Linear Algebra 2

Lecture \#17

Permutation matrices. Orthogonal matrices

Irena Penev

March 20, 2024

- This lecture has three parts:
- This lecture has three parts:
(1) Permutation matrices
- This lecture has three parts:
(1) Permutation matrices
(2) Orthogonal matrices
- This lecture has three parts:
(1) Permutation matrices
(2) Orthogonal matrices
(3) Scalar product, coordinate vectors, and matrices of linear functions
(1) Permutation matrices
(1) Permutation matrices

Definition

A permutation matrix is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- Examples:

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]} & {\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]}
\end{array}
$$

Definition

A permutation matrix is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- The 0's and 1's in permutation matrices may belong to any field \mathbb{F} of our choice.

Definition

A permutation matrix is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- The 0's and 1's in permutation matrices may belong to any field \mathbb{F} of our choice.
- In our study of permutation matrices, we will never need to add two non-zero numbers, and whenever we multiply two numbers, at least one of the two numbers will be 0 or 1 .

Definition

A permutation matrix is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- The 0's and 1's in permutation matrices may belong to any field \mathbb{F} of our choice.
- In our study of permutation matrices, we will never need to add two non-zero numbers, and whenever we multiply two numbers, at least one of the two numbers will be 0 or 1 .
- So, it does not matter which particular field we are working in, and therefore, we will not emphasize this.

Definition

A permutation matrix is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- Obviously, identity matrices are permutation matrices.

Definition

A permutation matrix is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- Obviously, identity matrices are permutation matrices.
- Moreover, $n \times n$ permutation matrices are precisely the matrices that can be obtained from the identity matrix I_{n} by reordering (i.e. permuting) rows, or alternatively, by reordering (i.e. permuting) columns.

Definition

A permutation matrix is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- Obviously, identity matrices are permutation matrices.
- Moreover, $n \times n$ permutation matrices are precisely the matrices that can be obtained from the identity matrix I_{n} by reordering (i.e. permuting) rows, or alternatively, by reordering (i.e. permuting) columns.
- So, the columns of an $n \times n$ permutation matrix are the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ (appearing in some order in that matrix), whereas the rows are $\mathbf{e}_{1}^{T}, \ldots, \mathbf{e}_{n}^{T}$ (again, appearing in some order in that matrix).

Definition

For a positive integer n and a permutation $\pi \in S_{n}$, we define the matrix of the permutation π, denoted by P_{π}, to be the $n \times n$ matrix that has 1 in the $(i, \pi(i))$-th entry for each each index $i \in\{1, \ldots, n\}$, and has 0 in all other entries. In other words, for each index $i \in\{1, \ldots, n\}$, the i-th row of the matrix P_{π} is $\mathbf{e}_{\pi(i)}^{T}$.

- For example, for the permutation

$$
\pi=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 1 & 6 & 5 & 3
\end{array}\right),
$$

in S_{6}, we obtain the 6×6 permutation matrix

$$
P_{\pi}=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition

For a positive integer n and a permutation $\pi \in S_{n}$, we define the matrix of the permutation π, denoted by P_{π}, to be the $n \times n$ matrix that has 1 in the $(i, \pi(i))$-th entry for each each index $i \in\{1, \ldots, n\}$, and has 0 in all other entries. In other words, for each index $i \in\{1, \ldots, n\}$, the i-th row of the matrix P_{π} is $\mathbf{e}_{\pi(i)}^{T}$.

- Obviously, for a positive integer n, the matrix of the identity permutation 1_{n} in S_{n} is precisely the identity matrix I_{n}, i.e. $P_{1_{n}}=I_{n}$.

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof.

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0 's and 1's.

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0 's and 1's. Moreover, by the definition of P_{π}, we have that for each index $i \in\{1, \ldots, n\}$, the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$.

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0 's and 1's. Moreover, by the definition of P_{π}, we have that for each index $i \in\{1, \ldots, n\}$, the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row.

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0 's and 1's. Moreover, by the definition of P_{π}, we have that for each index $i \in\{1, \ldots, n\}$, the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly n entries that are 1 , whereas all the other entries are 0 's.

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0 's and 1's. Moreover, by the definition of P_{π}, we have that for each index $i \in\{1, \ldots, n\}$, the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly n entries that are 1 , whereas all the other entries are 0 's.

It remains to show that the matrix P_{π} has exactly one 1 in each column.

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0 's and 1's. Moreover, by the definition of P_{π}, we have that for each index $i \in\{1, \ldots, n\}$, the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly n entries that are 1 , whereas all the other entries are 0 's.

It remains to show that the matrix P_{π} has exactly one 1 in each column. Since P_{π} has exactly n many 1 's, it is enough to show that no column has more than one 1 .

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0 's and 1's. Moreover, by the definition of P_{π}, we have that for each index $i \in\{1, \ldots, n\}$, the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly n entries that are 1 , whereas all the other entries are 0 's.

It remains to show that the matrix P_{π} has exactly one 1 in each column. Since P_{π} has exactly n many 1 's, it is enough to show that no column has more than one 1 . Since the rows of P_{π} (from top to bottom) are $\mathbf{e}_{\pi(1)}^{T}, \ldots, \mathbf{e}_{\pi(n)}^{T}$, and since all those row vectors are pairwise distinct (because π is a permutation), we see that no two rows of P_{π} have a 1 in the same position.

Proposition 2.3.10

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is a permutation matrix.

Proof. Obviously, P_{π} is an $n \times n$ matrix, all of whose entries are 0 's and 1's. Moreover, by the definition of P_{π}, we have that for each index $i \in\{1, \ldots, n\}$, the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}$. So, P_{π} has exactly one 1 in each row. Note that this means that the matrix P_{π} has exactly n entries that are 1 , whereas all the other entries are 0 's.

It remains to show that the matrix P_{π} has exactly one 1 in each column. Since P_{π} has exactly n many 1 's, it is enough to show that no column has more than one 1 . Since the rows of P_{π} (from top to bottom) are $\mathbf{e}_{\pi(1)}^{T}, \ldots, \mathbf{e}_{\pi(n)}^{T}$, and since all those row vectors are pairwise distinct (because π is a permutation), we see that no two rows of P_{π} have a 1 in the same position. So, no column of P_{π} has more than one 1 , and we are done. \square

