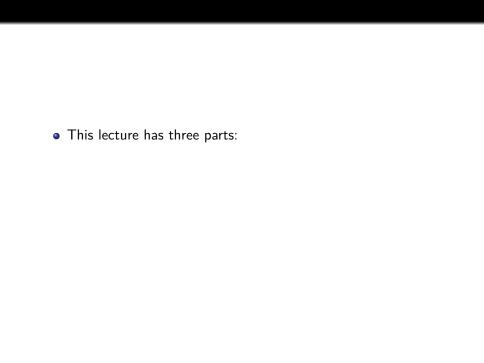
# Linear Algebra 2

Lecture #17

Permutation matrices. Orthogonal matrices

Irena Penev

March 20, 2024



- This lecture has three parts:
  - Permutation matrices

- This lecture has three parts:
  - Permutation matrices
  - Orthogonal matrices

- This lecture has three parts:
  - Permutation matrices
  - Orthogonal matrices
  - Scalar product, coordinate vectors, and matrices of linear functions

Permutation matrices

Permutation matrices

#### Definition

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

• Examples:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

• The 0's and 1's in permutation matrices may belong to any field  $\mathbb F$  of our choice.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- The 0's and 1's in permutation matrices may belong to any field  $\mathbb{F}$  of our choice.
  - In our study of permutation matrices, we will never need to add two non-zero numbers, and whenever we multiply two numbers, at least one of the two numbers will be 0 or 1.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- The 0's and 1's in permutation matrices may belong to any field  $\mathbb{F}$  of our choice.
  - In our study of permutation matrices, we will never need to add two non-zero numbers, and whenever we multiply two numbers, at least one of the two numbers will be 0 or 1.
  - So, it does not matter which particular field we are working in, and therefore, we will not emphasize this.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

• Obviously, identity matrices are permutation matrices.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- Obviously, identity matrices are permutation matrices.
- Moreover,  $n \times n$  permutation matrices are precisely the matrices that can be obtained from the identity matrix  $I_n$  by reordering (i.e. permuting) rows, or alternatively, by reordering (i.e. permuting) columns.

A *permutation matrix* is a square matrix that has exactly one 1 in each row and each column, and has 0's everywhere else.

- Obviously, identity matrices are permutation matrices.
- Moreover,  $n \times n$  permutation matrices are precisely the matrices that can be obtained from the identity matrix  $I_n$  by reordering (i.e. permuting) rows, or alternatively, by reordering (i.e. permuting) columns.
- So, the columns of an  $n \times n$  permutation matrix are the standard basis vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$  (appearing in some order in that matrix), whereas the rows are  $\mathbf{e}_1^T, \dots, \mathbf{e}_n^T$  (again, appearing in some order in that matrix).

For a positive integer n and a permutation  $\pi \in S_n$ , we define the matrix of the permutation  $\pi$ , denoted by  $P_\pi$ , to be the  $n \times n$  matrix that has 1 in the  $(i,\pi(i))$ -th entry for each each index  $i \in \{1,\ldots,n\}$ , and has 0 in all other entries. In other words, for each index  $i \in \{1,\ldots,n\}$ , the i-th row of the matrix  $P_\pi$  is  $\mathbf{e}_{\pi(i)}^T$ .

• For example, for the permutation

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 6 & 5 & 3 \end{pmatrix},$$

in  $S_6$ , we obtain the  $6 \times 6$  permutation matrix

For a positive integer n and a permutation  $\pi \in S_n$ , we define the matrix of the permutation  $\pi$ , denoted by  $P_{\pi}$ , to be the  $n \times n$  matrix that has 1 in the  $(i,\pi(i))$ -th entry for each each index  $i \in \{1,\ldots,n\}$ , and has 0 in all other entries. In other words, for each index  $i \in \{1,\ldots,n\}$ , the i-th row of the matrix  $P_{\pi}$  is  $\mathbf{e}_{\pi(i)}^T$ .

• Obviously, for a positive integer n, the matrix of the identity permutation  $1_n$  in  $S_n$  is precisely the identity matrix  $I_n$ , i.e.  $P_{1_n} = I_n$ .

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

Proof.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

*Proof.* Obviously,  $P_{\pi}$  is an  $n \times n$  matrix, all of whose entries are 0's and 1's.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

*Proof.* Obviously,  $P_{\pi}$  is an  $n \times n$  matrix, all of whose entries are 0's and 1's. Moreover, by the definition of  $P_{\pi}$ , we have that for each index  $i \in \{1, \ldots, n\}$ , the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^T$ .

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

*Proof.* Obviously,  $P_{\pi}$  is an  $n \times n$  matrix, all of whose entries are 0's and 1's. Moreover, by the definition of  $P_{\pi}$ , we have that for each index  $i \in \{1, \ldots, n\}$ , the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^T$ . So,  $P_{\pi}$  has exactly one 1 in each row.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

*Proof.* Obviously,  $P_{\pi}$  is an  $n \times n$  matrix, all of whose entries are 0's and 1's. Moreover, by the definition of  $P_{\pi}$ , we have that for each index  $i \in \{1, \ldots, n\}$ , the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^T$ . So,  $P_{\pi}$  has exactly one 1 in each row. Note that this means that the matrix  $P_{\pi}$  has exactly n entries that are 1, whereas all the other entries are 0's.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

*Proof.* Obviously,  $P_{\pi}$  is an  $n \times n$  matrix, all of whose entries are 0's and 1's. Moreover, by the definition of  $P_{\pi}$ , we have that for each index  $i \in \{1, \ldots, n\}$ , the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^T$ . So,  $P_{\pi}$  has exactly one 1 in each row. Note that this means that the matrix  $P_{\pi}$  has exactly n entries that are 1, whereas all the other entries are 0's.

It remains to show that the matrix  $P_{\pi}$  has exactly one 1 in each column.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

*Proof.* Obviously,  $P_{\pi}$  is an  $n \times n$  matrix, all of whose entries are 0's and 1's. Moreover, by the definition of  $P_{\pi}$ , we have that for each index  $i \in \{1, \ldots, n\}$ , the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^T$ . So,  $P_{\pi}$  has exactly one 1 in each row. Note that this means that the matrix  $P_{\pi}$  has exactly n entries that are 1, whereas all the other entries are 0's.

It remains to show that the matrix  $P_{\pi}$  has exactly one 1 in each column. Since  $P_{\pi}$  has exactly n many 1's, it is enough to show that no column has more than one 1.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

*Proof.* Obviously,  $P_\pi$  is an  $n \times n$  matrix, all of whose entries are 0's and 1's. Moreover, by the definition of  $P_\pi$ , we have that for each index  $i \in \{1,\ldots,n\}$ , the i-th row of  $P_\pi$  is the row vector  $\mathbf{e}_{\pi(i)}^T$ . So,  $P_\pi$  has exactly one 1 in each row. Note that this means that the matrix  $P_\pi$  has exactly n entries that are 1, whereas all the other entries are 0's.

It remains to show that the matrix  $P_{\pi}$  has exactly one 1 in each column. Since  $P_{\pi}$  has exactly n many 1's, it is enough to show that no column has more than one 1. Since the rows of  $P_{\pi}$  (from top to bottom) are  $\mathbf{e}_{\pi(1)}^T, \dots, \mathbf{e}_{\pi(n)}^T$ , and since all those row vectors are pairwise distinct (because  $\pi$  is a permutation), we see that no two rows of  $P_{\pi}$  have a 1 in the same position.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is a permutation matrix.

*Proof.* Obviously,  $P_{\pi}$  is an  $n \times n$  matrix, all of whose entries are 0's and 1's. Moreover, by the definition of  $P_{\pi}$ , we have that for each index  $i \in \{1, \ldots, n\}$ , the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^T$ . So,  $P_{\pi}$  has exactly one 1 in each row. Note that this means that the matrix  $P_{\pi}$  has exactly n entries that are 1, whereas all the other entries are 0's.

