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This lecture has four parts:

1 The multiplicative property of determinants
2 Laplace expansion
3 Cramer’s rule
4 The adjugate matrix
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1 The multiplicative property of determinants

In general, for a field F, matrices A, B ∈ Fn×n, and a scalar
α ∈ F, we have that

det(A + B) �Z= det(A) + det(B);

det(αA) �Z= αdet(A).

Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

To prove Theorem 7.5.2, we first need a technical proposition
(next slide).
Recall that an elementary matrix is any matrix obtained by
performing one elementary row operation on an identity
matrix In.

Here, it is possible that E = In. In this case, we can take R to
be the multiplication of the first row by the scalar 1.
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Proposition 7.5.1
Let F be a field, let A, E ∈ Fn×n, and assume that E is an
elementary matrix. Then det(EA) = det(E )det(A).

Proof.

Let R be an elementary row operation that corresponds to
the elementary matrix E , i.e. E is the matrix obtained by
performing R on In.

By Proposition 1.11.11(a), EA is the matrix obtained by
performing R on A.

Now, by Theorem 7.3.2, there exists some scalar α ∈ F \ {0} s.t.
for any matrix M ∈ Fn×n, if MR is the matrix obtained by
performing R on M, then det(MR) = αdet(M). So,

det(E ) = αdet(In) = α; det(EA) = αdet(A).

It follows that
det(EA) = αdet(A) = det(E )det(A). □
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Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

Proof.

Suppose first that at least one of A, B is non-invertible.
Then by Corollary 3.3.16, AB is also non-invertible. But by
Theorem 7.4.1, non-invertible matrices have determinant zero, and
so det(AB) = 0 = det(A)det(B).

If A is non-invertible, then det(A) = 0.
If B is non-invertible, then det(B) = 0.
In either case, det(A)det(B) = 0.
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Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

Proof (continued). From now on, we assume that A and B are
both invertible.

Therefore, by the Invertible Matrix Theorem, each
of them can be written as a product of elementary matrices, say
A = EA

1 . . . EA
p and B = EB

1 . . . EB
q , where EA

1 , . . . , EA
p , EB

1 , . . . , EB
q

are elementary matrices. So, AB = EA
1 . . . EA

p EB
1 . . . EB

q . By
repeatedly applying Proposition 7.5.1, we get that

det(A) = det(EA
1 ) . . . det(EA

p );
det(B) = det(EB

1 ) . . . det(EB
q );

det(AB) = det(EA
1 ) . . . det(EA

p )det(EB
1 ) . . . det(EB

q ).
But now
det(AB) = det(EA

1 ) . . . det(EA
p )︸ ︷︷ ︸

=det(A)

det(EB
1 ) . . . det(EB

q )︸ ︷︷ ︸
=det(B)

= det(A)det(B),

which is what we needed to show. □
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Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

Corollary 7.5.3
Let F be a field, and let A ∈ Fn×n be an invertible matrix. Then

det(A−1) = 1
det(A) .

Proof. Since AA−1 = In, we see that

det(A)det(A−1) Thm. 7.5.2= det(AA−1) = det(In) = 1.

We now see that det(A−1) = 1
det(A) , which is what we needed to

show. □
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Reminder:
Definition
Matrices A, B ∈ Fn×n (where F is a field) are said to be similar if
there exists an invertible matrix P ∈ Fn×n s.t. B = P−1AP.

Corollary 7.5.4
Let F be a field, and let A and B be similar matrices in Fn×n.
Then det(A) = det(B).

Proof. Since A and B are similar, there exists an invertible matrix
P ∈ Fn×n s.t. B = P−1AP. We then have that

det(B) = det(P−1AP)

= det(P−1)det(A)det(P) by Theorem 7.5.2

= 1
det(P) det(A)det(P) by Corollary 7.5.3

= det(A). □
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Reminder:

Theorem 4.5.16
Let F be a field, let B, C ∈ Fn×n be matrices, and let V be an
n-dimensional vector space over the field F. Then the following are
equivalent:

(a) B and C are similar;
(b) for all bases B of V and linear functions f : V → V s.t.

