So,

• 
$$det(E) = \alpha det(I_n) = \alpha$$
; •  $det(EA) = \alpha det(A)$ .

Let  $\mathbb{F}$  be a field, let  $A, E \in \mathbb{F}^{n \times n}$ , and assume that E is an elementary matrix. Then det(EA) = det(E)det(A).

*Proof.* Let R be an elementary row operation that corresponds to the elementary matrix E, i.e. E is the matrix obtained by performing R on  $I_n$ .

By Proposition 1.11.11(a), EA is the matrix obtained by performing R on A.

Now, by Theorem 7.3.2, there exists some scalar  $\alpha \in \mathbb{F} \setminus \{0\}$  s.t. for any matrix  $M \in \mathbb{F}^{n \times n}$ , if  $M_R$  is the matrix obtained by performing R on M, then  $\det(M_R) = \alpha \det(M)$ . So,

• 
$$det(E) = \alpha det(I_n) = \alpha$$
; •  $det(EA) = \alpha det(A)$ .

It follows that

$$det(EA) = \alpha det(A) = det(E)det(A).$$

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

Proof.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

*Proof.* Suppose first that at least one of A, B is non-invertible.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

*Proof.* Suppose first that at least one of A, B is non-invertible. Then by Corollary 3.3.16, AB is also non-invertible.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

*Proof.* Suppose first that at least one of A, B is non-invertible. Then by Corollary 3.3.16, AB is also non-invertible. But by Theorem 7.4.1, non-invertible matrices have determinant zero, and so det(AB) = 0 = det(A)det(B).

- If A is non-invertible, then det(A) = 0.
- If B is non-invertible, then det(B) = 0.
- In either case, det(A)det(B) = 0.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

*Proof (continued).* From now on, we assume that A and B are both invertible.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

*Proof (continued).* From now on, we assume that *A* and *B* are both invertible. Therefore, by the Invertible Matrix Theorem, each of them can be written as a product of elementary matrices, say  $A = E_1^A \dots E_p^A$  and  $B = E_1^B \dots E_q^B$ , where  $E_1^A, \dots, E_p^A, E_1^B, \dots, E_q^B$  are elementary matrices.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

*Proof (continued).* From now on, we assume that *A* and *B* are both invertible. Therefore, by the Invertible Matrix Theorem, each of them can be written as a product of elementary matrices, say  $A = E_1^A \dots E_p^A$  and  $B = E_1^B \dots E_q^B$ , where  $E_1^A, \dots, E_p^A, E_1^B, \dots, E_q^B$  are elementary matrices. So,  $AB = E_1^A \dots E_p^A E_1^B \dots E_q^B$ .

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

*Proof (continued).* From now on, we assume that *A* and *B* are both invertible. Therefore, by the Invertible Matrix Theorem, each of them can be written as a product of elementary matrices, say  $A = E_1^A \dots E_p^A$  and  $B = E_1^B \dots E_q^B$ , where  $E_1^A, \dots, E_p^A, E_1^B, \dots, E_q^B$  are elementary matrices. So,  $AB = E_1^A \dots E_p^A E_1^B \dots E_q^B$ . By repeatedly applying Proposition 7.5.1, we get that

- $det(A) = det(E_1^A) \dots det(E_p^A);$
- $\det(B) = \det(E_1^B) \dots \det(E_q^B);$
- $\det(AB) = \det(E_1^A) \dots \det(E_p^A)\det(E_1^B) \dots \det(E_q^B)$ .

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

det(AB) = det(A)det(B).

*Proof (continued).* From now on, we assume that *A* and *B* are both invertible. Therefore, by the Invertible Matrix Theorem, each of them can be written as a product of elementary matrices, say  $A = E_1^A \dots E_p^A$  and  $B = E_1^B \dots E_q^B$ , where  $E_1^A, \dots, E_p^A, E_1^B, \dots, E_q^B$  are elementary matrices. So,  $AB = E_1^A \dots E_p^A E_1^B \dots E_q^B$ . By repeatedly applying Proposition 7.5.1, we get that

• 
$$\det(A) = \det(E_1^A) \dots \det(E_p^A);$$
  
•  $\det(B) = \det(E_1^B) \dots \det(E_q^B);$   
•  $\det(AB) = \det(E_1^A) \dots \det(E_p^A)\det(E_1^B) \dots \det(E_q^B);$ 

But now

$$\det(AB) = \underbrace{\det(E_1^A) \dots \det(E_{\rho}^A)}_{=\det(A)} \underbrace{\det(E_1^B) \dots \det(E_q^B)}_{=\det(B)} = \det(A)\det(B),$$
which is what we needed to show  $\Box$ 

which is what we needed to show.  $\Box$ 

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

$$det(AB) = det(A)det(B).$$

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

$$det(AB) = det(A)det(B).$$

# Corollary 7.5.3

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$  be an invertible matrix. Then  $\det(A^{-1}) = \frac{1}{\det(A)}.$ 

Proof.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

$$det(AB) = det(A)det(B).$$

# Corollary 7.5.3

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$  be an invertible matrix. Then  $\det(A^{-1}) = \frac{1}{\det(A)}.$ 

*Proof.* Since  $AA^{-1} = I_n$ , we see that

$$\det(A)\det(A^{-1}) \stackrel{\mathsf{Thm. 7.5.2}}{=} \det(AA^{-1}) = \det(I_n) = 1.$$

We now see that  $det(A^{-1}) = \frac{1}{det(A)}$ , which is what we needed to show.  $\Box$ 

## Definition

Matrices  $A, B \in \mathbb{F}^{n \times n}$  (where  $\mathbb{F}$  is a field) are said to be *similar* if there exists an invertible matrix  $P \in \mathbb{F}^{n \times n}$  s.t.  $B = P^{-1}AP$ .

## Definition

Matrices  $A, B \in \mathbb{F}^{n \times n}$  (where  $\mathbb{F}$  is a field) are said to be *similar* if there exists an invertible matrix  $P \in \mathbb{F}^{n \times n}$  s.t.  $B = P^{-1}AP$ .

## Corollary 7.5.4

Let  $\mathbb{F}$  be a field, and let A and B be similar matrices in  $\mathbb{F}^{n \times n}$ . Then det(A) = det(B).

Proof.

# Definition

Matrices  $A, B \in \mathbb{F}^{n \times n}$  (where  $\mathbb{F}$  is a field) are said to be *similar* if there exists an invertible matrix  $P \in \mathbb{F}^{n \times n}$  s.t.  $B = P^{-1}AP$ .

#### Corollary 7.5.4

Let  $\mathbb{F}$  be a field, and let A and B be similar matrices in  $\mathbb{F}^{n \times n}$ . Then det(A) = det(B).

*Proof.* Since A and B are similar, there exists an invertible matrix  $P \in \mathbb{F}^{n \times n}$  s.t.  $B = P^{-1}AP$ . We then have that

$$\det(B) = \det(P^{-1}AP)$$

- $= \det(P^{-1})\det(A)\det(P)$  by Theorem 7.5.2
- $= \frac{1}{\det(P)}\det(A)\det(P)$  by Corollary 7.5.3

$$= \det(A).$$

#### Theorem 4.5.16

Let  $\mathbb{F}$  be a field, let  $B, C \in \mathbb{F}^{n \times n}$  be matrices, and let V be an *n*-dimensional vector space over the field  $\mathbb{F}$ . Then the following are equivalent:

(a) B and C are similar;

for all bases B of V and linear functions f : V → V s.t. B = B[f]B, there exists a basis C of V s.t. C = C[f]C;
for all bases C of V and linear functions f : V → V s.t. C = C[f]C, there exists a basis B of V s.t. B = C[f]B;
there exist bases B and C of V and a linear function f : V → V s.t. B = C[f]B and C = C[f]C.

#### Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field  $\mathbb{F}$ , and that  $f: V \to V$  is a linear function. Then we define the determinant of f to be

$$\det(f) := \det(_{\mathcal{B}}[f]_{\mathcal{B}}),$$

where  $\mathcal{B}$  is any basis of V.

#### Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field  $\mathbb{F}$ , and that  $f: V \to V$  is a linear function. Then we define the determinant of f to be

$$\det(f) := \det({}_{\mathcal{B}}[f]_{\mathcal{B}}),$$

where  $\mathcal{B}$  is any basis of V.

• Let us explain why this is well-defined, that is, why the value of det(f) that we get depends only on f, and not on the particular choice of the basis B.

#### Definition

Suppose that V is a non-trivial, finite-dimensional vector space over a field  $\mathbb{F}$ , and that  $f: V \to V$  is a linear function. Then we define the determinant of f to be

$$\det(f) := \det(_{\mathcal{B}}[f]_{\mathcal{B}}),$$

where  $\mathcal{B}$  is any basis of V.

- Let us explain why this is well-defined, that is, why the value of det(f) that we get depends only on f, and not on the particular choice of the basis B.
- Suppose that C is any basis of V.

Suppose that V is a non-trivial, finite-dimensional vector space over a field  $\mathbb{F}$ , and that  $f: V \to V$  is a linear function. Then we define the determinant of f to be

$$\det(f) := \det({}_{\mathcal{B}}[f]_{\mathcal{B}}),$$

where  $\mathcal{B}$  is any basis of V.

- Let us explain why this is well-defined, that is, why the value of det(f) that we get depends only on f, and not on the particular choice of the basis B.
- Suppose that C is any basis of V.
- Then by Theorem 4.5.16, matrices  ${}_{\mathcal{B}}[f]_{\mathcal{B}}$  and  ${}_{\mathcal{C}}[f]_{\mathcal{C}}$  are similar, and consequently (by Corollary 7.5.4), they have the same determinant.

Suppose that V is a non-trivial, finite-dimensional vector space over a field  $\mathbb{F}$ , and that  $f: V \to V$  is a linear function. Then we define the determinant of f to be

$$\det(f) := \det({}_{\mathcal{B}}[f]_{\mathcal{B}}),$$

where  $\mathcal{B}$  is any basis of V.

- Let us explain why this is well-defined, that is, why the value of det(f) that we get depends only on f, and not on the particular choice of the basis B.
- Suppose that C is any basis of V.
- Then by Theorem 4.5.16, matrices  ${}_{\mathcal{B}}[f]_{\mathcal{B}}$  and  ${}_{\mathcal{C}}[f]_{\mathcal{C}}$  are similar, and consequently (by Corollary 7.5.4), they have the same determinant.
- So, det(f) is well-defined.

Suppose that V is a non-trivial, finite-dimensional vector space over a field  $\mathbb{F}$ , and that  $f: V \to V$  is a linear function. Then we define the determinant of f to be

$$\det(f) := \det(\beta f ]_{\mathcal{B}},$$

where  $\mathcal{B}$  is any basis of V.

• **Remark:** Note that we defined determinants only for linear functions whose domain and codomain are one and the same, and moreover, are finite-dimensional and non-null.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

$$det(AB) = det(A)det(B).$$

# Corollary 7.5.5

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

Proof.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

$$det(AB) = det(A)det(B).$$

# Corollary 7.5.5

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

*Proof.* Since A is orthogonal, it satisfies  $A^T A = I_n$  (by definition).

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

$$det(AB) = det(A)det(B).$$

## Corollary 7.5.5

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

*Proof.* Since A is orthogonal, it satisfies  $A^T A = I_n$  (by definition). Therefore,

$$1 = \det(I_n) = \det(A^T A) \stackrel{(*)}{=} \det(A^T) \det(A) \stackrel{(**)}{=} \det(A)^2,$$

where (\*) follows from Theorem 7.5.2, and (\*\*) follows from Theorem 7.1.3.

Let  $\mathbb{F}$  be a field, and let  $A, B \in \mathbb{F}^{n \times n}$ . Then

$$det(AB) = det(A)det(B).$$

# Corollary 7.5.5

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

*Proof.* Since A is orthogonal, it satisfies  $A^T A = I_n$  (by definition). Therefore,

$$1 = \det(I_n) = \det(A^T A) \stackrel{(*)}{=} \det(A^T) \det(A) \stackrel{(**)}{=} \det(A)^2,$$

where (\*) follows from Theorem 7.5.2, and (\*\*) follows from Theorem 7.1.3. But now we see that  $det(A) = \pm 1$ , which is what we needed to show.  $\Box$ 

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

• Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ±1 need not be orthogonal.

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ±1 need not be orthogonal.
  - For example, the matrix

$$A = \left[ \begin{array}{rr} 1 & 1 \\ 2 & 3 \end{array} \right]$$

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ±1 need not be orthogonal.
  - For example, the matrix

$$A = \left[ \begin{array}{rrr} 1 & 1 \\ 2 & 3 \end{array} \right]$$

satisfies det(A) = 1, but A is not orthogonal.

• More generally, suppose that A is **any** invertible matrix in  $\mathbb{R}^{n \times n}$ .

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ±1 need not be orthogonal.
  - For example, the matrix

$$A = \left[ \begin{array}{rrr} 1 & 1 \\ 2 & 3 \end{array} \right]$$

- More generally, suppose that A is **any** invertible matrix in  $\mathbb{R}^{n \times n}$ .
- Then by Theorem 7.4.1, we have that  $det(A) \neq 0$ .

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ±1 need not be orthogonal.
  - For example, the matrix

$$A = \left[ \begin{array}{rrr} 1 & 1 \\ 2 & 3 \end{array} \right]$$

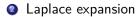
- More generally, suppose that A is **any** invertible matrix in  $\mathbb{R}^{n \times n}$ .
- Then by Theorem 7.4.1, we have that  $det(A) \neq 0$ .
- We now form the matrix B by multiplying one row or one column of A by  $\frac{1}{\det(A)}$ , and we see that  $\det(B) = 1$ .

Let A be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then det(A) =  $\pm 1$  (i.e. det(A) is either +1 or -1).

- Warning: The converse of Corollary 7.5.5 is false, i.e. matrices whose determinant is ±1 need not be orthogonal.
  - For example, the matrix

$$A = \left[ \begin{array}{rrr} 1 & 1 \\ 2 & 3 \end{array} \right]$$

- More generally, suppose that A is **any** invertible matrix in  $\mathbb{R}^{n \times n}$ .
- Then by Theorem 7.4.1, we have that  $det(A) \neq 0$ .
- We now form the matrix B by multiplying one row or one column of A by  $\frac{1}{\det(A)}$ , and we see that  $\det(B) = 1$ .
- However, *B* need not be orthogonal.



For a matrix  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  (where  $n \ge 2$ ) with entries in some field  $\mathbb{F}$ , and for indices  $p, q \in \{1, \ldots, n\}$ ,  $A_{p,q}$  is the  $(n-1) \times (n-1)$  matrix obtained from A by deleting the p-th row and q-th column.

т

$$\begin{bmatrix} a_{1,1} & \dots & a_{1,q-1} & a_{1,q} & a_{1,q+1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{p-1,1} & \dots & a_{p-1,q-1} & a_{p-1,q} & a_{p-1,q+1} & \dots & a_{p-1,n} \\ \hline a_{p,1} & \dots & a_{p,q-1} & a_{p,q} & a_{p,q+1} & \dots & a_{p,n} \\ a_{p+1,1} & \dots & a_{p+1,q-1} & a_{p+1,q} & a_{p+1,q+1} & \dots & a_{p+1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,q-1} & a_{n,q} & a_{n,q+1} & \dots & a_{n,n} \end{bmatrix}$$

For a matrix  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  (where  $n \ge 2$ ) with entries in some field  $\mathbb{F}$ , and for indices  $p, q \in \{1, \ldots, n\}$ ,  $A_{p,q}$  is the  $(n-1) \times (n-1)$  matrix obtained from A by deleting the p-th row and q-th column.