It remains to show that the matrix  $P_{\pi}$  has exactly one 1 in each column. Since  $P_{\pi}$  has exactly n many 1's, it is enough to show that no column has more than one 1. Since the rows of  $P_{\pi}$  (from top to bottom) are  $\mathbf{e}_{\pi(1)}^T, \dots, \mathbf{e}_{\pi(n)}^T$ , and since all those row vectors are pairwise distinct (because  $\pi$  is a permutation), we see that no two rows of  $P_{\pi}$  have a 1 in the same position. So, no column of  $P_{\pi}$  has more than one 1, and we are done.  $\square$ 

• By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
  - The answer to this question is "yes," and it follows from a simple counting argument, as follows.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
  - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
  - Let *n* be a positive integer.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
  - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
    - Let *n* be a positive integer.
  - The  $n \times n$  permutation matrices are precisely those  $n \times n$ matrices whose columns are the standard basis vectors
    - $\mathbf{e}_1, \dots, \mathbf{e}_n$ , appearing in some order. There are n! many ways to order the vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ , and consequently, there are n!many  $n \times n$  permutation matrices.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
  - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
    - Let *n* be a positive integer.
  - The  $n \times n$  permutation matrices are precisely those  $n \times n$ matrices whose columns are the standard basis vectors
    - $\mathbf{e}_1, \dots, \mathbf{e}_n$ , appearing in some order. There are n! many ways to order the vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ , and consequently, there are n!many  $n \times n$  permutation matrices.
    - On the other hand,  $|S_n| = n!$ , and consequently, there are n!
    - many matrices of permutations in  $S_n$ .

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
  - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
  - Let *n* be a positive integer.
  - The  $n \times n$  permutation matrices are precisely those  $n \times n$  matrices whose columns are the standard basis vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ , appearing in some order. There are n! many way
    - $\mathbf{e}_1, \dots, \mathbf{e}_n$ , appearing in some order. There are n! many ways to order the vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ , and consequently, there are n! many  $n \times n$  permutation matrices.
  - On the other hand,  $|S_n| = n!$ , and consequently, there are n! many matrices of permutations in  $S_n$ .
    - We are using the fact that different permutations have different matrices.

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
  - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
  - Let *n* be a positive integer.
  - The  $n \times n$  permutation matrices are precisely those  $n \times n$  matrices whose columns are the standard basis vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ , appearing in some order. There are n! many ways to order the vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ , and consequently, there are n!
  - many  $n \times n$  permutation matrices. • On the other hand,  $|S_n| = n!$ , and consequently, there are n!
    - many matrices of permutations in  $S_n$ .

       We are using the fact that different permutations have different matrices
  - So, the number of  $n \times n$  permutation matrices is the same as the number of matrices of permutations in  $S_n$ .

- By Proposition 2.3.10, the matrix of a permutation is a permutation matrix.
- What about the converse: is every permutation matrix the matrix of some permutation?
  - The answer to this question is "yes," and it follows from a simple counting argument, as follows.
  - Let n be a positive integer.
    The n × n permutation matrices are precisely those n × n
  - The  $n \times n$  permutation matrices are precisely those  $n \times n$  matrices whose columns are the standard basis vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ , appearing in some order. There are n! many ways to order the vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ , and consequently, there are n!
    - many  $n \times n$  permutation matrices. • On the other hand,  $|S_n| = n!$ , and consequently, there are n!
      - many matrices of permutations in  $S_n$ .

         We are using the fact that different permutations have different matrices
    - So, the number of  $n \times n$  permutation matrices is the same as the number of matrices of permutations in  $S_n$ .
    - It now follows from Proposition 2.3.10 that  $n \times n$  permutation matrices are precisely the matrices of permutations in  $S_n$ .

Let n be a positive integer, and let  $\pi \in S_n$  be a permutation. Then both the following hold:

- $\forall j \in \{1,\ldots,n\}: \ P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}, \ \text{i.e. the $j$-th column of } P_{\pi} \ \text{is} \ \mathbf{e}_{\pi^{-1}(j)}.$

Consequently, in terms of its rows and columns,  $P_{\pi}$  can be written as follows:

$$P_{\pi} = \begin{bmatrix} \mathbf{e}_{\pi(1)}^{I} \\ \vdots \\ \mathbf{e}_{\pi(n)}^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)} & \dots & \mathbf{e}_{\pi^{-1}(n)} \end{bmatrix}.$$

*Proof.* The last statement of the proposition follows immediately from (a) and (b). So, it is enough to prove (a) and (b).

- $\forall j \in \{1,\ldots,n\}$ :  $P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}$ , i.e. the j-th column of  $P_{\pi}$  is  $\mathbf{e}_{\pi^{-1}(j)}$ .

Proof (continued). (a) Fix an index  $i \in \{1, ..., n\}$ . By Proposition 1.8.2,  $\mathbf{e}_i^T P_{\pi}$  is precisely the *i*-th row of the matrix  $P_{\pi}$ , and by the definition of the matrix  $P_{\pi}$ , its *i*-th row is precisely  $\mathbf{e}_{\pi(i)}$ .

- $\forall i \in \{1, ..., n\}: \mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}, \text{ i.e. the } i\text{-th row of } P_{\pi} \text{ is } \mathbf{e}_{\pi(i)}^T;$
- $\forall j \in \{1,\ldots,n\}$ :  $P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}$ , i.e. the j-th column of  $P_{\pi}$  is  $\mathbf{e}_{\pi^{-1}(j)}$ .

*Proof (continued).* (a) Fix an index  $i \in \{1, ..., n\}$ . By Proposition 1.8.2,  $\mathbf{e}_i^T P_{\pi}$  is precisely the *i*-th row of the matrix  $P_{\pi}$ , and by the definition of the matrix  $P_{\pi}$ , its *i*-th row is precisely  $\mathbf{e}_{\pi(i)}$ .

(b) Fix an index  $j \in \{1, \ldots, n\}$ .

- $\forall j \in \{1,\ldots,n\}: \ P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}, \ \text{i.e. the $j$-th column of $P_{\pi}$ is } \mathbf{e}_{\pi^{-1}(j)}.$

Proof (continued). (a) Fix an index  $i \in \{1, ..., n\}$ . By Proposition 1.8.2,  $\mathbf{e}_i^T P_{\pi}$  is precisely the *i*-th row of the matrix  $P_{\pi}$ , and by the definition of the matrix  $P_{\pi}$ , its *i*-th row is precisely  $\mathbf{e}_{\pi(i)}$ .

(b) Fix an index  $j \in \{1, ..., n\}$ . By Proposition 1.4.4,  $P_{\pi}\mathbf{e}_j$  is precisely the j-th column of the matrix  $P_{\pi}$ .

- $\forall j \in \{1,\ldots,n\}: \ P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}, \ \text{i.e. the $j$-th column of } P_{\pi} \ \text{is} \ \mathbf{e}_{\pi^{-1}(j)}.$

Proof (continued). (a) Fix an index  $i \in \{1, ..., n\}$ . By Proposition 1.8.2,  $\mathbf{e}_i^T P_{\pi}$  is precisely the *i*-th row of the matrix  $P_{\pi}$ , and by the definition of the matrix  $P_{\pi}$ , its *i*-th row is precisely  $\mathbf{e}_{\pi(i)}$ .

(b) Fix an index  $j \in \{1, ..., n\}$ . By Proposition 1.4.4,  $P_{\pi}\mathbf{e}_{j}$  is precisely the j-th column of the matrix  $P_{\pi}$ . Set  $i := \pi^{-1}(j)$ , so that  $j = \pi(i)$ .

- $\forall j \in \{1,\ldots,n\}: \ P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}, \ \text{i.e. the $j$-th column of } P_{\pi} \ \text{is} \ \mathbf{e}_{\pi^{-1}(j)}.$

Proof (continued). (a) Fix an index  $i \in \{1, ..., n\}$ . By Proposition 1.8.2,  $\mathbf{e}_i^T P_{\pi}$  is precisely the *i*-th row of the matrix  $P_{\pi}$ , and by the definition of the matrix  $P_{\pi}$ , its *i*-th row is precisely  $\mathbf{e}_{\pi(i)}$ .

(b) Fix an index  $j \in \{1, ..., n\}$ . By Proposition 1.4.4,  $P_{\pi}\mathbf{e}_{j}$  is precisely the j-th column of the matrix  $P_{\pi}$ . Set  $i := \pi^{-1}(j)$ , so that  $j = \pi(i)$ . By (a), the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^{T} = \mathbf{e}_{j}^{T}$ .