B = B

[
f

]
B, there exists a basis C of V s.t. C = C

[
f

]
C;

(c) for all bases C of V and linear functions f : V → V s.t.
C = C

[
f

]
C, there exists a basis B of V s.t. B = B

[
f

]
B;

(d) there exist bases B and C of V and a linear function
f : V → V s.t. B = B

[
f

]
B and C = C

[
f

]
C.



Definition
Suppose that V is a non-trivial, finite-dimensional vector space
over a field F, and that f : V → V is a linear function. Then we
define the determinant of f to be

det(f ) := det
(

B

[
f

]
B

)
,

where B is any basis of V .

Let us explain why this is well-defined, that is, why the value
of det(f ) that we get depends only on f , and not on the
particular choice of the basis B.
Suppose that C is any basis of V .
Then by Theorem 4.5.16, matrices B

[
f

]
B and C

[
f

]
C are

similar, and consequently (by Corollary 7.5.4), they have the
same determinant.
So, det(f ) is well-defined.
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Definition
Suppose that V is a non-trivial, finite-dimensional vector space
over a field F, and that f : V → V is a linear function. Then we
define the determinant of f to be

det(f ) := det
(

B

[
f

]
B

)
,

where B is any basis of V .

Remark: Note that we defined determinants only for linear
functions whose domain and codomain are one and the same,
and moreover, are finite-dimensional and non-null.



Theorem 7.5.2
Let F be a field, and let A, B ∈ Fn×n. Then

det(AB) = det(A)det(B).

Corollary 7.5.5
Let A be an orthogonal matrix in Rn×n. Then det(A) = ±1 (i.e.
det(A) is either +1 or −1).

Proof.

Since A is orthogonal, it satisfies AT A = In (by definition).
Therefore,

1 = det(In) = det(AT A) (∗)= det(AT )det(A) (∗∗)= det(A)2,

where (*) follows from Theorem 7.5.2, and (**) follows from
Theorem 7.1.3. But now we see that det(A) = ±1, which is what
we needed to show. □
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Corollary 7.5.5
Let A be an orthogonal matrix in Rn×n. Then det(A) = ±1 (i.e.
det(A) is either +1 or −1).

Warning: The converse of Corollary 7.5.5 is false, i.e.
matrices whose determinant is ±1 need not be orthogonal.

For example, the matrix

A =
[

1 1
2 3

]
satisfies det(A) = 1, but A is not orthogonal.
More generally, suppose that A is any invertible matrix in
Rn×n.
Then by Theorem 7.4.1, we have that det(A) ̸= 0.
We now form the matrix B by multiplying one row or one
column of A by 1

det(A) , and we see that det(B) = 1.
However, B need not be orthogonal.
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2 Laplace expansion

Definition
For a matrix A =

[
ai,j

]
n×n (where n ≥ 2) with entries in some

field F, and for indices p, q ∈ {1, . . . , n}, Ap,q is the
(n − 1) × (n − 1) matrix obtained from A by deleting the p-th row
and q-th column.



a1,1 . . . a1,q−1 a1,q a1,q+1 . . . a1,n
...

. . .
...

...
...

. . .
...

ap−1,1 . . . ap−1,q−1 ap−1,q ap−1,q+1 . . . ap−1,n

ap,1 . . . ap,q−1 ap,q ap,q+1 . . . ap,n
ap+1,1 . . . ap+1,q−1 ap+1,q ap+1,q+1 . . . ap+1,n

...
. . .

...
...

...
. . .

...
an,1 . . . an,q−1 an,q an,q+1 . . . an,n





Definition
For a matrix A =

[
ai,j

]
n×n (where n ≥ 2) with entries in some

field F, and for indices p, q ∈ {1, . . . , n}, Ap,q is the
(n − 1) × (n − 1) matrix obtained from A by deleting the p-th row
and q-th column.

Terminology: The determinants

det(Ai ,j), with i , j ∈ {1, . . . , n}

are referred to as the first minors of A, whereas numbers

Ci ,j := (−1)i+j det(Ai ,j) with i , j ∈ {1, . . . , n}

are referred to as the cofactors of A.



Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

Remark: If we write Ci ,j := (−1)i+jdet(Ai ,j) for all
i , j ∈ {1, . . . , n} (so, the Ci ,j ’s are the cofactors of A), then
the formula from (a) becomes det(A) =

∑n
j=1 ai ,jCi ,j , and the

formula from (b) becomes det(A) =
∑n

i=1 ai ,jCi ,j .
This is why Laplace expansion is also referred to as “cofactor
expansion.”



Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

First an example, then a proof.



Example 7.6.3
Consider the matrix

A =

 2 0 1
3 4 5
7 0 8

 ,

with entries understood to be in R. Compute det(A) in two ways:
(a) via Laplace expansion along the third row;
(b) via Laplace expansion along the second column.



Solution. (a) Laplace expansion along the third row:

det(A) =

∣∣∣∣∣∣
2 0 1
3 4 5
7 0 8

∣∣∣∣∣∣
= (−1)3+1 7

∣∣∣∣ 0 1
4 5

∣∣∣∣ + (−1)3+2 0
∣∣∣∣ 2 1

3 5

∣∣∣∣ + (−1)3+3 8
∣∣∣∣ 2 0

3 4

∣∣∣∣
= 7

∣∣∣∣ 0 1
4 5

∣∣∣∣︸ ︷︷ ︸
=−4

+8
∣∣∣∣ 2 0

3 4

∣∣∣∣︸ ︷︷ ︸
=8

= 36.



Solution (continued). (b) Laplace expansion along the second
column:

det(A) =

∣∣∣∣∣∣
2 0 1
3 4 5
7 0 8

∣∣∣∣∣∣
= (−1)1+2 0

∣∣∣∣ 3 5
7 8

∣∣∣∣ + (−1)2+2 4
∣∣∣∣ 2 1

7 8

∣∣∣∣ + (−1)3+2 0
∣∣∣∣ 2 1

3 5

∣∣∣∣
= 4

∣∣∣∣ 2 1
7 8

∣∣∣∣︸ ︷︷ ︸
=9

= 36.

□



Example 7.6.3
Consider the matrix

A =

 2 0 1
3 4 5
7 0 8

 ,

with entries understood to be in R. Compute det(A) in two ways:
(a) via Laplace expansion along the third row;
(b) via Laplace expansion along the second column.

As a general rule, it is best to expand along a row or column
that has a lot of zeros (if such a row or column exists), since
that reduces the amount of calculation that we need to
perform.

So, in Example 7.6.3, it was easier to expand along the second
column.

See the Lecture Notes for another example (with a larger
matrix).
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Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

Let’s prove this!
We begin with a technical proposition.



Proposition 7.6.1
Let F be a field, and let A ∈ F(n−1)×(n−1) (where n ≥ 2) and
a ∈ Fn−1. Then

det
( [

A 0
aT 1

]
n×n

)
= det(A).

Proof.

First, set
[

A 0
aT 1

]
n×n

=
[

ai ,j
]

n×n
, so that all the

following hold:
A =

[
ai ,j

]
(n−1)×(n−1)

;

an,n = 1;
for all i ∈ {1, . . . , n − 1}, ai ,n = 0 ;
for all j ∈ {1, . . . , n − 1}, an,j is the j-th entry of the vector a.
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Proposition 7.6.1
Let F be a field, and let A ∈ F(n−1)×(n−1) (where n ≥ 2) and
a ∈ Fn−1. Then

det
( [

A 0
aT 1

]
n×n

)
= det(A).

Proof (continued). Next, for all σ ∈ Sn−1, let σ∗ ∈ Sn be given by
σ∗(i) = σ(i) for all i ∈ {1, . . . , n − 1},
σ∗(n) = n.

So, for any σ ∈ Sn−1, the disjoint cycle decomposition of σ∗ is
obtained by adding the one-element cycle (n) to the disjoint cycle
decomposition of σ, and consequently, sgn(σ) = sgn(σ∗).
Set

S∗
n := {σ∗ | σ ∈ Sn−1} = {π ∈ Sn | π(n) = n}.

We then have the following (next slide):
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Proof (continued).

det(A) =
∑

σ∈Sn−1

sgn(σ)a1,σ(1) . . . an−1,σ(n−1)

=
∑

σ∈Sn−1

sgn(σ∗)a1,σ∗(1) . . . an−1,σ∗(n−1) an,σ∗(n)︸ ︷︷ ︸
=1

=
∑

π∈S∗
n

sgn(π)a1,π(1) . . . an−1,π(n−1)an,π(n)

(∗)=
∑

π∈Sn

sgn(π)a1,π(1) . . . an−1,π(n−1)an,π(n)

= det
( [

A 0
aT 1

]
n×n

)
,

where (*) follows from the fact that for all π ∈ Sn \ S∗
n , we have

that an,π(n) = 0. □



Proposition 7.6.1
Let F be a field, and let A ∈ F(n−1)×(n−1) (where n ≥ 2) and
a ∈ Fn−1. Then

det
( [

A 0
aT 1

]
n×n

)
= det(A).