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
- The answer to this question is "yes," and it follows from a simple counting argument, as follows.
- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
- The answer to this question is "yes," and it follows from a simple counting argument, as follows.
- Let n be a positive integer.
- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
- The answer to this question is "yes," and it follows from a simple counting argument, as follows.
- Let n be a positive integer.
- The $n \times n$ permutation matrices are precisely those $n \times n$ matrices whose columns are the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, appearing in some order. There are $n!$ many ways to order the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, and consequently, there are n ! many $n \times n$ permutation matrices.
- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
- The answer to this question is "yes," and it follows from a simple counting argument, as follows.
- Let n be a positive integer.
- The $n \times n$ permutation matrices are precisely those $n \times n$ matrices whose columns are the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, appearing in some order. There are $n!$ many ways to order the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, and consequently, there are n ! many $n \times n$ permutation matrices.
- On the other hand, $\left|S_{n}\right|=n$!, and consequently, there are n ! many matrices of permutations in S_{n}.
- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
- The answer to this question is "yes," and it follows from a simple counting argument, as follows.
- Let n be a positive integer.
- The $n \times n$ permutation matrices are precisely those $n \times n$ matrices whose columns are the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, appearing in some order. There are $n!$ many ways to order the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, and consequently, there are n ! many $n \times n$ permutation matrices.
- On the other hand, $\left|S_{n}\right|=n!$, and consequently, there are n ! many matrices of permutations in S_{n}.
- We are using the fact that different permutations have different matrices.
- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
- The answer to this question is "yes," and it follows from a simple counting argument, as follows.
- Let n be a positive integer.
- The $n \times n$ permutation matrices are precisely those $n \times n$ matrices whose columns are the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, appearing in some order. There are $n!$ many ways to order the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, and consequently, there are n ! many $n \times n$ permutation matrices.
- On the other hand, $\left|S_{n}\right|=n!$, and consequently, there are n ! many matrices of permutations in S_{n}.
- We are using the fact that different permutations have different matrices.
- So, the number of $n \times n$ permutation matrices is the same as the number of matrices of permutations in S_{n}.
- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
- The answer to this question is "yes," and it follows from a simple counting argument, as follows.
- Let n be a positive integer.
- The $n \times n$ permutation matrices are precisely those $n \times n$ matrices whose columns are the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, appearing in some order. There are $n!$ many ways to order the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, and consequently, there are n ! many $n \times n$ permutation matrices.
- On the other hand, $\left|S_{n}\right|=n!$, and consequently, there are n ! many matrices of permutations in S_{n}.
- We are using the fact that different permutations have different matrices.
- So, the number of $n \times n$ permutation matrices is the same as the number of matrices of permutations in S_{n}.
- It now follows from Proposition 2.3.10 that $n \times n$ permutation matrices are precisely the matrices of permutations in S_{n}.

Proposition 2.3.11

Let n be a positive integer, and let $\pi \in S_{n}$ be a permutation. Then both the following hold:
(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.
Consequently, in terms of its rows and columns, P_{π} can be written as follows:

$$
P_{\pi}=\left[\begin{array}{c}
\mathbf{e}_{\pi(1)}^{T} \\
\vdots \\
\mathbf{e}_{\pi(n)}^{T}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{e}_{\pi^{-1}(1)} & \ldots & \mathbf{e}_{\pi^{-1}(n)}
\end{array}\right] .
$$

Proof. The last statement of the proposition follows immediately from (a) and (b). So, it is enough to prove (a) and (b).

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.

Proof (continued). (a) Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, $\mathbf{e}_{i}^{T} P_{\pi}$ is precisely the i-th row of the matrix P_{π}, and by the definition of the matrix P_{π}, its i-th row is precisely $\mathbf{e}_{\pi(i)}$.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.

Proof (continued). (a) Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, $\mathbf{e}_{i}^{T} P_{\pi}$ is precisely the i-th row of the matrix P_{π}, and by the definition of the matrix P_{π}, its i-th row is precisely $\mathbf{e}_{\pi(i)}$.
(b) Fix an index $j \in\{1, \ldots, n\}$.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.

Proof (continued). (a) Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, $\mathbf{e}_{i}^{T} P_{\pi}$ is precisely the i-th row of the matrix P_{π}, and by the definition of the matrix P_{π}, its i-th row is precisely $\mathbf{e}_{\pi(i)}$.
(b) Fix an index $j \in\{1, \ldots, n\}$. By Proposition 1.4.4, $P_{\pi} \mathbf{e}_{j}$ is precisely the j-th column of the matrix P_{π}.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.

Proof (continued). (a) Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, $\mathbf{e}_{i}^{T} P_{\pi}$ is precisely the i-th row of the matrix P_{π}, and by the definition of the matrix P_{π}, its i-th row is precisely $\mathbf{e}_{\pi(i)}$.
(b) Fix an index $j \in\{1, \ldots, n\}$. By Proposition 1.4.4, $P_{\pi} \mathbf{e}_{j}$ is precisely the j-th column of the matrix P_{π}. Set $i:=\pi^{-1}(j)$, so that $j=\pi(i)$.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.

Proof (continued). (a) Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, $\mathbf{e}_{i}^{T} P_{\pi}$ is precisely the i-th row of the matrix P_{π}, and by the definition of the matrix P_{π}, its i-th row is precisely $\mathbf{e}_{\pi(i)}$.
(b) Fix an index $j \in\{1, \ldots, n\}$. By Proposition 1.4.4, $P_{\pi} \mathbf{e}_{j}$ is precisely the j-th column of the matrix P_{π}. Set $i:=\pi^{-1}(j)$, so that $j=\pi(i)$. By (a), the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}=\mathbf{e}_{j}^{T}$.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.

Proof (continued). (a) Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, $\mathbf{e}_{i}^{T} P_{\pi}$ is precisely the i-th row of the matrix P_{π}, and by the definition of the matrix P_{π}, its i-th row is precisely $\mathbf{e}_{\pi(i)}$.
(b) Fix an index $j \in\{1, \ldots, n\}$. By Proposition 1.4.4, $P_{\pi} \mathbf{e}_{j}$ is precisely the j-th column of the matrix P_{π}. Set $i:=\pi^{-1}(j)$, so that $j=\pi(i)$. By (a), the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}=\mathbf{e}_{j}^{T}$. So, P_{π} has 1 in its (i, j)-th entry.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.

Proof (continued). (a) Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, $\mathbf{e}_{i}^{T} P_{\pi}$ is precisely the i-th row of the matrix P_{π}, and by the definition of the matrix P_{π}, its i-th row is precisely $\mathbf{e}_{\pi(i)}$.
(b) Fix an index $j \in\{1, \ldots, n\}$. By Proposition 1.4.4, $P_{\pi} \mathbf{e}_{j}$ is precisely the j-th column of the matrix P_{π}. Set $i:=\pi^{-1}(j)$, so that $j=\pi(i)$. By (a), the i-th row of P_{π} is the row vector $\mathbf{e}_{\pi(i)}^{T}=\mathbf{e}_{j}^{T}$. So, P_{π} has 1 in its (i, j)-th entry. Since P_{π} is a permutation matrix (by Proposition 2.3.10), and therefore has exactly one 1 in each column, it follows that the j-th column of P_{π} is $\mathbf{e}_{i}=\mathbf{e}_{\pi^{-1}(j)}$. \square

Proposition 2.3.11

Let n be a positive integer, and let $\pi \in S_{n}$ be a permutation. Then both the following hold:
(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;
(D) $\forall j \in\{1, \ldots, n\}: P_{\pi} \mathbf{e}_{j}=\mathbf{e}_{\pi^{-1}(j)}$, i.e. the j-th column of P_{π} is $\mathbf{e}_{\pi^{-1}(j)}$.
Consequently, in terms of its rows and columns, P_{π} can be written as follows:

$$
P_{\pi}=\left[\begin{array}{c}
\mathbf{e}_{\pi(1)}^{T} \\
\vdots \\
\mathbf{e}_{\pi(n)}^{T}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{e}_{\pi^{-1}(1)} & \ldots & \mathbf{e}_{\pi^{-1}(n)}
\end{array}\right] .
$$

Proof. The last statement of the proposition follows immediately from (a) and (b). So, it is enough to prove (a) and (b).

Proposition 2.3.12
Let n be a positive integer, and let $\pi \in S_{n}$. Then

$$
P_{\pi^{-1}}=P_{\pi}^{T} .
$$

Proof.