- $\forall i \in \{1, \dots, n\}: \mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}, \text{ i.e. the } i\text{-th row of } P_{\pi} \text{ is } \mathbf{e}_{\pi(i)}^T;$
- $\forall j \in \{1,\ldots,n\}: \ P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}, \ \text{i.e. the $j$-th column of } P_{\pi} \ \text{is} \ \mathbf{e}_{\pi^{-1}(j)}.$

Proof (continued). (a) Fix an index  $i \in \{1, ..., n\}$ . By Proposition 1.8.2,  $\mathbf{e}_i^T P_{\pi}$  is precisely the *i*-th row of the matrix  $P_{\pi}$ , and by the definition of the matrix  $P_{\pi}$ , its *i*-th row is precisely  $\mathbf{e}_{\pi(i)}$ .

(b) Fix an index  $j \in \{1, ..., n\}$ . By Proposition 1.4.4,  $P_{\pi}\mathbf{e}_{j}$  is precisely the j-th column of the matrix  $P_{\pi}$ . Set  $i := \pi^{-1}(j)$ , so that  $j = \pi(i)$ . By (a), the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^{T} = \mathbf{e}_{j}^{T}$ . So,  $P_{\pi}$  has 1 in its (i, j)-th entry.

30,  $P_{\pi}$  has 1 in its (I,J)-th entry.

- $\forall i \in \{1,\ldots,n\}: \mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}, \text{ i.e. the } i\text{-th row of } P_{\pi} \text{ is } \mathbf{e}_{\pi(i)}^T;$
- $\forall j \in \{1,\ldots,n\}: P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}$ , i.e. the j-th column of  $P_{\pi}$  is  $\mathbf{e}_{\pi^{-1}(j)}$ .

Proof (continued). (a) Fix an index  $i \in \{1, ..., n\}$ . By Proposition 1.8.2,  $\mathbf{e}_i^T P_{\pi}$  is precisely the *i*-th row of the matrix  $P_{\pi}$ , and by the definition of the matrix  $P_{\pi}$ , its *i*-th row is precisely  $\mathbf{e}_{\pi(i)}$ .

(b) Fix an index  $j \in \{1, \ldots, n\}$ . By Proposition 1.4.4,  $P_{\pi}\mathbf{e}_{j}$  is precisely the j-th column of the matrix  $P_{\pi}$ . Set  $i := \pi^{-1}(j)$ , so that  $j = \pi(i)$ . By (a), the i-th row of  $P_{\pi}$  is the row vector  $\mathbf{e}_{\pi(i)}^{T} = \mathbf{e}_{j}^{T}$ . So,  $P_{\pi}$  has 1 in its (i,j)-th entry. Since  $P_{\pi}$  is a permutation matrix (by Proposition 2.3.10), and therefore has exactly one 1 in each column, it follows that the j-th column of  $P_{\pi}$  is  $\mathbf{e}_{i} = \mathbf{e}_{\pi^{-1}(j)}$ .  $\square$ 

Let n be a positive integer, and let  $\pi \in S_n$  be a permutation. Then both the following hold:

- $\bullet$   $\forall i \in \{1, \ldots, n\}$ :  $\mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}$ , i.e. the *i*-th row of  $P_{\pi}$  is  $\mathbf{e}_{\pi(i)}^T$ ;
- $\forall j \in \{1,\ldots,n\}: \ P_{\pi}\mathbf{e}_j = \mathbf{e}_{\pi^{-1}(j)}, \ \text{i.e. the $j$-th column of } P_{\pi} \ \text{is} \ \mathbf{e}_{\pi^{-1}(j)}.$

Consequently, in terms of its rows and columns,  $P_{\pi}$  can be written as follows:

$$P_{\pi} = \begin{bmatrix} \mathbf{e}_{\pi(1)}^{I} \\ \vdots \\ \mathbf{e}_{\pi(n)}^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)} & \dots & \mathbf{e}_{\pi^{-1}(n)} \end{bmatrix}.$$

*Proof.* The last statement of the proposition follows immediately from (a) and (b). So, it is enough to prove (a) and (b).

Let n be a positive integer, and let  $\pi \in S_n$ . Then

$$P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof.

Let *n* be a positive integer, and let  $\pi \in S_n$ . Then

$$P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof. We have that

$$P_{\pi}^{T} \stackrel{(*)}{=} \left( \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)} & \dots & \mathbf{e}_{\pi^{-1}(n)} \end{bmatrix} \right)^{T} = \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)}^{T} \\ \vdots \\ \mathbf{e}_{\pi^{-1}(n)}^{T} \end{bmatrix} \stackrel{(*)}{=} P_{\pi^{-1}},$$

where both instances of (\*) follow from Proposition 2.3.11.  $\square$ 

 $\forall i \in \{1, \dots, n\}: \mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}, \text{ i.e. the } i\text{-th row of } P_{\pi} \text{ is } \mathbf{e}_{\pi(i)}^T;$ 

# Proposition 2.3.13

Let n be a positive integer, and let  $\sigma$  and  $\pi$  be permutations in  $S_n$ . Then  $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$ .

Proof.

 $\forall i \in \{1, \dots, n\}: \mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}, \text{ i.e. the } i\text{-th row of } P_{\pi} \text{ is } \mathbf{e}_{\pi(i)}^T;$ 

# Proposition 2.3.13

Let n be a positive integer, and let  $\sigma$  and  $\pi$  be permutations in  $S_n$ . Then  $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$ .

*Proof.* It suffices to show that matrices  $P_{\sigma \circ \pi}$  and  $P_{\pi}P_{\sigma}$  have the same corresponding rows.

 $\forall i \in \{1, \dots, n\}: \mathbf{e}_i^T P_{\pi} = \mathbf{e}_{\pi(i)}, \text{ i.e. the } i\text{-th row of } P_{\pi} \text{ is } \mathbf{e}_{\pi(i)}^T;$ 

# Proposition 2.3.13

Let n be a positive integer, and let  $\sigma$  and  $\pi$  be permutations in  $S_n$ . Then  $P_{\sigma\circ\pi}=P_\pi P_\sigma$ .

*Proof.* It suffices to show that matrices  $P_{\sigma \circ \pi}$  and  $P_{\pi}P_{\sigma}$  have the same corresponding rows. Fix an index  $i \in \{1, \dots, n\}$ .

## Proposition 2.3.13

Let n be a positive integer, and let  $\sigma$  and  $\pi$  be permutations in  $S_n$ . Then  $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$ .

*Proof.* It suffices to show that matrices  $P_{\sigma \circ \pi}$  and  $P_{\pi}P_{\sigma}$  have the same corresponding rows. Fix an index  $i \in \{1, \ldots, n\}$ . By Proposition 1.8.2, the i-th row of the matrix  $P_{\sigma \circ \pi}$  is  $\mathbf{e}_i^T P_{\sigma \circ \pi}$ , and the i-th row of the matrix  $P_{\pi}P_{\sigma}$  is  $\mathbf{e}_i^T (P_{\pi}P_{\sigma})$ .

## Proposition 2.3.13

Let n be a positive integer, and let  $\sigma$  and  $\pi$  be permutations in  $S_n$ . Then  $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$ .

*Proof.* It suffices to show that matrices  $P_{\sigma\circ\pi}$  and  $P_{\pi}P_{\sigma}$  have the same corresponding rows. Fix an index  $i\in\{1,\ldots,n\}$ . By Proposition 1.8.2, the i-th row of the matrix  $P_{\sigma\circ\pi}$  is  $\mathbf{e}_i^TP_{\sigma\circ\pi}$ , and the i-th row of the matrix  $P_{\pi}P_{\sigma}$  is  $\mathbf{e}_i^T(P_{\pi}P_{\sigma})$ . So, we just need to show that  $\mathbf{e}_i^TP_{\sigma\circ\pi}=\mathbf{e}_i^T(P_{\pi}P_{\sigma})$ .

## Proposition 2.3.13

Let n be a positive integer, and let  $\sigma$  and  $\pi$  be permutations in  $S_n$ . Then  $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$ .