Reminder:

Theorem 7.1.3
Let F be a field. For all A ∈ Fn×n, we have that det(AT ) = det(A).
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Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

Proof.

In view of Theorem 7.1.3, it is enough to prove (b).

Fix j ∈ {1, . . . , n}. We must show that

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).
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Proof (cont.). Reminder: WTS det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).

First, set A =
[

a1 . . . an
]
. Then aj =

n∑
i=1

ai ,jei , and so

det(A) = det
( [

a1 . . . aj−1 aj aj+1 . . . an
] )

= det
( [

a1 . . . aj−1
n∑

i=1
ai,jei aj+1 . . . an

] )
(∗)=

n∑
i=1

ai,jdet
( [

a1 . . . aj−1 ei aj+1 . . . an
] )

,

where (*) follows from Proposition 7.2.1(a).
Fix an arbitrary index i ∈ {1, . . . , n}. To complete the proof, it
now suffices to show that

det
( [

a1 . . . aj−1 ei aj+1 . . . an
] )

= (−1)i+j det(Ai,j).
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where aT is the row vector of length n − 1 obtained from the i-th
row of A by deleting its j-th entry.
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Proof (continued). Since swapping two rows or two columns has
the effect of changing the sign of the determinant, we see that

det(Bi) = (−1)n−jdet(Ci)

= (−1)n−j(−1)n−idet
( [

Ai ,j 0
aT 1

] )
(∗)= (−1)2n−i−jdet(Ai ,j)

= (−1)i+jdet(Ai ,j),

where (*) follows from Proposition 7.6.1. This completes the
argument. □



Laplace expansion
Let F be a field, and let A =

[
ai,j

]
n×n (where n ≥ 2) be a matrix

in Fn×n. Then both the following hold:
(a) [expansion along the i-th row] for all i ∈ {1, . . . , n}:

det(A) =
n∑

j=1
(−1)i+j ai ,j det(Ai ,j);

(b) [expansion along the j-th column] for all j ∈ {1, . . . , n}:

det(A) =
n∑

i=1
(−1)i+j ai ,j det(Ai ,j).



Theorem 7.6.6
Let F be a field, and let A ∈ Fn×n and B ∈ Fm×m be square
matrices. Then

det
( [

A On×m
Om×n B

] )
= det(A) det(B).

Proof (outline).

This can be proven (for example) by induction on
n, via Laplace expansion along the leftmost column. The details
are left as an exercise. □
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Theorem 7.6.6
Let F be a field, and let A ∈ Fn×n and B ∈ Fm×m be square
matrices. Then

det
( [

A On×m
Om×n B

] )
= det(A) det(B).

Corollary 7.6.7
Let F be a field, and let A1 ∈ Fn1×n1 , A2 ∈ Fn2×n2 , . . . , Ak ∈ Fnk×nk

be square matrices. Then

det
(


A1 On1×n2 . . . On1×nk

On2×n1 A2 . . . On2×nk
...

... . . . ...
Onk×n1 Onk×n2 . . . Ak


)

=
k∏

i=1
det(Ai).

Proof. This follows from Theorem 7.6.6 via an easy induction on
k. □



Intermission: Fraction notation in fields.

Let F be a field.
For a ∈ F \ {0}, we sometimes use the notation 1

a instead of
a−1 (the multiplicative inverse of a in the field F).

For instance, in Z3, we have 1
1 = 1−1 = 1 and 1

2 = 2−1 = 2
(because in Z3, we have that 2 · 2 = 1).