Proposition 2.3.12

Let n be a positive integer, and let $\pi \in S_{n}$. Then

$$
P_{\pi^{-1}}=P_{\pi}^{T}
$$

Proof. We have that

$$
P_{\pi}^{T} \stackrel{(*)}{=}\left(\left[\begin{array}{lll}
\mathbf{e}_{\pi^{-1}(1)} & \cdots & \mathbf{e}_{\pi^{-1}(n)}
\end{array}\right]\right)^{T}=\left[\begin{array}{c}
\mathbf{e}_{\pi^{-1}(1)}^{T} \\
\vdots \\
\mathbf{e}_{\pi^{-1}(n)}^{T}
\end{array}\right] \stackrel{(*)}{=} P_{\pi^{-1}},
$$

where both instances of $\left({ }^{*}\right)$ follow from Proposition 2.3.11. \square

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;

Proposition 2.3.13

Let n be a positive integer, and let σ and π be permutations in S_{n}. Then $P_{\sigma \circ \pi}=P_{\pi} P_{\sigma}$.

Proof.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;

Proposition 2.3.13

Let n be a positive integer, and let σ and π be permutations in S_{n}. Then $P_{\sigma \circ \pi}=P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi} P_{\sigma}$ have the same corresponding rows.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;

Proposition 2.3.13

Let n be a positive integer, and let σ and π be permutations in S_{n}. Then $P_{\sigma \circ \pi}=P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi} P_{\sigma}$ have the same corresponding rows. Fix an index $i \in\{1, \ldots, n\}$.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;

Proposition 2.3.13

Let n be a positive integer, and let σ and π be permutations in S_{n}. Then $P_{\sigma \circ \pi}=P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi} P_{\sigma}$ have the same corresponding rows. Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, the i-th row of the matrix $P_{\sigma \circ \pi}$ is $\mathbf{e}_{i}^{T} P_{\sigma \circ \pi}$, and the i-th row of the matrix $P_{\pi} P_{\sigma}$ is $\mathbf{e}_{i}^{T}\left(P_{\pi} P_{\sigma}\right)$.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;

Proposition 2.3.13

Let n be a positive integer, and let σ and π be permutations in S_{n}. Then $P_{\sigma \circ \pi}=P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi} P_{\sigma}$ have the same corresponding rows. Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, the i-th row of the matrix $P_{\sigma \circ \pi}$ is $\mathbf{e}_{i}^{T} P_{\sigma \circ \pi}$, and the i-th row of the matrix $P_{\pi} P_{\sigma}$ is $\mathbf{e}_{i}^{T}\left(P_{\pi} P_{\sigma}\right)$. So, we just need to show that $\mathbf{e}_{i}^{T} P_{\sigma \circ \pi}=\mathbf{e}_{i}^{T}\left(P_{\pi} P_{\sigma}\right)$.

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;

Proposition 2.3.13

Let n be a positive integer, and let σ and π be permutations in S_{n}. Then $P_{\sigma \circ \pi}=P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi} P_{\sigma}$ have the same corresponding rows. Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, the i-th row of the matrix $P_{\sigma \circ \pi}$ is $\mathbf{e}_{i}^{T} P_{\sigma \circ \pi}$, and the i-th row of the matrix $P_{\pi} P_{\sigma}$ is $\mathbf{e}_{i}^{T}\left(P_{\pi} P_{\sigma}\right)$. So, we just need to show that $\mathbf{e}_{i}^{T} P_{\sigma \circ \pi}=\mathbf{e}_{i}^{T}\left(P_{\pi} P_{\sigma}\right)$. But follows easily via repeated application of Proposition 2.3.11(a).

Proposition 2.3.11

(0) $\forall i \in\{1, \ldots, n\}: \mathbf{e}_{i}^{T} P_{\pi}=\mathbf{e}_{\pi(i)}$, i.e. the i-th row of P_{π} is $\mathbf{e}_{\pi(i)}^{T}$;

Proposition 2.3.13

Let n be a positive integer, and let σ and π be permutations in S_{n}. Then $P_{\sigma \circ \pi}=P_{\pi} P_{\sigma}$.

Proof. It suffices to show that matrices $P_{\sigma \circ \pi}$ and $P_{\pi} P_{\sigma}$ have the same corresponding rows. Fix an index $i \in\{1, \ldots, n\}$. By Proposition 1.8.2, the i-th row of the matrix $P_{\sigma \circ \pi}$ is $\mathbf{e}_{i}^{T} P_{\sigma \circ \pi}$, and the i-th row of the matrix $P_{\pi} P_{\sigma}$ is $\mathbf{e}_{i}^{T}\left(P_{\pi} P_{\sigma}\right)$. So, we just need to show that $\mathbf{e}_{i}^{T} P_{\sigma \circ \pi}=\mathbf{e}_{i}^{T}\left(P_{\pi} P_{\sigma}\right)$. But follows easily via repeated application of Proposition 2.3.11(a). Indeed, we have that

$$
\begin{aligned}
\mathbf{e}_{i}^{T}\left(P_{\pi} P_{\sigma}\right)=\left(\mathbf{e}_{i}^{T} P_{\pi}\right) P_{\sigma} & \stackrel{(*)}{=} \mathbf{e}_{\pi(i)}^{T} P_{\sigma} \stackrel{(*)}{=} \mathbf{e}_{\sigma(\pi(i))} \\
& =\mathbf{e}_{(\sigma \circ \pi)(i)}^{T} \stackrel{(*)}{=} \mathbf{e}_{i}^{T} P_{\sigma \circ \pi},
\end{aligned}
$$

where all three instances of $(*)$ follow from Prop. 2.3.11(a). \square

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T} .
$$

Proof.

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T}
$$

Proof. The fact that $P_{\pi^{-1}}=P_{\pi}^{T}$ follows immediately from Proposition 2.3.12.

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T}
$$

Proof. The fact that $P_{\pi^{-1}}=P_{\pi}^{T}$ follows immediately from Proposition 2.3.12. It remains to show that P_{π} is invertible, and that its inverse is $P_{\pi^{-1}}$.

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T}
$$

Proof. The fact that $P_{\pi^{-1}}=P_{\pi}^{T}$ follows immediately from Proposition 2.3.12. It remains to show that P_{π} is invertible, and that its inverse is $P_{\pi^{-1}}$.

We now compute:

$$
P_{\pi} P_{\pi^{-1}} \stackrel{(*)}{=} P_{\pi^{-1} \circ \pi}=P_{1_{n}}=I_{n}
$$

where (*) follows immediately from Proposition 2.3.13.

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T}
$$

Proof. The fact that $P_{\pi^{-1}}=P_{\pi}^{T}$ follows immediately from Proposition 2.3.12. It remains to show that P_{π} is invertible, and that its inverse is $P_{\pi^{-1}}$.

We now compute:

$$
P_{\pi} P_{\pi^{-1}} \stackrel{(*)}{=} P_{\pi^{-1} \circ \pi}=P_{1_{n}}=I_{n}
$$

where (*) follows immediately from Proposition 2.3.13.
Analogously, $P_{\pi^{-1}} P_{\pi}=I_{n}$.

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T}
$$

Proof. The fact that $P_{\pi^{-1}}=P_{\pi}^{T}$ follows immediately from Proposition 2.3.12. It remains to show that P_{π} is invertible, and that its inverse is $P_{\pi^{-1}}$.