# • Terminology: The determinants

$$\det(A_{i,j}), \quad \text{with } i, j \in \{1, \ldots, n\}$$

are referred to as the first minors of A, whereas numbers

$$C_{i,j} := (-1)^{i+j} \det(A_{i,j}) \quad \text{with } i,j \in \{1,\ldots,n\}$$

are referred to as the *cofactors* of *A*.

Let  $\mathbb{F}$  be a field, and let  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  (where  $n \ge 2$ ) be a matrix in  $\mathbb{F}^{n \times n}$ . Then both the following hold:

(a) [expansion along the *i*-th row] for all  $i \in \{1, ..., n\}$ :  $det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j});$ 

- (a) [expansion along the *j*-th column] for all  $j \in \{1, ..., n\}$ :  $det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j}).$ 
  - Remark: If we write C<sub>i,j</sub> := (-1)<sup>i+j</sup>det(A<sub>i,j</sub>) for all i, j ∈ {1,..., n} (so, the C<sub>i,j</sub>'s are the cofactors of A), then the formula from (a) becomes det(A) = ∑<sub>j=1</sub><sup>n</sup> a<sub>i,j</sub>C<sub>i,j</sub>, and the formula from (b) becomes det(A) = ∑<sub>j=1</sub><sup>n</sup> a<sub>i,j</sub>C<sub>i,j</sub>.
  - This is why Laplace expansion is also referred to as "cofactor expansion."

Let  $\mathbb{F}$  be a field, and let  $A = [a_{i,j}]_{n \times n}$  (where  $n \ge 2$ ) be a matrix in  $\mathbb{F}^{n \times n}$ . Then both the following hold:

- (a) [expansion along the *i*-th row] for all  $i \in \{1, ..., n\}$ :  $det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j});$
- (a) [expansion along the *j*-th column] for all  $j \in \{1, ..., n\}$ :  $det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j}).$ 
  - First an example, then a proof.

## Example 7.6.3

Consider the matrix

$$A = \left[ egin{array}{ccc} 2 & 0 & 1 \ 3 & 4 & 5 \ 7 & 0 & 8 \end{array} 
ight],$$

with entries understood to be in  $\mathbb{R}$ . Compute det(A) in two ways:

- via Laplace expansion along the third row;
- via Laplace expansion along the second column.

Solution. (a) Laplace expansion along the third row:

$$det(A) = \begin{vmatrix} 2 & 0 & 1 \\ 3 & 4 & 5 \\ 7 & 0 & 8 \end{vmatrix}$$
$$= (-1)^{3+1} \left. 7 \begin{vmatrix} 0 & 1 \\ 4 & 5 \end{vmatrix} + (-1)^{3+2} \left. 0 \begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix} + (-1)^{3+3} \left. 8 \begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}$$
$$= \left. 7 \underbrace{\begin{vmatrix} 0 & 1 \\ 4 & 5 \end{vmatrix} + 8 \underbrace{\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix}}_{=8} = 36.$$

*Solution (continued).* (b) Laplace expansion along the second column:

$$det(A) = \begin{vmatrix} 2 & 0 & 1 \\ 3 & 4 & 5 \\ 7 & 0 & 8 \end{vmatrix}$$
$$= (-1)^{1+2} \begin{vmatrix} 0 \\ 7 & 8 \end{vmatrix} + (-1)^{2+2} \begin{vmatrix} 2 & 1 \\ 7 & 8 \end{vmatrix} + (-1)^{3+2} \begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix}$$
$$= 4 \begin{vmatrix} 2 & 1 \\ 7 & 8 \end{vmatrix} = 36.$$

# Example 7.6.3

Consider the matrix

$$A = \left[ egin{array}{ccc} 2 & 0 & 1 \ 3 & 4 & 5 \ 7 & 0 & 8 \end{array} 
ight],$$

with entries understood to be in  $\mathbb{R}$ . Compute det(A) in two ways:

- via Laplace expansion along the third row;
- via Laplace expansion along the second column.
- As a general rule, it is best to expand along a row or column that has a lot of zeros (if such a row or column exists), since that reduces the amount of calculation that we need to perform.
  - So, in Example 7.6.3, it was easier to expand along the second column.

# Example 7.6.3

Consider the matrix

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 4 & 5 \\ 7 & 0 & 8 \end{bmatrix},$$

with entries understood to be in  $\mathbb{R}$ . Compute det(A) in two ways:

- via Laplace expansion along the third row;
- via Laplace expansion along the second column.
- As a general rule, it is best to expand along a row or column that has a lot of zeros (if such a row or column exists), since that reduces the amount of calculation that we need to perform.
  - So, in Example 7.6.3, it was easier to expand along the second column.
- See the Lecture Notes for another example (with a larger matrix).

Let  $\mathbb{F}$  be a field, and let  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  (where  $n \ge 2$ ) be a matrix in  $\mathbb{F}^{n \times n}$ . Then both the following hold:

(a) [expansion along the *i*-th row] for all  $i \in \{1, ..., n\}$ :

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j});$$

(a) [expansion along the *j*-th column] for all  $j \in \{1, ..., n\}$ :  $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}).$ 

- Let's prove this!
- We begin with a technical proposition.

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{(n-1) \times (n-1)}$  (where  $n \ge 2$ ) and  $\mathbf{a} \in \mathbb{F}^{n-1}$ . Then

$$\det\left(\left[\begin{array}{c}A\\ \overline{\mathbf{a}}^{T}\\ 1\end{array}\right]_{n\times n}\right) = \det(A).$$

Proof.

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{(n-1) \times (n-1)}$  (where  $n \ge 2$ ) and  $\mathbf{a} \in \mathbb{F}^{n-1}$ . Then

$$\det\left(\left[\begin{array}{cc}A & 0\\ \mathbf{a}^{T} & 1\end{array}\right]_{n \times n}\right) = \det(A).$$

*Proof.* First, set  $\begin{bmatrix} A & \mathbf{0} \\ \mathbf{a}^T & \mathbf{1} \end{bmatrix}_{n \times n} = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$ , so that all the following hold:

blowing hold: •  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{(n-1)\times(n-1)};$ •  $a_{n,n} = 1;$ • for all  $i \in \{1, \dots, n-1\}$ ,  $a_{i,n} = 0$ ; • for all  $j \in \{1, \dots, n-1\}$ ,  $a_{n,j}$  is the *j*-th entry of the vector **a**.

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{(n-1) \times (n-1)}$  (where  $n \ge 2$ ) and  $\mathbf{a} \in \mathbb{F}^{n-1}$ . Then

$$\det\left(\left[-\frac{A}{\mathbf{a}} \right]_{n \times n} \stackrel{!}{\mathbf{0}} = \det(A).\right)$$

*Proof (continued).* Next, for all  $\sigma \in S_{n-1}$ , let  $\sigma^* \in S_n$  be given by

•  $\sigma^*(i) = \sigma(i)$  for all  $i \in \{1, ..., n-1\}$ ,

• 
$$\sigma^*(n) = n$$
.

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{(n-1) \times (n-1)}$  (where  $n \ge 2$ ) and  $\mathbf{a} \in \mathbb{F}^{n-1}$ . Then

$$\det\left(\left[-\frac{A}{\mathbf{a}^{T}}, \mathbf{0}, \mathbf{0}\right]_{n \times n}\right) = \det(A).$$

*Proof (continued).* Next, for all  $\sigma \in S_{n-1}$ , let  $\sigma^* \in S_n$  be given by

• 
$$\sigma^*(i) = \sigma(i)$$
 for all  $i \in \{1, \dots, n-1\}$ ,

• 
$$\sigma^*(n) = n$$
.