*Proof.* It suffices to show that matrices  $P_{\sigma \circ \pi}$  and  $P_{\pi}P_{\sigma}$  have the same corresponding rows. Fix an index  $i \in \{1, \ldots, n\}$ . By Proposition 1.8.2, the i-th row of the matrix  $P_{\sigma \circ \pi}$  is  $\mathbf{e}_i^T P_{\sigma \circ \pi}$ , and the i-th row of the matrix  $P_{\pi}P_{\sigma}$  is  $\mathbf{e}_i^T (P_{\pi}P_{\sigma})$ . So, we just need to show that  $\mathbf{e}_i^T P_{\sigma \circ \pi} = \mathbf{e}_i^T (P_{\pi}P_{\sigma})$ . But follows easily via repeated application of Proposition 2.3.11(a).

## Proposition 2.3.13

Let n be a positive integer, and let  $\sigma$  and  $\pi$  be permutations in  $S_n$ . Then  $P_{\sigma \circ \pi} = P_{\pi} P_{\sigma}$ .

*Proof.* It suffices to show that matrices  $P_{\sigma \circ \pi}$  and  $P_{\pi}P_{\sigma}$  have the same corresponding rows. Fix an index  $i \in \{1, \ldots, n\}$ . By Proposition 1.8.2, the i-th row of the matrix  $P_{\sigma \circ \pi}$  is  $\mathbf{e}_i^T P_{\sigma \circ \pi}$ , and the i-th row of the matrix  $P_{\pi}P_{\sigma}$  is  $\mathbf{e}_i^T (P_{\pi}P_{\sigma})$ . So, we just need to show that  $\mathbf{e}_i^T P_{\sigma \circ \pi} = \mathbf{e}_i^T (P_{\pi}P_{\sigma})$ . But follows easily via repeated application of Proposition 2.3.11(a). Indeed, we have that

$$\mathbf{e}_{i}^{T}(P_{\pi}P_{\sigma}) = (\mathbf{e}_{i}^{T}P_{\pi})P_{\sigma} \stackrel{(*)}{=} \mathbf{e}_{\pi(i)}^{T}P_{\sigma} \stackrel{(*)}{=} \mathbf{e}_{\sigma(\pi(i))}$$
$$= \mathbf{e}_{(\sigma\circ\pi)(i)}^{T} \stackrel{(*)}{=} \mathbf{e}_{i}^{T}P_{\sigma\circ\pi},$$

where all three instances of (\*) follow from Prop. 2.3.11(a).  $\Box$ 

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

Proof.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

*Proof.* The fact that  $P_{\pi^{-1}} = P_{\pi}^{T}$  follows immediately from Proposition 2.3.12.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

*Proof.* The fact that  $P_{\pi^{-1}}=P_{\pi}^T$  follows immediately from Proposition 2.3.12. It remains to show that  $P_{\pi}$  is invertible, and that its inverse is  $P_{\pi^{-1}}$ .

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

*Proof.* The fact that  $P_{\pi^{-1}} = P_{\pi}^{T}$  follows immediately from Proposition 2.3.12. It remains to show that  $P_{\pi}$  is invertible, and that its inverse is  $P_{\pi^{-1}}$ .

We now compute:

$$P_{\pi}P_{\pi^{-1}} \stackrel{(*)}{=} P_{\pi^{-1}\circ\pi} = P_{1_n} = I_n,$$

where (\*) follows immediately from Proposition 2.3.13.

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

*Proof.* The fact that  $P_{\pi^{-1}} = P_{\pi}^T$  follows immediately from Proposition 2.3.12. It remains to show that  $P_{\pi}$  is invertible, and that its inverse is  $P_{\pi^{-1}}$ .

We now compute:

$$P_{\pi}P_{\pi^{-1}} \stackrel{(*)}{=} P_{\pi^{-1}\circ\pi} = P_{1_n} = I_n,$$

where (\*) follows immediately from Proposition 2.3.13. Analogously,  $P_{\pi^{-1}}P_{\pi}=I_{n}$ .

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

*Proof.* The fact that  $P_{\pi^{-1}} = P_{\pi}^{T}$  follows immediately from Proposition 2.3.12. It remains to show that  $P_{\pi}$  is invertible, and that its inverse is  $P_{\pi^{-1}}$ .

We now compute:

$$P_{\pi}P_{\pi^{-1}} \ \stackrel{(*)}{=} \ P_{\pi^{-1}\circ\pi} \ = \ P_{1_n} \ = \ I_n,$$

where (\*) follows immediately from Proposition 2.3.13. Analogously,  $P_{\pi^{-1}}P_{\pi}=I_n$ . So,  $P_{\pi}$  and  $P_{\pi^{-1}}$  are invertible and are each other's inverses. This completes the argument.  $\square$ 

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover.

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

- **Remark:** A matrix  $Q \in \mathbb{R}^{n \times n}$  is *orthogonal* if it satisfies  $Q^T Q = I_n$ .
  - Theorem 2.3.14 guarantees that permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as belonging to  $\mathbb{R}$ , rather than to some other field).

As our next theorem (Theorem 2.3.15, next slide) shows,

multiplying a matrix by a permutation matrix on the left

permutes the rows of the original matrix.

- As our next theorem (Theorem 2.3.15, next slide) shows, multiplying a matrix by a permutation matrix on the left permutes the rows of the original matrix.
- On the other hand, multiplying a matrix by a permutation matrix on the right permutes the columns of the original matrix.

Let 
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$$
 be an  $n \times m$  matrix with entries

in some field  $\vec{\mathbb{F}}$ . Then all the following hold:

**o** for all  $\pi \in S_n$ , we have that

$$P_{\pi}A = \begin{bmatrix} \mathbf{r}_{\pi(1)} \\ \vdots \\ \mathbf{r}_{\pi(n)} \end{bmatrix};$$

**b** for all  $\pi \in S_m$ , we have that

$$AP_{\pi} = \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix};$$

$$AP_{\pi}^{T} = \begin{bmatrix} \mathbf{a}_{\pi(1)} & \dots & \mathbf{a}_{\pi(m)} \end{bmatrix}.$$

Proof.

Let 
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = [ \mathbf{a}_1 \dots \mathbf{a}_m ]$$
 be an  $n \times m$  matrix with entries

in some field  $\vec{\mathbb{F}}$ . Then all the following hold:

o for all  $\pi \in S_n$ , we have that

$$P_{\pi}A = \begin{bmatrix} \mathbf{r}_{\pi(1)} \\ \vdots \\ \mathbf{r}_{\pi(n)} \end{bmatrix};$$

**b** for all  $\pi \in S_m$ , we have that

$$AP_{\pi} = \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix};$$

lacktriangle for all  $\pi \in \mathcal{S}_m$ , we have that

$$AP_{\pi}^{\mathsf{T}} = \begin{bmatrix} \mathbf{a}_{\pi(1)} & \dots & \mathbf{a}_{\pi(m)} \end{bmatrix}.$$

Proof. We prove (b). Parts (a) and (c) are in the Lecture Notes.

Let 
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$$
 be an  $n \times m$  matrix with entries in some field  $\mathbb{R}$ . Then all the following hold:

in some field  $\bar{\mathbb{F}}$ . Then all the following hold:

 $\bullet$  for all  $\pi \in S_m$ , we have that

$$AP_{\pi} = [ \mathbf{a}_{\pi^{-1}(1)} \dots \mathbf{a}_{\pi^{-1}(m)} ];$$

Proof of (b).

Let 
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$$
 be an  $n \times m$  matrix with entries

in some field  $\mathbb{F}$ . Then all the following hold: • for all  $\pi \in S_m$ , we have that

$$AP_{\pi} = [ \mathbf{a}_{\pi^{-1}(1)} \dots \mathbf{a}_{\pi^{-1}(m)} ];$$

*Proof of (b).* Fix any permutation  $\pi \in S_m$ . In what follows,  $\mathbf{e}_1, \dots, \mathbf{e}_m$  are the standard basis vectors of  $\mathbb{F}^m$ . We compute:

$$AP_{\pi} = A \begin{bmatrix} \mathbf{e}_{\pi^{-1}(1)} & \dots & \mathbf{e}_{\pi^{-1}(m)} \end{bmatrix}$$
 by Proposition 2.3.11 
$$= \begin{bmatrix} A\mathbf{e}_{\pi^{-1}(1)} & \dots & A\mathbf{e}_{\pi^{-1}(m)} \end{bmatrix}$$
 by the definition of matrix multiplication 
$$= \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix}$$
 by Proposition 1.4.4.