We now compute:

$$
P_{\pi} P_{\pi^{-1}} \stackrel{(*)}{=} P_{\pi^{-1} \circ \pi}=P_{1_{n}}=I_{n}
$$

where (*) follows immediately from Proposition 2.3.13.
Analogously, $P_{\pi^{-1}} P_{\pi}=I_{n}$. So, P_{π} and $P_{\pi^{-1}}$ are invertible and are each other's inverses. This completes the argument. \square

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T}
$$

- Remark: A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^{T} Q=I_{n}$.
- Theorem 2.3.14 guarantees that permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as belonging to \mathbb{R}, rather than to some other field).
- As our next theorem (Theorem 2.3.15, next slide) shows, multiplying a matrix by a permutation matrix on the left permutes the rows of the original matrix.
- As our next theorem (Theorem 2.3.15, next slide) shows, multiplying a matrix by a permutation matrix on the left permutes the rows of the original matrix.
- On the other hand, multiplying a matrix by a permutation matrix on the right permutes the columns of the original matrix.

Theorem 2.3.15

Let $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$ be an $n \times m$ matrix with entries in some field \mathbb{F}. Then all the following hold:
(0) for all $\pi \in S_{n}$, we have that

$$
P_{\pi} A=\left[\begin{array}{c}
\mathbf{r}_{\pi(1)} \\
\vdots \\
\mathbf{r}_{\pi(n)}
\end{array}\right] ;
$$

(D) for all $\pi \in S_{m}$, we have that

$$
A P_{\pi}=\left[\begin{array}{lll}
\mathbf{a}_{\pi^{-1}(1)} & \cdots & \mathbf{a}_{\pi^{-1}(m)}
\end{array}\right] ;
$$

(c) for all $\pi \in S_{m}$, we have that

$$
A P_{\pi}^{T}=\left[\begin{array}{lll}
\mathbf{a}_{\pi(1)} & \ldots & \mathbf{a}_{\pi(m)}
\end{array}\right] .
$$

Proof.

Theorem 2.3.15

Let $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$ be an $n \times m$ matrix with entries in some field \mathbb{F}. Then all the following hold:
(0) for all $\pi \in S_{n}$, we have that

$$
P_{\pi} A=\left[\begin{array}{c}
\mathbf{r}_{\pi(1)} \\
\vdots \\
\mathbf{r}_{\pi(n)}
\end{array}\right]
$$

(D) for all $\pi \in S_{m}$, we have that

$$
A P_{\pi}=\left[\begin{array}{lll}
\mathbf{a}_{\pi^{-1}(1)} & \cdots & \mathbf{a}_{\pi^{-1}(m)}
\end{array}\right] ;
$$

(c) for all $\pi \in S_{m}$, we have that

$$
A P_{\pi}^{T}=\left[\begin{array}{lll}
\mathbf{a}_{\pi(1)} & \ldots & \mathbf{a}_{\pi(m)}
\end{array}\right] .
$$

Proof. We prove (b). Parts (a) and (c) are in the Lecture Notes.

Theorem 2.3.15

Let $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$ be an $n \times m$ matrix with entries in some field \mathbb{F}. Then all the following hold:
(D) for all $\pi \in S_{m}$, we have that

$$
A P_{\pi}=\left[\begin{array}{lll}
\mathbf{a}_{\pi^{-1}(1)} & \cdots & \mathbf{a}_{\pi^{-1}(m)}
\end{array}\right] ;
$$

Proof of (b).

Theorem 2.3.15

Let $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$ be an $n \times m$ matrix with entries
in some field \mathbb{F}. Then all the following hold:
(D) for all $\pi \in S_{m}$, we have that

$$
A P_{\pi}=\left[\begin{array}{lll}
\mathbf{a}_{\pi^{-1}(1)} & \ldots & \mathbf{a}_{\pi^{-1}(m)}
\end{array}\right] ;
$$

Proof of (b). Fix any permutation $\pi \in S_{m}$. In what follows, $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ are the standard basis vectors of \mathbb{F}^{m}. We compute:

$$
\begin{array}{rll}
A P_{\pi} & =A\left[\begin{array}{lll}
\mathbf{e}_{\pi^{-1}(1)} & \ldots & \mathbf{e}_{\pi^{-1}(m)}
\end{array}\right] &
\end{array} \begin{array}{lll}
& \text { by Proposition 2.3.11 } \\
& =\left[\begin{array}{lll}
A \mathbf{e}_{\pi^{-1}(1)} & \ldots & A \mathbf{e}_{\pi^{-1}(m)}
\end{array}\right] &
\end{array} \begin{array}{lll}
& \begin{array}{l}
\text { by the definition of } \\
\text { matrix multiplication }
\end{array} \\
& =\left[\begin{array}{lll}
\mathbf{a}_{\pi^{-1}(1)} & \ldots & \mathbf{a}_{\pi^{-1}(m)}
\end{array}\right] &
\end{array} \text { by Proposition 1.4.4. }
$$

This proves (b).

Theorem 2.3.15

Let $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}\end{array}\right]$ be an $n \times m$ matrix with entries in some field \mathbb{F}. Then all the following hold:
(0) for all $\pi \in S_{n}$, we have that

$$
P_{\pi} A=\left[\begin{array}{c}
\mathbf{r}_{\pi(1)} \\
\vdots \\
\mathbf{r}_{\pi(n)}
\end{array}\right] ;
$$

(D) for all $\pi \in S_{m}$, we have that

$$
A P_{\pi}=\left[\begin{array}{lll}
\mathbf{a}_{\pi^{-1}(1)} & \cdots & \mathbf{a}_{\pi^{-1}(m)}
\end{array}\right] ;
$$

(0) for all $\pi \in S_{m}$, we have that

$$
A P_{\pi}^{T}=\left[\begin{array}{lll}
\mathbf{a}_{\pi(1)} & \ldots & \mathbf{a}_{\pi(m)}
\end{array}\right] .
$$

(2) Orthogonal matrices

(2) Orthogonal matrices

- In our study of orthogonal matrices, we assume that \mathbb{R}^{n} is equipped with the standard scalar product • and the induced norm || $\cdot \|$.
(2) Orthogonal matrices
- In our study of orthogonal matrices, we assume that \mathbb{R}^{n} is equipped with the standard scalar product • and the induced norm || $\cdot \|$.

Definition

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^{T} Q=I_{n}$.

Definition

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^{T} Q=I_{n}$.

Definition

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^{T} Q=I_{n}$.

- Obviously, matrices I_{n} and $-I_{n}$ are orthogonal.

Definition

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^{T} Q=I_{n}$.

- Obviously, matrices I_{n} and $-I_{n}$ are orthogonal.
- By Theorem 2.3.14, permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as being real numbers).

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T}
$$

Definition

A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if it satisfies $Q^{T} Q=I_{n}$.

- Obviously, matrices I_{n} and $-I_{n}$ are orthogonal.
- By Theorem 2.3.14, permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as being real numbers).

Theorem 2.3.14

Let n be a positive integer, and let $\pi \in S_{n}$. Then P_{π} is invertible, and moreover,

$$
P_{\pi}^{-1}=P_{\pi^{-1}}=P_{\pi}^{T}
$$

- The matrices mentioned so far all have entries only $-1,0,1$. However, there are many other orthogonal matrices, and we will see a couple of examples later.
- Reminder:

Corollary 3.3.18

Let \mathbb{F} be field, and let $A, B \in \mathbb{F}^{n \times n}$ be such that $A B=I_{n}$ or $B A=I_{n}$. Then $A B=B A=I_{n}$, i.e. A and B are both invertible and are each other's inverses.

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(D) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(0) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(0) $Q Q^{T}=I_{n}$;
(1) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(8) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof.

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(D) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(0) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(0) $Q Q^{T}=I_{n}$;
(1) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(B) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof. By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent.