In a similar vein, for scalars a, b ∈ F such that b ̸= 0, we
sometimes write a

b instead of b−1a.
For example, in Z5, we have that 3−1 = 2 (because 3 · 2 = 1),
and so 4

3 = 3−1 · 4 = 2 · 4 = 3.
It is sometimes more convenient to use the notation 1

a instead
of a−1, and a

b instead of b−1a.
However, when working over a finite field such as Zp (for a
prime number p), we never leave a fraction as a final answer,
and instead, we always simplify.
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3 Cramer’s rule

Before stating Cramer’s rule, we set up some notation.
For a matrix A ∈ Fn×n, a vector b ∈ Fn, and an index
j ∈ {1, . . . , n}, we denote by Aj(b) the matrix obtained from
A by replacing the j-th column of A with b.

For example, for

A =

 1 1 1
0 2 2
0 0 3

 and b =

 4
5
6

 ,

we have that

A1(b) =

[
4 1 1
5 2 2
6 0 3

]
, A2(b) =

[
1 4 1
0 5 2
0 6 3

]
, A3(b) =

[
1 1 4
0 2 5
0 0 6

]
.

In what follows, it will be convenient to use the fraction
notation in fields.
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Cramer’s rule
Let F be a field, and let A be an invertible matrix in Fn×n, and let
b ∈ Fn. Then the matrix-vector equation Ax = b has a unique
solution, namely

x =
[

det
(

A1(b)
)

det(A)
det

(
A2(b)

)
det(A) . . .

det
(

An(b)
)

det(A)

]T
.

First an example, then a proof.



Example 7.7.1
Let

A =

 2 1 0
0 2 2
1 1 1

 and b =

 1
1
0

 ,

with entries understood to be in Z3. Solve the matrix-vector
equation Ax = b.

Solution.

Note that det(A) = 2, and in particular, A is invertible
(by Theorem 7.4.1). So, Cramer’s rule applies. We compute:

det
(
A1(b)

)
=

∣∣∣∣∣∣
1 1 0
1 2 2
0 1 1

∣∣∣∣∣∣ = 2;

det
(
A2(b)

)
=

∣∣∣∣∣∣
2 1 0
0 1 2
1 0 1

∣∣∣∣∣∣ = 1;

det
(
A3(b)

)
=

∣∣∣∣∣∣
2 1 1
0 2 1
1 1 0

∣∣∣∣∣∣ = 0.
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Example 7.7.1
Let

A =

 2 1 0
0 2 2
1 1 1

 and b =

 1
1
0

 ,

with entries understood to be in Z3. Solve the matrix-vector
equation Ax = b.

Solution (continued). By Cramer’s rule, Ax = b has a unique
solution, namely

x =
[

det
(

A1(b)
)

det(A)
det

(
A2(b)

)
det(A)

det
(

A3(b)
)

det(A)

]T

=
[

2
2

1
2

0
2

]T

=
[

1 2 0
]T

.
□
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Proof.

Since A is invertible, we know that the matrix-vector
equation Ax = b has a unique solution, namely, x = A−1b. Now,
for this solution x, we set x =

[
x1 . . . xn

]T . WTS

x =
[

det
(

A1(b)
)

det(A)
det

(
A2(b)

)
det(A) . . .

det
(

An(b)
)

det(A)

]T
.

Fix an index j ∈ {1, . . . , n}. WTS

xj = det
(

Aj (b)
)

det(A) .
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Proof (continued). Set A =
[

a1 . . . an
]
. Then:

det(Aj(b)) = det
( [

a1 . . . aj−1 b aj+1 . . . an
] )

= det
( [

a1 . . . aj−1 Ax aj+1 . . . an
] )

= det
( [

a1 . . . aj−1
n∑

i=1
xiai aj+1 . . . an

] )
(∗)=

n∑
i=1

xidet
( [

a1 . . . aj−1 ai aj+1 . . . an
] )

(∗∗)= xjdet
( [

a1 . . . aj−1 aj aj+1 . . . an
] )

= xjdet(A),

where (*) follows from Proposition 7.2.1(a), and (**) follows from
the fact that any matrix with two identical columns has
determinant zero (by Proposition 7.1.5).



Cramer’s rule
Let F be a field, and let A be an invertible matrix in Fn×n, and let
b ∈ Fn. Then the matrix-vector equation Ax = b has a unique
solution, namely
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)
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)
det(A) . . .

det
(
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)
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]T
.

Proof (continued). We have now shown that

det
(
Aj(b)

)
= xjdet(A).