This proves (b).  $\square$ 

Let 
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{bmatrix}$$
 be an  $n \times m$  matrix with entries in some field  $\mathbb{F}$ . Then all the following hold:

in some field  $\mathbb{F}$ . Then all the following hold:

$$P_{\pi}A = \begin{bmatrix} \mathbf{r}_{\pi(1)} \\ \vdots \\ \mathbf{r}_{\pi(n)} \end{bmatrix};$$

for all  $\pi \in S_m$ , we have that

$$AP_{\pi} = \begin{bmatrix} \mathbf{a}_{\pi^{-1}(1)} & \dots & \mathbf{a}_{\pi^{-1}(m)} \end{bmatrix};$$

for all  $\pi \in \mathcal{S}_m$ , we have that

$$AP_{\pi}^{\mathsf{T}} = \begin{bmatrix} \mathbf{a}_{\pi(1)} & \dots & \mathbf{a}_{\pi(m)} \end{bmatrix}.$$

Orthogonal matrices

- Orthogonal matrices
  - In our study of orthogonal matrices, we assume that  $\mathbb{R}^n$  is equipped with the standard scalar product and the induced norm  $||\cdot||$ .

- Orthogonal matrices
  - In our study of orthogonal matrices, we assume that  $\mathbb{R}^n$  is equipped with the standard scalar product  $\cdot$  and the induced norm  $||\cdot||$ .

A matrix  $Q \in \mathbb{R}^{n \times n}$  is orthogonal if it satisfies  $Q^T Q = I_n$ .

A matrix  $Q \in \mathbb{R}^{n \times n}$  is orthogonal if it satisfies  $Q^T Q = I_n$ .

A matrix  $Q \in \mathbb{R}^{n \times n}$  is orthogonal if it satisfies  $Q^T Q = I_n$ .

• Obviously, matrices  $I_n$  and  $-I_n$  are orthogonal.

A matrix  $Q \in \mathbb{R}^{n \times n}$  is orthogonal if it satisfies  $Q^T Q = I_n$ .

- Obviously, matrices  $I_n$  and  $-I_n$  are orthogonal.
- By Theorem 2.3.14, permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as being real numbers).

#### Theorem 2.3.14

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

A matrix  $Q \in \mathbb{R}^{n \times n}$  is orthogonal if it satisfies  $Q^T Q = I_n$ .

- Obviously, matrices  $I_n$  and  $-I_n$  are orthogonal.
- By Theorem 2.3.14, permutation matrices are orthogonal (as long as we consider the 0's and 1's in those matrices as being real numbers).

#### Theorem 2.3.14

Let n be a positive integer, and let  $\pi \in S_n$ . Then  $P_{\pi}$  is invertible, and moreover,

$$P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{T}.$$

• The matrices mentioned so far all have entries only -1,0,1. However, there are many other orthogonal matrices, and we will see a couple of examples later.

Reminder:

# Corollary 3.3.18

Let  $\mathbb{F}$  be field, and let  $A, B \in \mathbb{F}^{n \times n}$  be such that  $AB = I_n$  or  $BA = I_n$ . Then  $AB = BA = I_n$ , i.e. A and B are both invertible and are each other's inverses.

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- ② Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- **(b)** Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $QQ^T = I_n;$
- $\bigcirc$   $Q^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- **1** the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- 9 the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

Proof.

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- ② Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- **(b)** Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $QQ^T = I_n;$
- $\bigcirc$   $Q^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- **(4)** the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- **(3)** the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

Proof. By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent.

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- ① Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- **b** Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $\bigcirc$   $Q^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- **1** the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- **3** the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

*Proof.* By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent. Moreover, since  $(Q^T)^T = Q$ , we have that (c) and (d) are equivalent.

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- ① Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- **b** Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $QQ^T = I_n;$
- $Q^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- ① the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- **(3)** the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

*Proof.* By Corollary 3.3.18, we have that (a), (b), and (c) are equivalent. Moreover, since  $(Q^T)^T = Q$ , we have that (c) and (d) are equivalent. This proves that (a), (b), (c), and (d) are equivalent.

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- **1** Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $QQ^T = I_n;$
- $Q^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- ① the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- **(3)** the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

Proof (continued). Next, (b) and (d) together imply (e).

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- **1** Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $Q^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- $\emptyset$  the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- **(3)** the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

Proof (continued). Next, (b) and (d) together imply (e).

Suppose now that (e) holds. Then by applying "(a)  $\Longrightarrow$  (b)" to the matrix  $Q^{-1}$ , we see that  $Q^{-1}$  is invertible and satisfies  $(Q^{-1})^{-1}=(Q^{-1})^T$ . Consequently,  $Q^{-1}=Q^T$ , and it follows that (b) holds.

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- **1** Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- **a** Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $Q^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- $\emptyset$  the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- **(3)** the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

*Proof (continued).* So far, we have established that (a), (b), (c), (d), and (e) are equivalent.

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- **1** Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $Q^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- ① the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- **(3)** the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

*Proof (continued).* So far, we have established that (a), (b), (c), (d), and (e) are equivalent.

Let us now show that (a) and (f) are equivalent.

- **1** Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- 0 the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;

Proof (continued).

- ① Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- 0 the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;

*Proof (continued).* Set  $Q = [\mathbf{q}_1 \dots \mathbf{q}_n]$ . Then

$$Q^T Q = \begin{bmatrix} \mathbf{q}_1' \\ \mathbf{q}_2^T \\ \vdots \\ \mathbf{q}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{q}_1 \cdot \mathbf{q}_1 & \mathbf{q}_1 \cdot \mathbf{q}_2 & \dots & \mathbf{q}_1 \cdot \mathbf{q}_n \\ \mathbf{q}_2 \cdot \mathbf{q}_1 & \mathbf{q}_2 \cdot \mathbf{q}_2 & \dots & \mathbf{q}_2 \cdot \mathbf{q}_n \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_n \cdot \mathbf{q}_1 & \mathbf{q}_n \cdot \mathbf{q}_2 & \dots & \mathbf{q}_n \cdot \mathbf{q}_n \end{bmatrix}.$$

- **1** Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- **(4)** the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;

*Proof (continued).* Set  $Q = \begin{bmatrix} \mathbf{q}_1 & \dots & \mathbf{q}_n \end{bmatrix}$ . Then

$$Q^{T}Q = \begin{bmatrix} \mathbf{q}_{1}^{T} \\ \mathbf{q}_{2}^{T} \\ \vdots \\ \mathbf{q}_{n}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{q}_{1} & \mathbf{q}_{2} & \dots & \mathbf{q}_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{q}_1 \cdot \mathbf{q}_1 & \mathbf{q}_1 \cdot \mathbf{q}_2 & \dots & \mathbf{q}_1 \cdot \mathbf{q}_n \\ \mathbf{q}_2 \cdot \mathbf{q}_1 & \mathbf{q}_2 \cdot \mathbf{q}_2 & \dots & \mathbf{q}_2 \cdot \mathbf{q}_n \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_n \cdot \mathbf{q}_1 & \mathbf{q}_n \cdot \mathbf{q}_2 & \dots & \mathbf{q}_n \cdot \mathbf{q}_n \end{bmatrix}.$$

So,  $Q^TQ = I_n$  iff  $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$  is an orthonormal set.

- **1** Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- 0 the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;

*Proof (continued).* Set  $Q = [\mathbf{q}_1 \ldots \mathbf{q}_n]$ . Then

$$Q^{T}Q = \begin{bmatrix} \mathbf{q}_{1}^{T} \\ \mathbf{q}_{2}^{T} \\ \vdots \\ \mathbf{q}_{n}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{q}_{1} & \mathbf{q}_{2} & \dots & \mathbf{q}_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{q}_{1} \cdot \mathbf{q}_{1} & \mathbf{q}_{1} \cdot \mathbf{q}_{2} & \dots & \mathbf{q}_{1} \cdot \mathbf{q}_{n} \\ \mathbf{q}_{2} \cdot \mathbf{q}_{1} & \mathbf{q}_{2} \cdot \mathbf{q}_{2} & \dots & \mathbf{q}_{2} \cdot \mathbf{q}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_{n} \cdot \mathbf{q}_{1} & \mathbf{q}_{n} \cdot \mathbf{q}_{2} & \dots & \mathbf{q}_{n} \cdot \mathbf{q}_{n} \end{bmatrix}.$$

So,  $Q^TQ = I_n$  iff  $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$  is an orthonormal set. But by Proposition 6.3.4(b), any orthonormal set of n vectors in  $\mathbb{R}^n$  is in fact an orthonormal basis of  $\mathbb{R}^n$ . So, (a) and (f) are equivalent.