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(D) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(0) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(0) $Q Q^{T}=I_{n}$;
(1) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(a) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(B) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof. By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent. Moreover, since $\left(Q^{T}\right)^{T}=Q$, we have that (c) and (d) are equivalent.

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(D) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(0) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(0) $Q Q^{T}=I_{n}$;
(a) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(3) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof. By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent. Moreover, since $\left(Q^{T}\right)^{T}=Q$, we have that (c) and (d) are equivalent. This proves that (a), (b), (c), and (d) are equivalent.

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(a) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(D) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(c) $Q Q^{T}=I_{n}$;
(0) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(8) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof (continued). Next, (b) and (d) together imply (e).

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(2) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(D) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(c) $Q Q^{T}=I_{n}$;
(0) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(3) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof (continued). Next, (b) and (d) together imply (e).
Suppose now that (e) holds. Then by applying " $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ " to the matrix Q^{-1}, we see that Q^{-1} is invertible and satisfies $\left(Q^{-1}\right)^{-1}=\left(Q^{-1}\right)^{T}$. Consequently, $Q^{-1}=Q^{T}$, and it follows that (b) holds.

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(a) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(b) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(c) $Q Q^{T}=I_{n}$;
(0) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(B) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof (continued). So far, we have established that (a), (b), (c), (d), and (e) are equivalent.

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(a) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(b) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(c) $Q Q^{T}=I_{n}$;
(0) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(B) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof (continued). So far, we have established that (a), (b), (c), (d), and (e) are equivalent.

Let us now show that (a) and (f) are equivalent.

Theorem 6.8.1

(0) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};

Proof (continued).

Theorem 6.8.1

(a) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};

Proof (continued). Set $Q=\left[\begin{array}{lll}\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}\end{array}\right]$. Then

$$
\begin{aligned}
Q^{T} Q & =\left[\begin{array}{c}
\mathbf{q}_{1}^{T} \\
\mathbf{q}_{2}^{T} \\
\vdots \\
\mathbf{q}_{n}^{T}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \ldots & \mathbf{q}_{n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\mathbf{q}_{1} \cdot \mathbf{q}_{1} & \mathbf{q}_{1} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{1} \cdot \mathbf{q}_{n} \\
\mathbf{q}_{2} \cdot \mathbf{q}_{1} & \mathbf{q}_{2} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{2} \cdot \mathbf{q}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{q}_{n} \cdot \mathbf{q}_{1} & \mathbf{q}_{n} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{n} \cdot \mathbf{q}_{n}
\end{array}\right] .
\end{aligned}
$$

Theorem 6.8.1

(2) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};

Proof (continued). Set $Q=\left[\begin{array}{lll}\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}\end{array}\right]$. Then

$$
\begin{aligned}
Q^{T} Q & =\left[\begin{array}{c}
\mathbf{q}_{1}^{T} \\
\mathbf{q}_{2}^{T} \\
\vdots \\
\mathbf{q}_{n}^{T}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \ldots & \mathbf{q}_{n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\mathbf{q}_{1} \cdot \mathbf{q}_{1} & \mathbf{q}_{1} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{1} \cdot \mathbf{q}_{n} \\
\mathbf{q}_{2} \cdot \mathbf{q}_{1} & \mathbf{q}_{2} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{2} \cdot \mathbf{q}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{q}_{n} \cdot \mathbf{q}_{1} & \mathbf{q}_{n} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{n} \cdot \mathbf{q}_{n}
\end{array}\right] .
\end{aligned}
$$

So, $Q^{T} Q=I_{n}$ iff $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\}$ is an orthonormal set.

Theorem 6.8.1

(0) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};

Proof (continued). Set $Q=\left[\begin{array}{lll}\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}\end{array}\right]$. Then

$$
\begin{aligned}
Q^{T} Q & =\left[\begin{array}{c}
\mathbf{q}_{1}^{T} \\
\mathbf{q}_{2}^{T} \\
\vdots \\
\mathbf{q}_{n}^{T}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \ldots & \mathbf{q}_{n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\mathbf{q}_{1} \cdot \mathbf{q}_{1} & \mathbf{q}_{1} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{1} \cdot \mathbf{q}_{n} \\
\mathbf{q}_{2} \cdot \mathbf{q}_{1} & \mathbf{q}_{2} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{2} \cdot \mathbf{q}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{q}_{n} \cdot \mathbf{q}_{1} & \mathbf{q}_{n} \cdot \mathbf{q}_{2} & \ldots & \mathbf{q}_{n} \cdot \mathbf{q}_{n}
\end{array}\right] .
\end{aligned}
$$

So, $Q^{T} Q=I_{n}$ iff $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\}$ is an orthonormal set. But by Proposition 6.3.4(b), any orthonormal set of n vectors in \mathbb{R}^{n} is in fact an orthonormal basis of \mathbb{R}^{n}. So, (a) and (f) are equivalent.

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(D) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(D) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(0) $Q Q^{T}=I_{n}$;
(1) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(8) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

Proof (continued). Analogously to "(a) \Longleftrightarrow (f)," we have that (d) and (g) are equivalent. \square

Theorem 6.8.1

Let $Q \in \mathbb{R}^{n \times n}$. Then the following are equivalent:
(a) Q is orthogonal (i.e. satisfies $Q^{T} Q=I_{n}$);
(D) Q is invertible and satisfies $Q^{-1}=Q^{T}$;
(0) $Q Q^{T}=I_{n}$;
(0) Q^{T} is orthogonal;
(0) Q is invertible and Q^{-1} is orthogonal;
(1) the columns of Q form an orthonormal basis of \mathbb{R}^{n};
(8) the columns of Q^{T} form an orthonormal basis of \mathbb{R}^{n}.

- We can make new orthogonal matrices out of old ones, as Propositions 6.8.2, 6.8.3, and 6.8.4 (below and next slide) show.
- The proofs of these propositions are easy and are in the Lecture Notes (we omit them here).

Proposition 6.8.2

Let

$$
Q=\left[\begin{array}{lll}
\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\vdots \\
\mathbf{r}_{n}^{T}
\end{array}\right]
$$

be an orthogonal matrix in \mathbb{R}^{n}. Then all the following hold:
(0) $\forall \alpha_{1}, \ldots, \alpha_{n} \in\{-1,1\}:\left[\begin{array}{lll}\alpha_{1} \mathbf{q}_{1} & \ldots & \alpha_{n} \mathbf{q}_{n}\end{array}\right]$ is orthogonal;
(อ) $\forall \alpha_{1}, \ldots, \alpha_{n} \in\{-1,1\}$:

$$
\left[\begin{array}{c}
\alpha_{1} \mathbf{r}_{1}^{T} \\
\vdots \\
\alpha_{n} \mathbf{r}_{n}^{T}
\end{array}\right] \text { is orthogonal; }
$$

(0) the matrix $-Q$ is orthogonal.

Proposition 6.8.3

If $Q_{1}, Q_{2} \in \mathbb{R}^{n \times n}$ are orthogonal, then so is their product $Q_{1} Q_{2}$.

Proposition 6.8.4

Let $Q_{1} \in \mathbb{R}^{m \times m}$ and $Q_{2} \in \mathbb{R}^{n \times n}$ be orthogonal matrices. Then the $(m+n) \times(m+n)$ matrix

$$
Q=\left[\begin{array}{c:c}
Q_{1} & O_{m \times n} \\
\hdashline O_{n \times m} & Q_{2}
\end{array}\right]
$$

is an orthogonal matrix in $\mathbb{R}^{(m+n) \times(m+n)}$.