So, for any  $\sigma \in S_{n-1}$ , the disjoint cycle decomposition of  $\sigma^*$  is obtained by adding the one-element cycle (n) to the disjoint cycle decomposition of  $\sigma$ , and consequently,  $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^*)$ .

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{(n-1) \times (n-1)}$  (where  $n \ge 2$ ) and  $\mathbf{a} \in \mathbb{F}^{n-1}$ . Then

$$\det\left(\left[-\frac{A}{\mathbf{a}^{T}}, \mathbf{0}, \mathbf{0}\right]_{n \times n}\right) = \det(A).$$

*Proof (continued).* Next, for all  $\sigma \in S_{n-1}$ , let  $\sigma^* \in S_n$  be given by

• 
$$\sigma^*(i) = \sigma(i)$$
 for all  $i \in \{1, \dots, n-1\}$ ,

• 
$$\sigma^*(n) = n$$
.

So, for any  $\sigma \in S_{n-1}$ , the disjoint cycle decomposition of  $\sigma^*$  is obtained by adding the one-element cycle (n) to the disjoint cycle decomposition of  $\sigma$ , and consequently,  $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^*)$ . Set

$$S_n^* := \{\sigma^* \mid \sigma \in S_{n-1}\} = \{\pi \in S_n \mid \pi(n) = n\}.$$

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{(n-1) \times (n-1)}$  (where  $n \ge 2$ ) and  $\mathbf{a} \in \mathbb{F}^{n-1}$ . Then

$$\det\left(\left[-\frac{A}{\mathbf{a}^{-1}}\mathbf{0}\\ \mathbf{a}^{-1}\mathbf{1}^{-1}\right]_{n\times n}\right) = \det(A).$$

*Proof (continued).* Next, for all  $\sigma \in S_{n-1}$ , let  $\sigma^* \in S_n$  be given by

• 
$$\sigma^*(i) = \sigma(i)$$
 for all  $i \in \{1, \dots, n-1\}$ ,

• 
$$\sigma^*(n) = n$$
.

So, for any  $\sigma \in S_{n-1}$ , the disjoint cycle decomposition of  $\sigma^*$  is obtained by adding the one-element cycle (n) to the disjoint cycle decomposition of  $\sigma$ , and consequently,  $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^*)$ .

Set

$$S_n^* := \{\sigma^* \mid \sigma \in S_{n-1}\} = \{\pi \in S_n \mid \pi(n) = n\}.$$

We then have the following (next slide):

Proof (continued).

$$det(A) = \sum_{\sigma \in S_{n-1}} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} \cdots a_{n-1,\sigma(n-1)}$$

$$= \sum_{\sigma \in S_{n-1}} \operatorname{sgn}(\sigma^*) a_{1,\sigma^*(1)} \cdots a_{n-1,\sigma^*(n-1)} \underbrace{a_{n,\sigma^*(n)}}_{=1}$$

$$= \sum_{\pi \in S_n^*} \operatorname{sgn}(\pi) a_{1,\pi(1)} \cdots a_{n-1,\pi(n-1)} a_{n,\pi(n)}$$

$$\stackrel{(*)}{=} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) a_{1,\pi(1)} \cdots a_{n-1,\pi(n-1)} a_{n,\pi(n)}$$

$$= det\Big(\left[-\underbrace{A}_{a} \tau + \underbrace{0}_{n-1}\right]_{n \times n}\Big),$$

where (\*) follows from the fact that for all  $\pi \in S_n \setminus S_n^*$ , we have that  $a_{n,\pi(n)} = 0$ .  $\Box$ 

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{(n-1) \times (n-1)}$  (where  $n \ge 2$ ) and  $\mathbf{a} \in \mathbb{F}^{n-1}$ . Then

$$\det\left(\left[\begin{array}{c|c} A & 0\\ \hline a^T & 1\end{array}\right]_{n \times n}\right) = \det(A).$$

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{(n-1) \times (n-1)}$  (where  $n \ge 2$ ) and  $\mathbf{a} \in \mathbb{F}^{n-1}$ . Then

$$\det\left(\left[\begin{array}{ccc}A & 0\\ \mathbf{a}^{T} & 1\end{array}\right]_{n \times n}\right) = \det(A).$$

• Reminder:

Theorem 7.1.3

Let  $\mathbb{F}$  be a field. For all  $A \in \mathbb{F}^{n \times n}$ , we have that  $det(A^T) = det(A)$ .

Let  $\mathbb{F}$  be a field, and let  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  (where  $n \ge 2$ ) be a matrix in  $\mathbb{F}^{n \times n}$ . Then both the following hold:

- (a) [expansion along the *i*-th row] for all  $i \in \{1, ..., n\}$ :  $det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j});$
- (a) [expansion along the *j*-th column] for all  $j \in \{1, ..., n\}$ :  $det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j}).$

Proof.

Let  $\mathbb{F}$  be a field, and let  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  (where  $n \ge 2$ ) be a matrix in  $\mathbb{F}^{n \times n}$ . Then both the following hold:

- (a) [expansion along the *i*-th row] for all  $i \in \{1, ..., n\}$ :  $det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j});$
- (a) [expansion along the *j*-th column] for all  $j \in \{1, ..., n\}$ :  $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}).$

*Proof.* In view of Theorem 7.1.3, it is enough to prove (b).

Let  $\mathbb{F}$  be a field, and let  $A = \begin{bmatrix} a_{i,j} \end{bmatrix}_{n \times n}$  (where  $n \ge 2$ ) be a matrix in  $\mathbb{F}^{n \times n}$ . Then both the following hold:

- (a) [expansion along the *i*-th row] for all  $i \in \{1, ..., n\}$ :  $det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} det(A_{i,j});$
- (a) [expansion along the *j*-th column] for all  $j \in \{1, ..., n\}$ :  $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}).$

Proof. In view of Theorem 7.1.3, it is enough to prove (b).

Fix  $j \in \{1, \ldots, n\}$ . We must show that

$$\det(A) = \sum_{i=1}^n (-1)^{i+j} a_{i,j} \det(A_{i,j}).$$

*Proof (cont.).* Reminder: WTS det $(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$ .

*Proof (cont.).* Reminder: WTS det(A) =  $\sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$ .

First, set  $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$ .

*Proof (cont.).* Reminder: WTS det(A) =  $\sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$ .

First, set  $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$ . Then  $\mathbf{a}_j = \sum_{i=1}^n a_{i,j} \mathbf{e}_i$ ,

*Proof (cont.).* Reminder: WTS det(A) = 
$$\sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$$
.

First, set 
$$A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$$
. Then  $\mathbf{a}_j = \sum_{i=1}^n a_{i,j} \mathbf{e}_i$ , and so

$$= \det \left( \left[ \begin{array}{cccc} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \sum_{i=1}^n a_{i,j} \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{array} \right] \right)$$
$$\stackrel{(*)}{=} \sum_{i=1}^n a_{i,j} \det \left( \left[ \begin{array}{cccc} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{array} \right] \right),$$

where (\*) follows from Proposition 7.2.1(a).

*Proof (cont.).* Reminder: WTS det(
$$A$$
) =  $\sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$ .

First, set 
$$A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$$
. Then  $\mathbf{a}_j = \sum_{i=1}^n a_{i,j} \mathbf{e}_i$ , and so

$$\det(A) = \det\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{a}_j & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n\end{bmatrix}\right)$$

$$= \det \left( \left[ \begin{array}{cccc} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \sum_{i=1}^n a_{i,j} \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{array} \right] \right)$$
$$\stackrel{(*)}{=} \sum_{i=1}^n a_{i,j} \det \left( \left[ \begin{array}{cccc} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{array} \right] \right),$$

where (\*) follows from Proposition 7.2.1(a). Fix an arbitrary index  $i \in \{1, ..., n\}$ .