Since A is invertible, Theorem 7.4.1 guarantees that det(A) ̸= 0.
So, we can divide both sides of the equality above by det(A) to
obtain

xj = det
(

Aj (b)
)

det(A) .

This completes the argument. □
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4 The adjugate matrix

Definition
Given a field F and a matrix A ∈ Fn×n (n ≥ 2), with cofactors
Ci ,j = (−1)i+jdet(Ai ,j) (for i , j ∈ {1, . . . , n}), the cofactor matrix
of A is the matrix

[
Ci,j

]
n×n. The adjugate matrix (also called the

classical adjoint) of A, denoted by adj(A), is the transponse of the
cofactor matrix of A, i.e.

adj(A) :=
( [

Ci,j
]

n×n

)T
.

So, the i , j-th entry of adj(A) is the cofactor Cj,i (note the
swapping of the indices).



Example 7.8.1
Consider the matrix

A =

 1 1 1
0 2 2
0 0 3

 ,

with entries understood to be in R. Compute the cofactor and
adjugate matrices of the matrix A.

Solution.

For all i , j ∈ {1, 2, 3}, we let Ci ,j = (−1)i+jdet(Ai ,j). We
compute (next slide):
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Solution (continued). Reminder: A =

 1 1 1
0 2 2
0 0 3

.

C1,1 = (−1)1+1
∣∣∣ 2 2

0 3

∣∣∣ = 6;

C1,2 = (−1)1+2
∣∣∣ 0 2

0 3

∣∣∣ = 0;

C1,3 = (−1)1+3
∣∣∣ 0 2

0 0

∣∣∣ = 0;

C2,1 = (−1)2+1
∣∣∣ 1 1

0 3

∣∣∣ = −3;

C2,2 = (−1)2+2
∣∣∣ 1 1

0 3

∣∣∣ = 3;

C2,3 = (−1)2+3
∣∣∣ 1 1

0 0

∣∣∣ = 0;
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2 2

∣∣∣ = 0;

C3,2 = (−1)3+2
∣∣∣ 1 1

0 2

∣∣∣ = −2;

C3,3 = (−1)3+3
∣∣∣ 1 1

0 2

∣∣∣ = 2.



Example 7.8.1
Consider the matrix

A =

 1 1 1
0 2 2
0 0 3

 ,

with entries understood to be in R. Compute the cofactor and
adjugate matrices of the matrix A.

Solution (continued). So, the cofactor matrix of A is C1,1 C1,2 C1,3
C2,1 C2,2 C2,3
C3,1 C3,2 C3,3

 =

 6 0 0
−3 3 0

0 −2 2

 .

The adjugate matrix of A is the transpose of the cofactor matrix,
i.e.

adj(A) =

 6 −3 0
0 3 −2
0 0 2

 .

□
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Theorem 7.8.2
Let F be a field, and let A ∈ Fn×n (n ≥ 2). Then

adj(A) A = A adj(A) = det(A)In.

Consequently, if A is invertible, then A−1 = 1
det(A)adj(A).

Proof.

Let us first show that the first statement implies the
second. Indeed, if A is invertible, then det(A) ̸= 0, and so if the
first statement holds, then we get that(

1
det(A)adj(A)

)
A = A

(
1

det(A)adj(A)
)

= In,

and consequently, A−1 = 1
det(A)adj(A).

It remains to prove the first statement, i.e. that
adj(A) A = A adj(A) = det(A)In. We will prove that
adj(A) A = det(A)In; the proof of A adj(A) = det(A)In is in the
Lecture Notes.
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Proof (continued). Reminder: WTS adj(A) A = det(A)In.

We will prove this by showing that the matrices adj(A) A and
det(A)In have the same corresponding entries. Fix indices
i , j ∈ {1, . . . , n}. The i , j-th entry of the matrix det(A)In is det(A)
if i = j , and is zero if i ̸= j . We must show this holds for the i , j-th
entry of the matrices adj(A) A as well.

The i-th row of adj(A) is
[

C1,i . . . Cn,i
]
, and the j-th column

of A is
[

a1,j . . . an,j
]T . So, the i , j-th entry of adj(A) A is∑n

k=1 ak,jCk,i . We need to show that this number is equal to
det(A) if i = j and is zero if i ̸= j .