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- **a** Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- $\bigcirc$  Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $QQ^T = I_n;$
- $\mathbf{Q}^T$  is orthogonal;
- $\bigcirc$  Q is invertible and  $Q^{-1}$  is orthogonal;
- ① the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- **3** the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

*Proof (continued).* Analogously to "(a)  $\iff$  (f)," we have that (d) and (g) are equivalent.  $\square$ 

Let  $Q \in \mathbb{R}^{n \times n}$ . Then the following are equivalent:

- Q is orthogonal (i.e. satisfies  $Q^TQ = I_n$ );
- Q is invertible and satisfies  $Q^{-1} = Q^T$ ;
- $QQ^T = I_n$  $Q^T$  is orthogonal:
- Q is invertible and  $Q^{-1}$  is orthogonal;
- the columns of Q form an orthonormal basis of  $\mathbb{R}^n$ ;
- the columns of  $Q^T$  form an orthonormal basis of  $\mathbb{R}^n$ .

- We can make new orthogonal matrices out of old ones, as Propositions 6.8.2, 6.8.3, and 6.8.4 (below and next slide) show.
- The proofs of these propositions are easy and are in the Lecture Notes (we omit them here).

# Proposition 6.8.2

Let

$$Q = \begin{bmatrix} \mathbf{q}_1 & \dots & \mathbf{q}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1' \\ \vdots \\ \mathbf{r}_n^T \end{bmatrix}$$

be an orthogonal matrix in  $\mathbb{R}^n$ . Then all the following hold:

- the matrix -Q is orthogonal.

# Proposition 6.8.3

If  $Q_1, Q_2 \in \mathbb{R}^{n \times n}$  are orthogonal, then so is their product  $Q_1 Q_2$ .

# Proposition 6.8.4

Let  $Q_1 \in \mathbb{R}^{m \times m}$  and  $Q_2 \in \mathbb{R}^{n \times n}$  be orthogonal matrices. Then the  $(m+n) \times (m+n)$  matrix

$$Q = \left[ -\frac{Q_1}{O_{n \times m}} - \frac{O_{m \times n}}{Q_2} - \right]$$

is an orthogonal matrix in  $\mathbb{R}^{(m+n)\times(m+n)}$ .

| • | Next, we discuss two particularly significant orthogonal matrices: the Householder matrix and the Givens matrix. |
|---|------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                  |

- Next, we discuss two particularly significant orthogonal matrices: the Householder matrix and the Givens matrix.
- In our discussion of the Householder matrix, we will need the following result.

## Corollary 6.6.4

Let **a** be a non-zero vector in  $\mathbb{R}^n$ . Then the standard matrix of orthogonal projection onto the line  $L := \operatorname{Span}(\mathbf{a})$  is the matrix

$$\mathbf{a}(\mathbf{a}^T\mathbf{a})^{-1}\mathbf{a}^T \ = \ \mathbf{a}(\mathbf{a}\cdot\mathbf{a})^{-1}\mathbf{a}^T \ = \ \tfrac{1}{\mathbf{a}\cdot\mathbf{a}}\mathbf{a}\mathbf{a}^T.$$

Consequently, for every vector  $\mathbf{x} \in \mathbb{R}^n$ , we have that

$$\mathbf{x}_L = \operatorname{proj}_L(\mathbf{x}) = \frac{1}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T \mathbf{x}.$$



Proof: Lecture Notes.

## Definition

For a non-zero vector  ${\bf a}$  in  $\mathbb{R}^n$ , the *Householder matrix* is the  $n \times n$  matrix

$$H(\mathbf{a}) := I_n - \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T.$$

### Definition

For a non-zero vector **a** in  $\mathbb{R}^n$ , the *Householder matrix* is the  $n \times n$  matrix

$$H(\mathbf{a}) := I_n - \frac{2}{2^{T} \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n - \frac{2}{2 \mathbf{a} \mathbf{a}} \mathbf{a} \mathbf{a}^T.$$

• To see that  $H(\mathbf{a})$  is an orthogonal matrix, we compute:

$$H(\mathbf{a})^T H(\mathbf{a}) = (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T)^T (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T)$$

$$= (I_n^T - \frac{2}{\mathbf{a} \cdot \mathbf{a}} (\mathbf{a} \mathbf{a}^T)^T) (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T)$$

$$= (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T) (I_n - \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T)$$

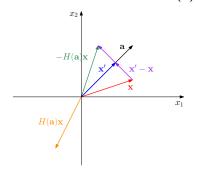
$$= I_n - \frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T + \frac{4}{(\mathbf{a} \cdot \mathbf{a})^2} \mathbf{a} \underbrace{\mathbf{a}}_{=\mathbf{a} \cdot \mathbf{a}}^T \mathbf{a} \mathbf{a}^T$$

$$= I_n - \frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T + \frac{4}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$$

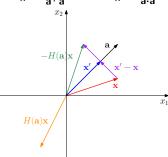
$$= I_n.$$

- Reminder:  $H(\mathbf{a}) := I_n \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I_n \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T$ . • if  $\mathbf{x}$  is any vector in  $\mathbb{R}^n$ , and  $\mathbf{x}'$  represents the orthogonal
  - if x is any vector in  $\mathbb{R}^n$ , and x' represents the orthogonal projection of x onto  $\mathrm{Span}(a)$ , then the reflection of x about the line  $\mathrm{Span}(a)$  is given by

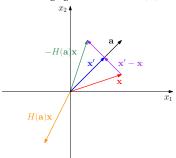
$$\mathbf{x} + 2(\mathbf{x}' - \mathbf{x}) = 2\mathbf{x}' - \mathbf{x} = \frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T \mathbf{x} - I_n \mathbf{x}$$
$$= \left(\frac{2}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \mathbf{a}^T - I_n\right) \mathbf{x}$$



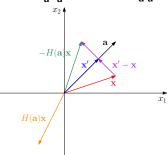
= -H(a)x.



• Thus,  $-H(\mathbf{a})$  is the standard matrix of reflection about the Span( $\mathbf{a}$ ) line.



- Thus,  $-H(\mathbf{a})$  is the standard matrix of reflection about the Span( $\mathbf{a}$ ) line.
- The Householder matrix H(a) itself is the standard matrix of the linear operation that first reflects about the Span(a) line and then reflects about the origin.

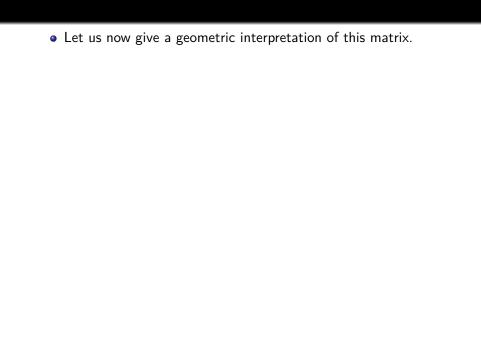


- **Remark:** Suppose that **a** is a non-zero vector in  $\mathbb{R}^n$ .
  - Then the standard matrix of reflection about the line  $L := \operatorname{Span}(\mathbf{a})$  in  $\mathbb{R}^n$  is an orthogonal matrix.
  - Indeed, as we saw, the Householder matrix  $H(\mathbf{a})$  is an orthogonal matrix.
  - By Proposition 6.8.2(c), it follows that  $-H(\mathbf{a})$  is also an orthogonal matrix, and as we saw above,  $-H(\mathbf{a})$  is the standard matrix of reflection about the line  $L = \operatorname{Span}(\mathbf{a})$  in  $\mathbb{R}^n$ .