- Next, we discuss two particularly significant orthogonal matrices: the Householder matrix and the Givens matrix.
- Next, we discuss two particularly significant orthogonal matrices: the Householder matrix and the Givens matrix.
- In our discussion of the Householder matrix, we will need the following result.

Corollary 6.6.4

Let a be a non-zero vector in \mathbb{R}^{n}. Then the standard matrix of orthogonal projection onto the line $L:=\operatorname{Span}(\mathbf{a})$ is the matrix

$$
\mathbf{a}\left(\mathbf{a}^{T} \mathbf{a}\right)^{-1} \mathbf{a}^{T}=\mathbf{a}(\mathbf{a} \cdot \mathbf{a})^{-1} \mathbf{a}^{T}=\frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T}
$$

Consequently, for every vector $\mathbf{x} \in \mathbb{R}^{n}$, we have that

$$
\mathbf{x}_{L}=\operatorname{proj}_{L}(\mathbf{x})=\frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T} \mathbf{x}
$$

- Proof: Lecture Notes.

Definition

For a non-zero vector a in \mathbb{R}^{n}, the Householder matrix is the $n \times n$ matrix

$$
H(\mathbf{a}):=I_{n}-\frac{2}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a} \mathbf{a}^{T}=I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T} .
$$

Definition

For a non-zero vector a in \mathbb{R}^{n}, the Householder matrix is the $n \times n$ matrix

$$
H(\mathbf{a}):=I_{n}-\frac{2}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a} \mathbf{a}^{T}=I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} .
$$

- To see that $H(\mathbf{a})$ is an orthogonal matrix, we compute:

$$
\begin{aligned}
H(\mathbf{a})^{T} H(\mathbf{a}) & =\left(I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T}\right)^{T}\left(I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T}\right) \\
& =\left(I_{n}^{T}-\frac{2}{\mathbf{a} \cdot \mathbf{a}}\left(\mathbf{a} \mathbf{a}^{T}\right)^{T}\right)\left(I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T}\right) \\
& =\left(I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T}\right)\left(I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T}\right) \\
& =I_{n}-\frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T}+\frac{4}{(\mathbf{a} \cdot \mathbf{a})^{2}} \mathbf{a} \underbrace{\mathbf{a}^{T} \mathbf{a}}_{=\mathbf{a} \cdot \mathbf{a}} \mathbf{a}^{T} \\
& =I_{n}-\frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T}+\frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T} \\
& =I_{n}
\end{aligned}
$$

- Reminder: $H(\mathbf{a}):=I_{n}-\frac{2}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a a}^{T}=I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T}$.
- Reminder: $H(\mathbf{a}):=I_{n}-\frac{2}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a a}^{T}=I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T}$.
- if \mathbf{x} is any vector in \mathbb{R}^{n}, and \mathbf{x}^{\prime} represents the orthogonal projection of \mathbf{x} onto Span(a), then the reflection of \mathbf{x} about the line $\operatorname{Span}(\mathbf{a})$ is given by

$$
\begin{aligned}
\mathbf{x}+2\left(\mathbf{x}^{\prime}-\mathbf{x}\right)=2 \mathbf{x}^{\prime}-\mathbf{x} & =\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T} \mathbf{x}-I_{n} \mathbf{x} \\
& =\left(\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^{T}-I_{n}\right) \mathbf{x} \\
& =-H(\mathbf{a}) \mathbf{x}
\end{aligned}
$$

- Reminder: $H(\mathbf{a}):=I_{n}-\frac{2}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{a a}^{T}=I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T}$.

- Thus, $-H(\mathbf{a})$ is the standard matrix of reflection about the Span(a) line.
- Reminder: $H(\mathbf{a}):=I_{n}-\frac{2}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a a}^{T}=I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T}$.

- Thus, $-H(\mathbf{a})$ is the standard matrix of reflection about the Span(a) line.
- The Householder matrix $H(\mathbf{a})$ itself is the standard matrix of the linear operation that first reflects about the $\operatorname{Span}(\mathbf{a})$ line and then reflects about the origin.
- Reminder: $H(\mathbf{a}):=I_{n}-\frac{2}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a a}^{T}=I_{n}-\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a a}^{T}$.

- Remark: Suppose that a is a non-zero vector in \mathbb{R}^{n}.
- Then the standard matrix of reflection about the line $L:=\operatorname{Span}(\mathbf{a})$ in \mathbb{R}^{n} is an orthogonal matrix.
- Indeed, as we saw, the Householder matrix $H(\mathbf{a})$ is an orthogonal matrix.
- By Proposition 6.8.2(c), it follows that $-H(\mathbf{a})$ is also an orthogonal matrix, and as we saw above, $-H(\mathbf{a})$ is the standard matrix of reflection about the line $L=\operatorname{Span}(\mathbf{a})$ in \mathbb{R}^{n}.
- Given an integer $n \geq 2$, indices $i, j \in\{1, \ldots, n\}$ such that $i<j$, and real numbers c and s such that $c^{2}+s^{2}=1$, we define the Givens matrix $G_{i, j}(c, s)$ as follows:

$$
G_{i, j}(c, s)=\left[\begin{array}{cccccccccccc}
1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & c & 0 & \ldots & 0 & -s & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & s & 0 & \ldots & 0 & c & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & & 0 & 0 & 1 & & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & & 0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

- Given an integer $n \geq 2$, indices $i, j \in\{1, \ldots, n\}$ such that $i<j$, and real numbers c and s such that $c^{2}+s^{2}=1$, we define the Givens matrix $G_{i, j}(c, s)$ as follows:

- It is not hard to check that the columns of $G_{i, j}(c, s)$ form an orthonormal set of vectors in \mathbb{R}^{n}, and therefore (by Proposition 6.3.4) an orthonormal basis of \mathbb{R}^{n}.
- So, by Theorem 6.8.1, $G_{i, j}(c, s)$ is orthogonal.
- Let us now give a geometric interpretation of this matrix.
- Let us now give a geometric interpretation of this matrix.
- Since $c^{2}+s^{2}=1$, we see that there exists a real number (angle in radians) θ such that $c=\cos \theta$ and $s=\sin \theta$.
- Let us now give a geometric interpretation of this matrix.
- Since $c^{2}+s^{2}=1$, we see that there exists a real number (angle in radians) θ such that $c=\cos \theta$ and $s=\sin \theta$.
- With this set-up, we see that $G_{i, j}(c, s)$ represents rotation about the origin by angle θ in the $x_{i} x_{j}$-plane.
- Let us now give a geometric interpretation of this matrix.
- Since $c^{2}+s^{2}=1$, we see that there exists a real number (angle in radians) θ such that $c=\cos \theta$ and $s=\sin \theta$.
- With this set-up, we see that $G_{i, j}(c, s)$ represents rotation about the origin by angle θ in the $x_{i} x_{j}$-plane.
- This is particularly easy to see in the case when $n=2$. In that case, we have that

$$
G_{1,2}(c, s)=\left[\begin{array}{rr}
c & -s \\
s & c
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

which is precisely the standard matrix of counterclockwise rotation about the origin by angle θ.

Theorem 6.8.5

Let $Q=\left[q_{i, j}\right]_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(0) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$;
(D) for all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|=\|\mathbf{x}\|$;
(c) for all $i, j \in\{1, \ldots, n\},\left|q_{i, j}\right| \leq 1$.

- Proof: next slide.