*Proof (cont.).* Reminder: WTS det(
$$A$$
) =  $\sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$ .

First, set 
$$A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$$
. Then  $\mathbf{a}_j = \sum_{i=1}^n a_{i,j} \mathbf{e}_i$ , and so

$$\det(A) = \det\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{a}_j & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix}\right)$$

$$= \det \left( \left[ \mathbf{a}_1 \quad \dots \quad \mathbf{a}_{j-1} \quad \sum_{i=1}^n \mathbf{a}_{i,j} \mathbf{e}_i \quad \mathbf{a}_{j+1} \quad \dots \quad \mathbf{a}_n \right] \right)$$

$$\stackrel{(*)}{=} \sum_{i=1}^{n} a_{i,j} \det \left( \left[ \begin{array}{cccc} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{array} \right] \right),$$

where (\*) follows from Proposition 7.2.1(a).

Fix an arbitrary index  $i \in \{1, \ldots, n\}$ . To complete the proof, it now suffices to show that

$$\det\left(\left[\begin{array}{cccc} \mathbf{a}_1 & \ldots & \mathbf{a}_{j-1} & \mathbf{e}_i & \mathbf{a}_{j+1} & \ldots & \mathbf{a}_n\end{array}\right]\right) = (-1)^{i+j} \det(A_{i,j}).$$

*Proof (continued).* Reminder: WTS det $([\mathbf{a}_1 \ \dots \ \mathbf{a}_{j-1} \ \mathbf{e}_i \ \mathbf{a}_{j+1} \ \dots \ \mathbf{a}_n]) = (-1)^{i+j} \det(A_{i,j}).$ 

*Proof (continued).* Reminder: WTS det $\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix}\right) = (-1)^{i+j} \det(A_{i,j}).$ By iteratively performing n-j column swaps on the matrix

$$B_i := \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix},$$

we can obtain the matrix

$$C_i := \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n & \mathbf{e}_i \end{bmatrix}.$$

*Proof (continued).* Reminder: WTS  $det\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix}\right) = (-1)^{i+j} det(A_{i,j}).$ During the performing  $\mathbf{a}_{i,j}$  is column success on the metric.

By iteratively performing n - j column swaps on the matrix

$$B_i := \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{e}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix},$$

we can obtain the matrix

$$C_i := \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n & \mathbf{e}_i \end{bmatrix}.$$

By iteratively performing n - i row swaps on the matrix  $C_i$ , we can obtain the matrix

$$\begin{bmatrix} A_{i,j} & | \\ -\mathbf{a}^{T} & | \\ \mathbf{a}^{T} & | \\ \end{bmatrix},$$

where  $\mathbf{a}^T$  is the row vector of length n-1 obtained from the *i*-th row of A by deleting its *j*-th entry.

*Proof (continued).* Since swapping two rows or two columns has the effect of changing the sign of the determinant, we see that

$$det(B_i) = (-1)^{n-j} det(C_i)$$

$$= (-1)^{n-j} (-1)^{n-i} det\left(\left[-\frac{A_{i,j}}{a^T} \mid \frac{\mathbf{0}}{1}\right]\right)$$

$$\stackrel{(*)}{=} (-1)^{2n-i-j} det(A_{i,j})$$

$$= (-1)^{i+j} det(A_{i,j}),$$

where (\*) follows from Proposition 7.6.1. This completes the argument.  $\Box$ 

### Laplace expansion

Let  $\mathbb{F}$  be a field, and let  $A = [a_{i,j}]_{n \times n}$  (where  $n \ge 2$ ) be a matrix in  $\mathbb{F}^{n \times n}$ . Then both the following hold:

**(a)** [expansion along the *i*-th row] for all  $i \in \{1, ..., n\}$ :

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j});$$

• [expansion along the *j*-th column] for all  $j \in \{1, ..., n\}$ :  $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}).$ 

# Theorem 7.6.6

Let  $\mathbb F$  be a field, and let  $A\in\mathbb F^{n\times n}$  and  $B\in\mathbb F^{m\times m}$  be square matrices. Then

$$\det\left(\left[\begin{array}{cc}A & O_{n\times m}\\ \overline{O_{m\times n}} & \overline{B} & \end{array}\right]\right) = \det(A) \det(B).$$

Proof (outline).

### Theorem 7.6.6

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$  and  $B \in \mathbb{F}^{m \times m}$  be square matrices. Then

$$\det\left(\left[\begin{array}{cc}A & O_{n \times m}\\ \overline{O_{m \times n}} & \overline{B} \end{array}\right]\right) = \det(A) \det(B).$$

*Proof (outline).* This can be proven (for example) by induction on n, via Laplace expansion along the leftmost column. The details are left as an exercise.  $\Box$ 

## Theorem 7.6.6

Let  $\mathbb F$  be a field, and let  $A\in\mathbb F^{n\times n}$  and  $B\in\mathbb F^{m\times m}$  be square matrices. Then

$$\det\left(\begin{bmatrix}A & O_{n \times m} \\ O_{m \times n} & B \end{bmatrix}\right) = \det(A) \det(B).$$

### Corollary 7.6.7

Let  $\mathbb{F}$  be a field, and let  $A_1 \in \mathbb{F}^{n_1 \times n_1}, A_2 \in \mathbb{F}^{n_2 \times n_2}, \dots, A_k \in \mathbb{F}^{n_k \times n_k}$  be square matrices. Then

$$\det\left(\begin{bmatrix}A_{1} & A_{1} & A_{2} &$$

*Proof.* This follows from Theorem 7.6.6 via an easy induction on k.  $\Box$ 

• Intermission: Fraction notation in fields.

- Intermission: Fraction notation in fields.
- Let  $\mathbb{F}$  be a field.

- Intermission: Fraction notation in fields.
- Let  $\mathbb F$  be a field.
- For a ∈ 𝔽 \ {0}, we sometimes use the notation <sup>1</sup>/<sub>a</sub> instead of a<sup>-1</sup> (the multiplicative inverse of a in the field 𝔅).
  - For instance, in  $\mathbb{Z}_3$ , we have  $\frac{1}{1} = 1^{-1} = 1$  and  $\frac{1}{2} = 2^{-1} = 2$  (because in  $\mathbb{Z}_3$ , we have that  $2 \cdot 2 = 1$ ).

- Intermission: Fraction notation in fields.
- Let  $\mathbb F$  be a field.
- For a ∈ 𝔽 \ {0}, we sometimes use the notation <sup>1</sup>/<sub>a</sub> instead of a<sup>-1</sup> (the multiplicative inverse of a in the field 𝔅).
  - For instance, in  $\mathbb{Z}_3$ , we have  $\frac{1}{1} = 1^{-1} = 1$  and  $\frac{1}{2} = 2^{-1} = 2$  (because in  $\mathbb{Z}_3$ , we have that  $2 \cdot 2 = 1$ ).
- In a similar vein, for scalars  $a, b \in \mathbb{F}$  such that  $b \neq 0$ , we sometimes write  $\frac{a}{b}$  instead of  $b^{-1}a$ .
  - For example, in  $\mathbb{Z}_5$ , we have that  $3^{-1} = 2$  (because  $3 \cdot 2 = 1$ ), and so  $\frac{4}{3} = 3^{-1} \cdot 4 = 2 \cdot 4 = 3$ .