• Given an integer  $n \ge 2$ , indices  $i, j \in \{1, ..., n\}$  such that i < j, and real numbers c and s such that  $c^2 + s^2 = 1$ , we define the *Givens matrix*  $G_{i,j}(c,s)$  as follows:

• Given an integer  $n \ge 2$ , indices  $i, j \in \{1, ..., n\}$  such that i < j, and real numbers c and s such that  $c^2 + s^2 = 1$ , we define the *Givens matrix*  $G_{i,j}(c,s)$  as follows:

- It is not hard to check that the columns of  $G_{i,j}(c,s)$  form an orthonormal set of vectors in  $\mathbb{R}^n$ , and therefore (by Proposition 6.3.4) an orthonormal basis of  $\mathbb{R}^n$ .
- So, by Theorem 6.8.1,  $G_{i,i}(c,s)$  is orthogonal.



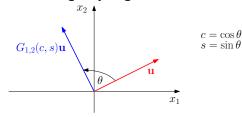
- Let us now give a geometric interpretation of this matrix.
- Since  $c^2 + s^2 = 1$ , we see that there exists a real number (angle in radians)  $\theta$  such that  $c = \cos \theta$  and  $s = \sin \theta$ .

- Let us now give a geometric interpretation of this matrix.
- Since  $c^2 + s^2 = 1$ , we see that there exists a real number (angle in radians)  $\theta$  such that  $c = \cos \theta$  and  $s = \sin \theta$ .
- With this set-up, we see that  $G_{i,j}(c,s)$  represents rotation about the origin by angle  $\theta$  in the  $x_ix_j$ -plane.

- Let us now give a geometric interpretation of this matrix.
- Since  $c^2 + s^2 = 1$ , we see that there exists a real number (angle in radians)  $\theta$  such that  $c = \cos \theta$  and  $s = \sin \theta$ .
- With this set-up, we see that  $G_{i,j}(c,s)$  represents rotation about the origin by angle  $\theta$  in the  $x_ix_i$ -plane.
- This is particularly easy to see in the case when n=2. In that case, we have that

$$G_{1,2}(c,s) = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

which is precisely the standard matrix of counterclockwise rotation about the origin by angle  $\theta$ .



Let  $Q=\left[\begin{array}{c}q_{i,j}\end{array}\right]_{n\times n}$  be an orthogonal matrix in  $\mathbb{R}^{n\times n}.$  Then:

- - Proof: next slide.

Let  $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$  be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then:

- o for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ ,  $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ ;
- **o** for all  $i, j \in \{1, \dots, n\}$ ,  $|q_{i,j}| \le 1$ .
  - Proof: next slide.
  - Remark: By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.

Let  $Q = |q_{i,j}|_{n \times n}$  be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then:

- of for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ ,  $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ ;
- $\bullet$  for all  $\mathbf{x} \in \mathbb{R}^n$ ,  $||Q\mathbf{x}|| = ||\mathbf{x}||$ ;
- **o** for all  $i, j \in \{1, ..., n\}$ ,  $|q_{i,j}| \le 1$ .
  - Proof: next slide.
  - **Remark:** By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.
    - On the other hand, recall that for non-zero vectors  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ , we have that  $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \ ||\mathbf{y}|| \cos \theta$ , where  $\theta$  is the angle

between  $\mathbf{x}$  and  $\mathbf{y}$ .

Let  $Q = |q_{i,j}|_{n \times n}$  be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then:

- of for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ ,  $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ ;
- $\bullet$  for all  $\mathbf{x} \in \mathbb{R}^n$ ,  $||Q\mathbf{x}|| = ||\mathbf{x}||$ ;
- - Proof: next slide.
  - **Remark:** By Theorem 6.8.5(b), multiplication by an orthogonal matrix (on the left) preserves vector length.
    - On the other hand, recall that for non-zero vectors  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ , we have that  $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$ , where  $\theta$  is the angle between  $\mathbf{x}$  and  $\mathbf{y}$ .
    - So, Theorem 6.8.5(a-b) implies that multiplication (on the left) by an orthogonal matrix preserves angles between non-zero vectors.

Let  $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \times n}$  be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then:

- for all  $i,j \in \{1,\ldots,n\}, \ |q_{i,j}| \leq 1.$

Proof.

Let  $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \in \mathbb{N}}$  be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then:

- of for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ ,  $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ ;

  - $\{0\}$  for all  $i,j \in \{1,\ldots,n\}, |q_{i,j}| \leq 1$ .

*Proof.* (a) For  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ , we have the following:

$$(Q\mathbf{x})\cdot(Q\mathbf{y}) = (Q\mathbf{x})^T(Q\mathbf{x}) = \mathbf{x}^T \underbrace{Q^T Q} \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x}\cdot\mathbf{y}.$$

Let  $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \in \mathbb{N}}$  be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then:

- for all  $i, j \in \{1, \ldots, n\}, |q_{i,j}| \leq 1.$

*Proof.* (a) For  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ , we have the following:

$$(Q\mathbf{x}) \cdot (Q\mathbf{y}) = (Q\mathbf{x})^T (Q\mathbf{x}) = \mathbf{x}^T \underbrace{Q^T Q}_{=I_0} \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y}.$$

(b) For  $\mathbf{x} \in \mathbb{R}^n$ , we have the following:

$$||Q\mathbf{x}|| = \sqrt{(Q\mathbf{x}) \cdot (Q\mathbf{x})} \stackrel{(a)}{=} \sqrt{\mathbf{x} \cdot \mathbf{x}} = ||\mathbf{x}||.$$

Let  $Q = \begin{bmatrix} q_{i,j} \end{bmatrix}_{n \in \mathbb{N}}$  be an orthogonal matrix in  $\mathbb{R}^{n \times n}$ . Then:

- $lackbox{0}$  for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ ,  $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ ;
- for all  $i, j \in \{1, \ldots, n\}, |q_{i,j}| \leq 1.$

*Proof.* (a) For  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ , we have the following:

$$(Q\mathbf{x})\cdot(Q\mathbf{y}) = (Q\mathbf{x})^T(Q\mathbf{x}) = \mathbf{x}^T\underbrace{Q^TQ}_{=I_x}\mathbf{y} = \mathbf{x}^T\mathbf{y} = \mathbf{x}\cdot\mathbf{y}.$$

(b) For  $\mathbf{x} \in \mathbb{R}^n$ , we have the following:

$$||Q\mathbf{x}|| = \sqrt{(Q\mathbf{x}) \cdot (Q\mathbf{x})} \stackrel{(a)}{=} \sqrt{\mathbf{x} \cdot \mathbf{x}} = ||\mathbf{x}||.$$

(c) By Theorem 6.8.1, the columns of Q form an orthonormal basis. In particular, all columns of Q are unit vectors, and it follows that all entries of Q have absolute value at most 1.  $\square$ 

Scalar product, coordinate vectors, and matrices of linear functions  Scalar product, coordinate vectors, and matrices of linear functions

# Proposition 6.9.1

Let V be a real or complex vector space, equipped with the scalar product  $\langle \cdot, \cdot \rangle$  and the induced norm  $||\cdot||$ , and let  $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$  be an **orthonormal** basis of V. Let  $\cdot$  be the standard scalar product in  $\mathbb{R}^n$  or  $\mathbb{C}^n$  (depending on whether the vector space V is real or complex). Then for all  $\mathbf{x}, \mathbf{y} \in V$ , we have that

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} \cdot \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}}.$$

Proof: Lecture Notes.

Let U and V be non-trivial, finite-dimensional **real** vector spaces. Assume that U is equipped with a scalar product  $\langle \cdot, \cdot \rangle_U$  and the induced norm  $||\cdot||_U$ , and that V is equipped with a scalar product  $\langle \cdot, \cdot \rangle_V$  and the induced norm  $||\cdot||_V$ . Let  $\mathcal{B}_U = \{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$  and  $\mathcal{B}_V = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$  be **orthonormal** bases of U and V, respectively, and let  $f: U \to V$  be a linear function. Then the

- following two statements are equivalent:

  ① the columns of the  $n \times m$  matrix  $_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}$  form an orthonormal set of vectors in  $\mathbb{R}^{n}$  (with respect to the standard scalar product  $\cdot$  and the induced norm  $||\cdot||$ ); $^{a}$ 
  - ① f preserves the scalar product, that is, for all vectors  $\mathbf{x}, \mathbf{y} \in U$ , we have that  $\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_{V} = \langle \mathbf{x}, \mathbf{y} \rangle_{U}$ .