Theorem 6.8.5

Let $Q=\left[q_{i, j}\right]_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(0) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$;
(D) for all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|=\|\mathbf{x}\|$;
(c) for all $i, j \in\{1, \ldots, n\},\left|q_{i, j}\right| \leq 1$.

- Proof: next slide.
- Remark: By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.

Theorem 6.8.5

Let $Q=\left[q_{i, j}\right]_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(0) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$;
(D) for all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|=\|\mathbf{x}\|$;
(c) for all $i, j \in\{1, \ldots, n\},\left|q_{i, j}\right| \leq 1$.

- Proof: next slide.
- Remark: By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.
- On the other hand, recall that for non-zero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we have that $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$, where θ is the angle between \mathbf{x} and \mathbf{y}.

Theorem 6.8.5

Let $Q=\left[q_{i, j}\right]_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(0) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$;
(D) for all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|=\|\mathbf{x}\|$;
(c) for all $i, j \in\{1, \ldots, n\},\left|q_{i, j}\right| \leq 1$.

- Proof: next slide.
- Remark: By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.
- On the other hand, recall that for non-zero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we have that $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$, where θ is the angle between \mathbf{x} and \mathbf{y}.
- So, Theorem 6.8.5(a-b) implies that multiplication (on the left) by an orthogonal matrix preserves angles between non-zero vectors.

Theorem 6.8.5

Let $Q=\left[q_{i, j}\right]_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(0) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$;
(D) for all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|=\|\mathbf{x}\|$;
(c) for all $i, j \in\{1, \ldots, n\},\left|q_{i, j}\right| \leq 1$.

Proof.

Theorem 6.8.5

Let $Q=\left[q_{i, j}\right]_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(0) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$;
(D) for all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|=\|\mathbf{x}\|$;
(C) for all $i, j \in\{1, \ldots, n\},\left|q_{i, j}\right| \leq 1$.

Proof. (a) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we have the following:

$$
(Q \mathbf{x}) \cdot(Q \mathbf{y})=(Q \mathbf{x})^{T}(Q \mathbf{x})=\mathbf{x}^{T} \underbrace{Q^{T} Q}_{=I_{n}} \mathbf{y}=\mathbf{x}^{T} \mathbf{y}=\mathbf{x} \cdot \mathbf{y} .
$$

Theorem 6.8.5

Let $Q=\left[q_{i, j}\right]_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(0) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$;
(D) for all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|=\|\mathbf{x}\|$;
(C) for all $i, j \in\{1, \ldots, n\},\left|q_{i, j}\right| \leq 1$.

Proof. (a) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we have the following:

$$
(Q \mathbf{x}) \cdot(Q \mathbf{y})=(Q \mathbf{x})^{T}(Q \mathbf{x})=\mathbf{x}^{\top} \underbrace{Q^{\top} Q}_{=I_{n}} \mathbf{y}=\mathbf{x}^{\top} \mathbf{y}=\mathbf{x} \cdot \mathbf{y} .
$$

(b) For $x \in \mathbb{R}^{n}$, we have the following:

$$
\|Q \mathbf{x}\|=\sqrt{(Q \mathbf{x}) \cdot(Q \mathbf{x})} \stackrel{(a)}{=} \sqrt{\mathbf{x} \cdot \mathbf{x}}=\|\mathbf{x}\|
$$

Theorem 6.8.5

Let $Q=\left[q_{i, j}\right]_{n \times n}$ be an orthogonal matrix in $\mathbb{R}^{n \times n}$. Then:
(0) for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},(Q \mathbf{x}) \cdot(Q \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$;
(D) for all $\mathbf{x} \in \mathbb{R}^{n},\|Q \mathbf{x}\|=\|\mathbf{x}\|$;
(c) for all $i, j \in\{1, \ldots, n\},\left|q_{i, j}\right| \leq 1$.

Proof. (a) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we have the following:

$$
(Q \mathbf{x}) \cdot(Q \mathbf{y})=(Q \mathbf{x})^{T}(Q \mathbf{x})=\mathbf{x}^{T} \underbrace{Q^{T} Q}_{=I_{n}} \mathbf{y}=\mathbf{x}^{T} \mathbf{y}=\mathbf{x} \cdot \mathbf{y} .
$$

(b) For $\mathbf{x} \in \mathbb{R}^{n}$, we have the following:

$$
\|Q \mathbf{x}\|=\sqrt{(Q \mathbf{x}) \cdot(Q \mathbf{x})} \stackrel{(a)}{=} \sqrt{\mathbf{x} \cdot \mathbf{x}}=\|\mathbf{x}\|
$$

(c) By Theorem 6.8.1, the columns of Q form an orthonormal basis. In particular, all columns of Q are unit vectors, and it follows that all entries of Q have absolute value at most $1 . \square$
(3) Scalar product, coordinate vectors, and matrices of linear functions
(3) Scalar product, coordinate vectors, and matrices of linear functions

Proposition 6.9.1

Let V be a real or complex vector space, equipped with the scalar product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$, and let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthonormal basis of V. Let \cdot be the standard scalar product in \mathbb{R}^{n} or \mathbb{C}^{n} (depending on whether the vector space V is real or complex). Then for all $\mathbf{x}, \mathbf{y} \in V$, we have that

$$
\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}} \cdot[\mathbf{y}]_{\mathcal{B}} .
$$

- Proof: Lecture Notes.

Theorem 6.9.2

Let U and V be non-trivial, finite-dimensional real vector spaces. Assume that U is equipped with a scalar product $\langle\cdot, \cdot\rangle_{U}$ and the induced norm $\|\cdot\|_{U}$, and that V is equipped with a scalar product $\langle\cdot, \cdot\rangle_{V}$ and the induced norm $\|\cdot\| v$. Let $\mathcal{B}_{U}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $\mathcal{B}_{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be orthonormal bases of U and V, respectively, and let $f: U \rightarrow V$ be a linear function. Then the following two statements are equivalent:
(1) the columns of the $n \times m$ matrix ${ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}$ form an orthonormal set of vectors in \mathbb{R}^{n} (with respect to the standard scalar product \cdot and the induced norm $\|\cdot\|)$; $^{\text {a }}$
(1) f preserves the scalar product, that is, for all vectors $\mathbf{x}, \mathbf{y} \in U$, we have that $\langle f(\mathbf{x}), f(\mathbf{y})\rangle_{V}=\langle\mathbf{x}, \mathbf{y}\rangle_{U}$.

[^0]\[

Proof. Set{ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=\left[$$
\begin{array}{lll}
\mathbf{c}_{1} & \ldots & \mathbf{c}_{m}
\end{array}
$$\right] .
\]

Proof. Set ${ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=\left[\begin{array}{lll}\mathbf{c}_{1} & \ldots & \mathbf{c}_{m}\end{array}\right]$. We observe that

$$
\begin{aligned}
\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}\right)^{T} \mathcal{B}_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}= & {\left[\begin{array}{c}
\mathbf{c}_{1}^{T} \\
\mathbf{c}_{2}^{T} \\
\vdots \\
\mathbf{c}_{m}^{T}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \ldots & \mathbf{c}_{m}
\end{array}\right] } \\
= & {\left[\begin{array}{cccc}
\mathbf{c}_{1} \cdot \mathbf{c}_{1} & \mathbf{c}_{1} \cdot \mathbf{c}_{2} & \ldots & \mathbf{c}_{1} \cdot \mathbf{c}_{m} \\
\mathbf{c}_{2} \cdot \mathbf{c}_{1} & \mathbf{c}_{2} \cdot \mathbf{c}_{2} & \ldots & \mathbf{c}_{2} \cdot \mathbf{c}_{m} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{c}_{m} \cdot \mathbf{c}_{1} & \mathbf{c}_{m} \cdot \mathbf{c}_{2} & \ldots & \mathbf{c}_{m} \cdot \mathbf{c}_{m}
\end{array}\right] }
\end{aligned}
$$

So, we see that (i) holds iff $\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}\right)^{T}{ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=I_{m}$.