- Intermission: Fraction notation in fields.
- Let  $\mathbb F$  be a field.
- For a ∈ 𝔽 \ {0}, we sometimes use the notation <sup>1</sup>/<sub>a</sub> instead of a<sup>-1</sup> (the multiplicative inverse of a in the field 𝔅).
  - For instance, in  $\mathbb{Z}_3$ , we have  $\frac{1}{1} = 1^{-1} = 1$  and  $\frac{1}{2} = 2^{-1} = 2$  (because in  $\mathbb{Z}_3$ , we have that  $2 \cdot 2 = 1$ ).
- In a similar vein, for scalars  $a, b \in \mathbb{F}$  such that  $b \neq 0$ , we sometimes write  $\frac{a}{b}$  instead of  $b^{-1}a$ .
  - For example, in  $\mathbb{Z}_5$ , we have that  $3^{-1} = 2$  (because  $3 \cdot 2 = 1$ ), and so  $\frac{4}{3} = 3^{-1} \cdot 4 = 2 \cdot 4 = 3$ .
- It is sometimes more convenient to use the notation  $\frac{1}{a}$  instead of  $a^{-1}$ , and  $\frac{a}{b}$  instead of  $b^{-1}a$ .

- Intermission: Fraction notation in fields.
- Let  $\mathbb F$  be a field.
- For a ∈ 𝔽 \ {0}, we sometimes use the notation <sup>1</sup>/<sub>a</sub> instead of a<sup>-1</sup> (the multiplicative inverse of a in the field 𝔅).
  - For instance, in  $\mathbb{Z}_3$ , we have  $\frac{1}{1} = 1^{-1} = 1$  and  $\frac{1}{2} = 2^{-1} = 2$  (because in  $\mathbb{Z}_3$ , we have that  $2 \cdot 2 = 1$ ).
- In a similar vein, for scalars  $a, b \in \mathbb{F}$  such that  $b \neq 0$ , we sometimes write  $\frac{a}{b}$  instead of  $b^{-1}a$ .
  - For example, in  $\mathbb{Z}_5$ , we have that  $3^{-1} = 2$  (because  $3 \cdot 2 = 1$ ), and so  $\frac{4}{3} = 3^{-1} \cdot 4 = 2 \cdot 4 = 3$ .
- It is sometimes more convenient to use the notation  $\frac{1}{a}$  instead of  $a^{-1}$ , and  $\frac{a}{b}$  instead of  $b^{-1}a$ .
- However, when working over a finite field such as Z<sub>p</sub> (for a prime number p), we **never** leave a fraction as a final answer, and instead, we always simplify.



• Before stating Cramer's rule, we set up some notation.

- Before stating Cramer's rule, we set up some notation.
- For a matrix  $A \in \mathbb{F}^{n \times n}$ , a vector  $\mathbf{b} \in \mathbb{F}^n$ , and an index  $j \in \{1, \ldots, n\}$ , we denote by  $A_j(\mathbf{b})$  the matrix obtained from A by replacing the *j*-th column of A with  $\mathbf{b}$ .
  - For example, for

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix},$$

we have that

$$A_1(\mathbf{b}) = \begin{bmatrix} 4 & 1 & 1 \\ 5 & 2 & 2 \\ 6 & 0 & 3 \end{bmatrix}, \qquad A_2(\mathbf{b}) = \begin{bmatrix} 1 & 4 & 1 \\ 0 & 5 & 2 \\ 0 & 6 & 3 \end{bmatrix}, \qquad A_3(\mathbf{b}) = \begin{bmatrix} 1 & 1 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

- Before stating Cramer's rule, we set up some notation.
- For a matrix  $A \in \mathbb{F}^{n \times n}$ , a vector  $\mathbf{b} \in \mathbb{F}^n$ , and an index  $j \in \{1, \ldots, n\}$ , we denote by  $A_j(\mathbf{b})$  the matrix obtained from A by replacing the *j*-th column of A with  $\mathbf{b}$ .
  - For example, for

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix},$$

we have that

$$A_1(\mathbf{b}) = \begin{bmatrix} 4 & 1 & 1 \\ 5 & 2 & 2 \\ 6 & 0 & 3 \end{bmatrix}, \qquad A_2(\mathbf{b}) = \begin{bmatrix} 1 & 4 & 1 \\ 0 & 5 & 2 \\ 0 & 6 & 3 \end{bmatrix}, \qquad A_3(\mathbf{b}) = \begin{bmatrix} 1 & 1 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

 In what follows, it will be convenient to use the fraction notation in fields.

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^T$$

• First an example, then a proof.

# Example 7.7.1

#### Let

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix},$$

with entries understood to be in  $\mathbb{Z}_3.$  Solve the matrix-vector equation  $A \bm{x} = \bm{b}.$ 

Solution.

# Example 7.7.1

Let

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix},$$

with entries understood to be in  $\mathbb{Z}_3$ . Solve the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$ .

Solution. Note that det(A) = 2, and in particular, A is invertible (by Theorem 7.4.1). So, Cramer's rule applies. We compute:

• 
$$det(A_1(\mathbf{b})) = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 1 & 1 \end{vmatrix} = 2;$$
  
•  $det(A_2(\mathbf{b})) = \begin{vmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{vmatrix} = 1;$   
•  $det(A_3(\mathbf{b})) = \begin{vmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 0.$ 

## Example 7.7.1

Let

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix},$$

with entries understood to be in  $\mathbb{Z}_3$ . Solve the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$ .

Solution (continued). By Cramer's rule,  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \frac{\det(A_3(\mathbf{b}))}{\det(A)} \end{bmatrix}^T$$
$$= \begin{bmatrix} \frac{2}{2} & \frac{1}{2} & \frac{0}{2} \end{bmatrix}^T$$
$$= \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T.$$

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \left[ \begin{array}{c} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{array} \right]^{T}.$$

Proof.

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^T$$

*Proof.* Since A is invertible, we know that the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely,  $\mathbf{x} = A^{-1}\mathbf{b}$ .

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^T$$

*Proof.* Since *A* is invertible, we know that the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely,  $\mathbf{x} = A^{-1}\mathbf{b}$ . Now, for this solution  $\mathbf{x}$ , we set  $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ .

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^{T}.$$

*Proof.* Since *A* is invertible, we know that the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely,  $\mathbf{x} = A^{-1}\mathbf{b}$ . Now, for this solution  $\mathbf{x}$ , we set  $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ . WTS

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^T$$

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^{T}.$$

*Proof.* Since *A* is invertible, we know that the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely,  $\mathbf{x} = A^{-1}\mathbf{b}$ . Now, for this solution  $\mathbf{x}$ , we set  $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ . WTS

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^T$$

Fix an index  $j \in \{1, \ldots, n\}$ . WTS

$$x_j = \frac{\det(A_j(\mathbf{b}))}{\det(A)}.$$

*Proof (continued).* Set  $A = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}$ . Then:

$$det(A_j(\mathbf{b})) = det\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{b} & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix}\right)$$

$$= det\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & A\mathbf{x} & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix}\right)$$

$$= det\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \sum_{i=1}^n x_i \mathbf{a}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix}\right)$$

$$\stackrel{(*)}{=} \sum_{i=1}^n x_i det\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{a}_i & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix}\right)$$

$$\stackrel{(**)}{=} x_j det\left(\begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_{j-1} & \mathbf{a}_j & \mathbf{a}_{j+1} & \dots & \mathbf{a}_n \end{bmatrix}\right)$$

$$= x_j det(A),$$

where (\*) follows from Proposition 7.2.1(a), and (\*\*) follows from the fact that any matrix with two identical columns has determinant zero (by Proposition 7.1.5).

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \left[ \begin{array}{cc} \det(A_1(\mathbf{b})) & \det(A_2(\mathbf{b})) \\ \det(A) & \det(A) \end{array} & \cdots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{array} 
ight]^T.$$

Proof (continued). We have now shown that

$$\det(A_j(\mathbf{b})) = x_j \det(A).$$

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^T.$$

Proof (continued). We have now shown that

$$\det(A_j(\mathbf{b})) = x_j \det(A).$$

Since A is invertible, Theorem 7.4.1 guarantees that  $det(A) \neq 0$ .