Now, let B1 be the matrix obtained by replacing the i-th column of
A by the j-th column of A. Then det(B1) =

∑n
k=1 ak,jCk,i (via

Laplace expansion along the i-th column of B1). But if i = j , then
det(B1) = det(A) (because B1 = A), and if i ̸= j , then
det(B1) = 0 (because B1 has two identical columns, namely, the
i-th and j-th column). □
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Theorem 7.8.2
Let F be a field, and let A ∈ Fn×n (n ≥ 2). Then

adj(A) A = A adj(A) = det(A)In.

Consequently, if A is invertible, then A−1 = 1
det(A)adj(A).



Example 7.8.3
Show that the matrix

A =

 1 1 1
0 2 2
0 0 3

 ,

(with entries understood to be in R) is invertible, and using
Theorem 7.8.2, find its inverse A−1.

Solution.

The matrix A is upper triangular, and so its determinant
can be computed by multiplying the entries along the main
diagonal. So, det(A) = 1 · 2 · 3 = 6. Since det(A) ̸= 0,
Theorem 7.4.1 guarantees that A is invertible.
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Solution (continued). Reminder: det(A) = 6, A is invertible.

In Example 7.8.1, we compute the adjugate matrix of A:

adj(A) =

 6 −3 0
0 3 −2
0 0 2

 .

So, by Theorem 7.8.5, we have that

A−1 = 1
det(A) adj(A) = 1

6

 6 −3 0
0 3 −2
0 0 2



=

 1 −1/2 0
0 1/2 −1/3
0 0 1/3

 .

□
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Let F be a field, and let A ∈ Fn×n (n ≥ 2). Then

adj(A) A = A adj(A) = det(A)In.

Consequently, if A is invertible, then A−1 = 1
det(A)adj(A).

Corollary 7.8.4
Let F be a field, and let a, b, c, d ∈ F. Then the matrix

A =
[

a b
c d

]
is invertible if and only if ad ̸= bc, and in this case, the inverse of

A is given by the formula

A−1 = 1
ad−bc

[
d −b

−c a

]
.
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Proof (outline).
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[
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]
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We know that A is invertible iff det(A) ̸= 0, which happens
precisely when ad ̸= bc. In this case, Theorem 7.8.2 guarantees
that
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which is what we needed to show. □



Corollary 7.8.4
Let F be a field, and let a, b, c, d ∈ F. Then the matrix

A =
[

a b
c d

]
is invertible if and only if ad ̸= bc, and in this case, the inverse of

A is given by the formula

A−1 = 1
ad−bc

[
d −b

−c a

]
.

Proof (outline). It is easy to see that

det(A) = ad − bc and adj(A) =
[

d −b
−c a

]
.

We know that A is invertible iff det(A) ̸= 0, which happens
precisely when ad ̸= bc. In this case, Theorem 7.8.2 guarantees
that

A−1 = 1
det(A) adj(A) = 1

ad−bc

[
d −b

−c a

]
,

which is what we needed to show. □



Corollary 7.8.4
Let F be a field, and let a, b, c, d ∈ F. Then the matrix

A =
[

a b
c d

]
is invertible if and only if ad ̸= bc, and in this case, the inverse of

A is given by the formula

A−1 = 1
ad−bc

[
d −b

−c a

]
.

Proof (outline). It is easy to see that

det(A) = ad − bc and adj(A) =
[

d −b
−c a

]
.

We know that A is invertible iff det(A) ̸= 0, which happens
precisely when ad ̸= bc.

In this case, Theorem 7.8.2 guarantees
that

A−1 = 1
det(A) adj(A) = 1

ad−bc

[
d −b

−c a

]
,

which is what we needed to show. □



Corollary 7.8.4
Let F be a field, and let a, b, c, d ∈ F. Then the matrix

A =
[

a b
c d

]
is invertible if and only if ad ̸= bc, and in this case, the inverse of

A is given by the formula

A−1 = 1
ad−bc

[
d −b

−c a

]
.

Proof (outline). It is easy to see that

det(A) = ad − bc and adj(A) =
[

d −b
−c a

]
.

We know that A is invertible iff det(A) ̸= 0, which happens
precisely when ad ̸= bc. In this case, Theorem 7.8.2 guarantees
that

A−1 = 1
det(A) adj(A) = 1

ad−bc

[
d −b

−c a

]
,

which is what we needed to show. □