Proof (cont.). Reminder: (i) holds iff $\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}\right)^{T}{ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=I_{m}$.

Proof (cont.). Reminder: (i) holds iff $\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}\right)^{T}{ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=I_{m}$.
Next, by Proposition 6.9.1, the following hold for all $\mathbf{x}, \mathbf{y} \in U$:
(1) $\langle\mathbf{x}, \mathbf{y}\rangle_{U}=[\mathbf{x}]_{\mathcal{B}_{U}} \cdot[\mathbf{y}]_{\mathcal{B}_{U}}$;
(2) $\langle f(\mathbf{x}), f(\mathbf{y})\rangle_{V}=[f(\mathbf{x})]_{\mathcal{B}_{V}} \cdot[f(\mathbf{y})]_{\mathcal{B}_{V}}$.

Proof (cont.). Reminder: (i) holds iff $\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}\right)^{T}{ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=I_{m}$. Next, by Proposition 6.9.1, the following hold for all $\mathbf{x}, \mathbf{y} \in U$:
(1) $\langle\mathbf{x}, \mathbf{y}\rangle_{U}=[\mathbf{x}]_{\mathcal{B}_{U}} \cdot[\mathbf{y}]_{\mathcal{B}_{U}}$;
(2) $\langle f(\mathbf{x}), f(\mathbf{y})\rangle_{V}=[f(\mathbf{x})]_{\mathcal{B}_{V}} \cdot[f(\mathbf{y})]_{\mathcal{B}_{V}}$.

Now, for all $\mathbf{x}, \mathbf{y} \in U$, we have that

$$
\begin{aligned}
\langle f(\mathbf{x}), f(\mathbf{y})\rangle_{V} & \stackrel{(2)}{=}[f(\mathbf{x})]_{\mathcal{B}_{V}} \cdot[f(\mathbf{y})]_{\mathcal{B}_{V}} \\
& =\left([f(\mathbf{x})]_{\mathcal{B}_{V}}\right)^{T}[f(\mathbf{y})]_{\mathcal{B}_{V}} \\
& =\left({ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}[\mathbf{x}]_{\mathcal{B}_{U}}\right)^{T}\left({ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}[\mathbf{y}]_{\mathcal{B}_{U}}\right) \\
& =\left([\mathbf{x}]_{\mathcal{B}_{U}}\right)^{T}\left({ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}\right)^{T}{ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}[\mathbf{y}]_{\mathcal{B}_{U}}
\end{aligned}
$$

Proof (continued). Suppose first that (i) holds. Then $\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}\right)^{T}{ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=I_{m}$, and consequently, for all $\mathbf{x}, \mathbf{y} \in U$, we have that

$$
\begin{aligned}
\langle f(\mathbf{x}), f(\mathbf{y})\rangle_{V} & =\left([\mathbf{x}]_{\mathcal{B}_{U}}\right)^{T} \underbrace{\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}\right)^{T}{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}}_{=I_{m}}[\mathbf{y}]_{\mathcal{B}_{U}} \\
& =\left([\mathbf{x}]_{\mathcal{B}_{U}}\right)^{T}[\mathbf{y}]_{\mathcal{B}_{U}} \\
& =[\mathbf{x}]_{\mathcal{B}_{U}} \cdot[\mathbf{y}]_{\mathcal{B}_{U}} \\
& \stackrel{(1)}{=}\langle\mathbf{x}, \mathbf{y}\rangle_{U} .
\end{aligned}
$$

Thus, (ii) holds.

Proof (continued). Reminder: ${ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=\left[\begin{array}{lll}\mathbf{c}_{1} & \ldots & \mathbf{c}_{m}\end{array}\right]$
Suppose now that (ii) holds. Then for all $i, j \in\{1, \ldots, m\}$, we have that

$$
\begin{aligned}
\mathbf{e}_{i}^{m} \cdot \mathbf{e}_{j}^{m} & =\left[\mathbf{u}_{i}\right]_{\mathcal{B}_{U}} \cdot\left[\mathbf{u}_{j}\right]_{\mathcal{B}_{U}} \\
& \stackrel{(1)}{=}\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle_{U} \\
& \stackrel{(\text { (i) }}{=}\left\langle f\left(\mathbf{u}_{i}\right), f\left(\mathbf{u}_{j}\right)\right\rangle_{V} \\
& \stackrel{(2)}{=}\left[f\left(\mathbf{u}_{i}\right)\right]_{\mathcal{B}_{V}} \cdot\left[f\left(\mathbf{u}_{j}\right)\right]_{\mathcal{B}_{V}} \\
& =\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}\left[\mathbf{u}_{i}\right]_{\mathcal{B}_{U}}\right) \cdot\left({\left(\mathcal{B}_{V}\right.}[f]_{\mathcal{B}_{U}}\left[\mathbf{u}_{j}\right]_{\mathcal{B}_{U}}\right) \\
& =\left({ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}} \mathbf{e}_{i}^{m}\right) \cdot\left(\mathcal{B}_{V}[f]_{\mathcal{B}_{U}} \mathbf{e}_{j}^{m}\right) \\
& =\mathbf{c}_{i} \cdot \mathbf{c}_{j} .
\end{aligned}
$$

So, $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ is an orthonormal set of vectors in \mathbb{R}^{n}, that is, (i) holds. \square

Theorem 6.9.2

Let U and V be non-trivial, finite-dimensional real vector spaces. Assume that U is equipped with a scalar product $\langle\cdot, \cdot\rangle_{U}$ and the induced norm $\|\cdot\|_{U}$, and that V is equipped with a scalar product $\langle\cdot, \cdot\rangle_{V}$ and the induced norm $\|\cdot\| v$. Let $\mathcal{B}_{U}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $\mathcal{B}_{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be orthonormal bases of U and V, respectively, and let $f: U \rightarrow V$ be a linear function. Then the following two statements are equivalent:
(1) the columns of the $n \times m$ matrix ${ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}$ form an orthonormal set of vectors in \mathbb{R}^{n} (with respect to the standard scalar product \cdot and the induced norm $\|\cdot\|)$; $^{\text {a }}$
(1) f preserves the scalar product, that is, for all vectors $\mathbf{x}, \mathbf{y} \in U$, we have that $\langle f(\mathbf{x}), f(\mathbf{y})\rangle_{V}=\langle\mathbf{x}, \mathbf{y}\rangle_{U}$.

[^1]
[^0]: ${ }^{a}$ However, despite Theorem 6.8.1, this does not necessarily mean that the matrix ${ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}$ is orthogonal. This is because ${ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}$ is an $n \times m$ matrix, and it is possible that $m \neq n$, in which case $\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}$ is not a square matrix. Only square matrices can be orthogonal!

[^1]: ${ }^{a}$ However, despite Theorem 6.8.1, this does not necessarily mean that the matrix ${ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}$ is orthogonal. This is because ${ }_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}$ is an $n \times m$ matrix, and it is possible that $m \neq n$, in which case $\mathcal{B}_{V}[f]_{\mathcal{B}_{U}}$ is not a square matrix. Only square matrices can be orthogonal!