Let  $\mathbb{F}$  be a field, and let A be an invertible matrix in  $\mathbb{F}^{n \times n}$ , and let  $\mathbf{b} \in \mathbb{F}^n$ . Then the matrix-vector equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution, namely

$$\mathbf{x} = \begin{bmatrix} \frac{\det(A_1(\mathbf{b}))}{\det(A)} & \frac{\det(A_2(\mathbf{b}))}{\det(A)} & \dots & \frac{\det(A_n(\mathbf{b}))}{\det(A)} \end{bmatrix}^T$$

Proof (continued). We have now shown that

$$\det(A_j(\mathbf{b})) = x_j \det(A).$$

Since A is invertible, Theorem 7.4.1 guarantees that  $det(A) \neq 0$ . So, we can divide both sides of the equality above by det(A) to obtain

$$x_j = rac{\det \left( A_j(\mathbf{b}) 
ight)}{\det(A)}.$$

This completes the argument.  $\Box$ 

# The adjugate matrix

#### Definition

Given a field  $\mathbb{F}$  and a matrix  $A \in \mathbb{F}^{n \times n}$   $(n \ge 2)$ , with cofactors  $C_{i,j} = (-1)^{i+j} \det(A_{i,j})$  (for  $i, j \in \{1, \ldots, n\}$ ), the cofactor matrix of A is the matrix  $\begin{bmatrix} C_{i,j} \end{bmatrix}_{n \times n}$ . The adjugate matrix (also called the classical adjoint) of A, denoted by  $\operatorname{adj}(A)$ , is the transponse of the cofactor matrix of A, i.e.

$$\operatorname{adj}(A) := \left( \left[ egin{array}{c} C_{i,j} \end{array} 
ight]_{n imes n} 
ight)^T.$$

So, the *i*, *j*-th entry of adj(A) is the cofactor  $C_{j,i}$  (note the swapping of the indices).

Consider the matrix

$$A = \left[ egin{array}{cccc} 1 & 1 & 1 \ 0 & 2 & 2 \ 0 & 0 & 3 \end{array} 
ight],$$

with entries understood to be in  $\mathbb{R}$ . Compute the cofactor and adjugate matrices of the matrix A.

Solution.

Consider the matrix

$$A = \left[ egin{array}{cccc} 1 & 1 & 1 \ 0 & 2 & 2 \ 0 & 0 & 3 \end{array} 
ight],$$

with entries understood to be in  $\mathbb{R}$ . Compute the cofactor and adjugate matrices of the matrix A.

Solution. For all  $i, j \in \{1, 2, 3\}$ , we let  $C_{i,j} = (-1)^{i+j} \det(A_{i,j})$ . We compute (next slide):

Solution (continued). Reminder: 
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
.

• 
$$C_{1,1} = (-1)^{1+1} \begin{vmatrix} 2 & 2 \\ 0 & 3 \end{vmatrix} = 6;$$
  
•  $C_{1,2} = (-1)^{1+2} \begin{vmatrix} 0 & 2 \\ 0 & 3 \end{vmatrix} = 0;$   
•  $C_{1,3} = (-1)^{1+3} \begin{vmatrix} 0 & 2 \\ 0 & 0 \end{vmatrix} = 0;$   
•  $C_{2,1} = (-1)^{2+1} \begin{vmatrix} 1 & 1 \\ 0 & 3 \end{vmatrix} = -3;$   
•  $C_{2,2} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 0 & 3 \end{vmatrix} = 3;$   
•  $C_{2,3} = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 0;$   
•  $C_{3,1} = (-1)^{3+1} \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 0;$   
•  $C_{3,2} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = 0;$   
•  $C_{3,3} = (-1)^{3+3} \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = -2;$ 

Consider the matrix

$$A = \left[ egin{array}{cccc} 1 & 1 & 1 \ 0 & 2 & 2 \ 0 & 0 & 3 \end{array} 
ight],$$

with entries understood to be in  $\mathbb{R}$ . Compute the cofactor and adjugate matrices of the matrix A.

Solution (continued). So, the cofactor matrix of A is

$$\begin{bmatrix} C_{1,1} & C_{1,2} & C_{1,3} \\ C_{2,1} & C_{2,2} & C_{2,3} \\ C_{3,1} & C_{3,2} & C_{3,3} \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ -3 & 3 & 0 \\ 0 & -2 & 2 \end{bmatrix}$$

Consider the matrix

$$A = \left[ egin{array}{cccc} 1 & 1 & 1 \ 0 & 2 & 2 \ 0 & 0 & 3 \end{array} 
ight],$$

with entries understood to be in  $\mathbb{R}$ . Compute the cofactor and adjugate matrices of the matrix A.

Solution (continued). So, the cofactor matrix of A is

$$\begin{bmatrix} C_{1,1} & C_{1,2} & C_{1,3} \\ C_{2,1} & C_{2,2} & C_{2,3} \\ C_{3,1} & C_{3,2} & C_{3,3} \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ -3 & 3 & 0 \\ 0 & -2 & 2 \end{bmatrix}$$

The adjugate matrix of A is the transpose of the cofactor matrix, i.e.

$$adj(A) = \begin{bmatrix} 6 & -3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$   $(n \ge 2)$ . Then

$$\operatorname{adj}(A) A = A \operatorname{adj}(A) = \operatorname{det}(A)I_n.$$

Consequently, if A is invertible, then  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

Proof.

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$   $(n \ge 2)$ . Then

$$\operatorname{adj}(A) A = A \operatorname{adj}(A) = \operatorname{det}(A)I_n.$$

Consequently, if A is invertible, then  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

*Proof.* Let us first show that the first statement implies the second.

Let  $\mathbb F$  be a field, and let  $A\in \mathbb F^{n imes n}$   $(n\geq 2)$ . Then

$$\operatorname{adj}(A) A = A \operatorname{adj}(A) = \operatorname{det}(A)I_n.$$

Consequently, if A is invertible, then  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

*Proof.* Let us first show that the first statement implies the second. Indeed, if A is invertible, then  $det(A) \neq 0$ , and so if the first statement holds, then we get that

$$\left(\frac{1}{\det(A)}\operatorname{adj}(A)\right)A = A\left(\frac{1}{\det(A)}\operatorname{adj}(A)\right) = I_n,$$

and consequently,  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$   $(n \ge 2)$ . Then

$$\operatorname{adj}(A) A = A \operatorname{adj}(A) = \operatorname{det}(A)I_n.$$

Consequently, if A is invertible, then  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

*Proof.* Let us first show that the first statement implies the second. Indeed, if A is invertible, then  $det(A) \neq 0$ , and so if the first statement holds, then we get that

$$\left(\frac{1}{\det(A)}\operatorname{adj}(A)\right)A = A\left(\frac{1}{\det(A)}\operatorname{adj}(A)\right) = I_n,$$

and consequently,  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

It remains to prove the first statement, i.e. that  $adj(A) A = A adj(A) = det(A)I_n$ .

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$   $(n \ge 2)$ . Then

$$\operatorname{adj}(A) A = A \operatorname{adj}(A) = \operatorname{det}(A)I_n.$$

Consequently, if A is invertible, then  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

*Proof.* Let us first show that the first statement implies the second. Indeed, if A is invertible, then  $det(A) \neq 0$ , and so if the first statement holds, then we get that

$$\left(\frac{1}{\det(A)}\operatorname{adj}(A)\right)A = A\left(\frac{1}{\det(A)}\operatorname{adj}(A)\right) = I_n,$$

and consequently,  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

It remains to prove the first statement, i.e. that  $adj(A) A = A adj(A) = det(A)I_n$ . We will prove that  $adj(A) A = det(A)I_n$ ; the proof of  $A adj(A) = det(A)I_n$  is in the Lecture Notes.

We will prove this by showing that the matrices adj(A) A and  $det(A)I_n$  have the same corresponding entries.

We will prove this by showing that the matrices adj(A) A and  $det(A)I_n$  have the same corresponding entries. Fix indices  $i, j \in \{1, ..., n\}$ .

We will prove this by showing that the matrices adj(A) A and  $det(A)I_n$  have the same corresponding entries. Fix indices  $i, j \in \{1, ..., n\}$ . The *i*, *j*-th entry of the matrix  $det(A)I_n$  is det(A) if i = j, and is zero if  $i \neq j$ .

We will prove this by showing that the matrices adj(A) A and  $det(A)I_n$  have the same corresponding entries. Fix indices  $i, j \in \{1, ..., n\}$ . The i, j-th entry of the matrix  $det(A)I_n$  is det(A) if i = j, and is zero if  $i \neq j$ . We must show this holds for the i, j-th entry of the matrices adj(A) A as well.

We will prove this by showing that the matrices adj(A) A and  $det(A)I_n$  have the same corresponding entries. Fix indices  $i, j \in \{1, ..., n\}$ . The i, j-th entry of the matrix  $det(A)I_n$  is det(A) if i = j, and is zero if  $i \neq j$ . We must show this holds for the i, j-th entry of the matrices adj(A) A as well.

The *i*-th row of  $\operatorname{adj}(A)$  is  $\begin{bmatrix} C_{1,i} & \dots & C_{n,i} \end{bmatrix}$ , and the *j*-th column of A is  $\begin{bmatrix} a_{1,j} & \dots & a_{n,j} \end{bmatrix}^T$ .

We will prove this by showing that the matrices adj(A) A and  $det(A)I_n$  have the same corresponding entries. Fix indices  $i, j \in \{1, ..., n\}$ . The i, j-th entry of the matrix  $det(A)I_n$  is det(A) if i = j, and is zero if  $i \neq j$ . We must show this holds for the i, j-th entry of the matrices adj(A) A as well.

The *i*-th row of  $\operatorname{adj}(A)$  is  $\begin{bmatrix} C_{1,i} & \dots & C_{n,i} \end{bmatrix}$ , and the *j*-th column of A is  $\begin{bmatrix} a_{1,j} & \dots & a_{n,j} \end{bmatrix}^T$ . So, the *i*, *j*-th entry of  $\operatorname{adj}(A)$  A is  $\sum_{k=1}^n a_{k,j} C_{k,i}$ .

We will prove this by showing that the matrices adj(A) A and  $det(A)I_n$  have the same corresponding entries. Fix indices  $i, j \in \{1, ..., n\}$ . The i, j-th entry of the matrix  $det(A)I_n$  is det(A) if i = j, and is zero if  $i \neq j$ . We must show this holds for the i, j-th entry of the matrices adj(A) A as well.

The *i*-th row of adj(A) is  $\begin{bmatrix} C_{1,i} & \dots & C_{n,i} \end{bmatrix}$ , and the *j*-th column of A is  $\begin{bmatrix} a_{1,j} & \dots & a_{n,j} \end{bmatrix}^T$ . So, the *i*, *j*-th entry of adj(A) A is  $\sum_{k=1}^n a_{k,j} C_{k,i}$ . We need to show that this number is equal to det(A) if i = j and is zero if  $i \neq j$ .

Now, let  $B_1$  be the matrix obtained by replacing the *i*-th column of A by the *j*-th column of A. Then  $det(B_1) = \sum_{k=1}^{n} a_{k,j}C_{k,i}$  (via Laplace expansion along the *i*-th column of  $B_1$ ). But if i = j, then  $det(B_1) = det(A)$  (because  $B_1 = A$ ), and if  $i \neq j$ , then  $det(B_1) = 0$  (because  $B_1$  has two identical columns, namely, the *i*-th and *j*-th column).  $\Box$ 

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$   $(n \ge 2)$ . Then

$$\operatorname{adj}(A) A = A \operatorname{adj}(A) = \operatorname{det}(A)I_n.$$

Consequently, if A is invertible, then  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

Show that the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix},$$

(with entries understood to be in  $\mathbb{R}$ ) is invertible, and using Theorem 7.8.2, find its inverse  $A^{-1}$ .

Solution.

Show that the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix},$$

(with entries understood to be in  $\mathbb{R}$ ) is invertible, and using Theorem 7.8.2, find its inverse  $A^{-1}$ .

Solution. The matrix A is upper triangular, and so its determinant can be computed by multiplying the entries along the main diagonal. So,  $det(A) = 1 \cdot 2 \cdot 3 = 6$ .

Show that the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix},$$

(with entries understood to be in  $\mathbb{R}$ ) is invertible, and using Theorem 7.8.2, find its inverse  $A^{-1}$ .

Solution. The matrix A is upper triangular, and so its determinant can be computed by multiplying the entries along the main diagonal. So,  $det(A) = 1 \cdot 2 \cdot 3 = 6$ . Since  $det(A) \neq 0$ , Theorem 7.4.1 guarantees that A is invertible.

# Solution (continued). Reminder: det(A) = 6, A is invertible.

Solution (continued). Reminder: det(A) = 6, A is invertible. In Example 7.8.1, we compute the adjugate matrix of A:

$$\operatorname{adj}(A) = \begin{bmatrix} 6 & -3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 2 \end{bmatrix}.$$

So, by Theorem 7.8.5, we have that

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{6} \begin{bmatrix} 6 & -3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -1/2 & 0 \\ 0 & 1/2 & -1/3 \\ 0 & 0 & 1/3 \end{bmatrix}.$$

Let  $\mathbb F$  be a field, and let  $A\in \mathbb F^{n imes n}$   $(n\geq 2)$ . Then

$$\operatorname{adj}(A) A = A \operatorname{adj}(A) = \operatorname{det}(A)I_n.$$

Consequently, if A is invertible, then  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

Let  $\mathbb{F}$  be a field, and let  $A \in \mathbb{F}^{n \times n}$   $(n \ge 2)$ . Then

$$\operatorname{adj}(A) A = A \operatorname{adj}(A) = \operatorname{det}(A)I_n.$$

Consequently, if A is invertible, then  $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ .

#### Corollary 7.8.4

Let  $\mathbb{F}$  be a field, and let  $a, b, c, d \in \mathbb{F}$ . Then the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if  $ad \neq bc$ , and in this case, the inverse of A is given by the formula

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Let  $\mathbb{F}$  be a field, and let  $a, b, c, d \in \mathbb{F}$ . Then the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if  $ad \neq bc$ , and in this case, the inverse of A is given by the formula

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Proof (outline).

Let  $\mathbb{F}$  be a field, and let  $a, b, c, d \in \mathbb{F}$ . Then the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if  $ad \neq bc$ , and in this case, the inverse of A is given by the formula

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Proof (outline). It is easy to see that

$$det(A) = ad - bc$$
 and  $adj(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .

Let  $\mathbb{F}$  be a field, and let  $a, b, c, d \in \mathbb{F}$ . Then the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if  $ad \neq bc$ , and in this case, the inverse of A is given by the formula

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Proof (outline). It is easy to see that

$$det(A) = ad - bc$$
 and  $adj(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .

We know that A is invertible iff  $det(A) \neq 0$ , which happens precisely when  $ad \neq bc$ .

Let  $\mathbb{F}$  be a field, and let  $a, b, c, d \in \mathbb{F}$ . Then the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if  $ad \neq bc$ , and in this case, the inverse of A is given by the formula

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Proof (outline). It is easy to see that

$$\det(A) = ad - bc$$
 and  $\operatorname{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .

We know that A is invertible iff  $det(A) \neq 0$ , which happens precisely when  $ad \neq bc$ . In this case, Theorem 7.8.2 guarantees that

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix},$$

which is what we needed to show.  $\Box$