<sup>&</sup>lt;sup>a</sup>However, despite Theorem 6.8.1, this does not necessarily mean that the matrix  $_{\mathcal{B}_{V}}\left[\begin{array}{c}f\end{array}\right]_{\mathcal{B}_{U}}$  is orthogonal. This is because  $_{\mathcal{B}_{V}}\left[\begin{array}{c}f\end{array}\right]_{\mathcal{B}_{U}}$  is an  $n\times m$  matrix, and it is possible that  $m\neq n$ , in which case  $_{\mathcal{B}_{V}}\left[\begin{array}{c}f\end{array}\right]_{\mathcal{B}_{U}}$  is not a square matrix. Only square matrices can be orthogonal!

 $\textit{Proof.} \ \mathsf{Set}_{\ \mathcal{B}_{\mathcal{V}}} \big[ \ \textit{f} \ \big]_{\mathcal{B}_{\mathcal{U}}} = \big[ \ \textbf{c}_1 \ \ldots \ \textbf{c}_m \ \big].$ 

*Proof.* Set  $_{\mathcal{B}_{\mathcal{V}}}[f]_{\mathcal{B}_{\mathcal{U}}}=[\mathbf{c}_1 \ \ldots \ \mathbf{c}_m].$  We observe that

$$\begin{pmatrix} \begin{pmatrix} \mathbf{c}_{1} \\ \mathbf{c}_{2} \end{pmatrix} \end{pmatrix}_{\mathcal{B}_{U}} = \begin{pmatrix} \mathbf{c}_{1}^{T} \\ \mathbf{c}_{2}^{T} \\ \vdots \\ \mathbf{c}_{m}^{T} \end{pmatrix} \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} & \dots & \mathbf{c}_{m} \end{bmatrix}$$

$$= \begin{pmatrix} \mathbf{c}_{1} \cdot \mathbf{c}_{1} & \mathbf{c}_{1} \cdot \mathbf{c}_{2} & \dots & \mathbf{c}_{1} \cdot \mathbf{c}_{m} \\ \mathbf{c}_{2} \cdot \mathbf{c}_{1} & \mathbf{c}_{2} \cdot \mathbf{c}_{2} & \dots & \mathbf{c}_{2} \cdot \mathbf{c}_{m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{c}_{m} \cdot \mathbf{c}_{1} & \mathbf{c}_{m} \cdot \mathbf{c}_{2} & \dots & \mathbf{c}_{m} \cdot \mathbf{c}_{m} \end{bmatrix} .$$

So, we see that (i) holds iff  $\binom{g_{ij}}{g_{ij}} \binom{f}{g_{ij}} \binom{f}{g_{ij}} \binom{f}{g_{ij}} = I_m$ .

 $\textit{Proof (cont.)}. \ \ \mathsf{Reminder:} \ \ (\mathsf{i}) \ \ \mathsf{holds} \ \ \mathsf{iff} \ \ (_{\mathcal{B}_V} \left[ \begin{array}{c} f \end{array} \right]_{\mathcal{B}_U})^T \quad _{\mathcal{B}_V} \left[ \begin{array}{c} f \end{array} \right]_{\mathcal{B}_U} = \textit{I}_m.$ 

*Proof (cont.).* Reminder: (i) holds iff  $\binom{g_v}{g_v} \begin{bmatrix} f \end{bmatrix}_{g_v}^T \binom{f}{g_v} \begin{bmatrix} f \end{bmatrix}_{g_v} = I_m$ .

Next, by Proposition 6.9.1, the following hold for all  $\mathbf{x}, \mathbf{y} \in U$ :

- (1)  $\langle \mathbf{x}, \mathbf{y} \rangle_U = [\mathbf{x}]_{\mathcal{B}_U} \cdot [\mathbf{y}]_{\mathcal{B}_U};$
- (2)  $\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_{V} = [f(\mathbf{x})]_{\mathcal{B}_{V}} \cdot [f(\mathbf{y})]_{\mathcal{B}_{V}}$

*Proof (cont.).* Reminder: (i) holds iff  $\binom{g_{V}}{g_{V}} \begin{bmatrix} f \end{bmatrix}_{g_{U}}^{T} = I_{m}$ .

Next, by Proposition 6.9.1, the following hold for all  $\mathbf{x}, \mathbf{y} \in U$ :

(1) 
$$\langle \mathbf{x}, \mathbf{y} \rangle_U = [\mathbf{x}]_{\mathcal{B}_U} \cdot [\mathbf{y}]_{\mathcal{B}_U};$$

(2)  $\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_{V} = [f(\mathbf{x})]_{\mathcal{B}_{V}} \cdot [f(\mathbf{y})]_{\mathcal{B}_{V}}$ 

Now, for all 
$$\mathbf{x}, \mathbf{y} \in U$$
, we have that

$$\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_V \stackrel{(2)}{=} [f(\mathbf{x})]_{\mathcal{B}_V} \cdot [f(\mathbf{y})]_{\mathcal{B}_V}$$

$$= \left( \left[ f(\mathbf{x}) \right]_{\mathcal{B}_{V}} \right)^{T} \left[ f(\mathbf{y}) \right]_{\mathcal{B}_{V}}$$

$$= \left( \left[ f(\mathbf{x}) \right]_{\mathcal{B}_{V}} \right)^{T} \left[ f(\mathbf{y}) \right]_{\mathcal{B}_{V}}$$

$$= \left( \left. \left[ \begin{array}{cc} f \end{array} \right]_{\mathcal{B}_{U}} \left[ \begin{array}{cc} \mathbf{x} \end{array} \right]_{\mathcal{B}_{U}} \right)^{T} \left( \left. \left[ \begin{array}{cc} f \end{array} \right]_{\mathcal{B}_{U}} \left[ \begin{array}{cc} \mathbf{y} \end{array} \right]_{\mathcal{B}_{U}} \right)$$

$$= \left( \left[ \begin{array}{c} \mathbf{x} \end{array} \right]_{\mathcal{B}_{U}} \right)^{\mathsf{T}} \left( \left. \left. \right|_{\mathcal{B}_{V}} \left[ \begin{array}{c} f \end{array} \right]_{\mathcal{B}_{U}} \right)^{\mathsf{T}} \left. \left. \left[ \begin{array}{c} f \end{array} \right]_{\mathcal{B}_{U}} \left[ \begin{array}{c} \mathbf{y} \end{array} \right]_{\mathcal{B}_{U}} \right.$$

*Proof (continued).* Suppose first that (i) holds. Then  $\binom{B_V}{B_V} \begin{bmatrix} f \end{bmatrix}_{B_U} = I_m$ , and consequently, for all  $\mathbf{x}, \mathbf{y} \in U$ , we have that

we have that 
$$\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_{V} = (\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}_{U}})^{T} \underbrace{(\mathcal{B}_{V} \begin{bmatrix} f \end{bmatrix}_{\mathcal{B}_{U}})^{T}}_{=I_{m}} \mathcal{B}_{V}} \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}_{U}}$$
$$= (\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}_{U}})^{T} \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}_{U}}$$

$$= \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}_{\mathcal{U}}} \cdot \begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}_{\mathcal{U}}}$$

$$\stackrel{(1)}{=} \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{U}}.$$

-  $\langle \mathbf{x}, \mathbf{y} \rangle$ 

Thus, (ii) holds.

*Proof (continued).* Reminder:  $_{\mathcal{B}_{V}}[f]_{\mathcal{B}_{U}}=[\mathbf{c}_{1} \ldots \mathbf{c}_{m}]$ Suppose now that (ii) holds. Then for all  $i, j \in \{1, ..., m\}$ , we

Suppose now that (ii) holds. Then for all 
$$i, j \in \{1, ..., m\}$$
, we have that  $\mathbf{e}_i^m \cdot \mathbf{e}_i^m = [\mathbf{u}_i]_m \cdot [\mathbf{u}_i]_m$ 

have that 
$$\mathbf{e}_{i}^{m} \cdot \mathbf{e}_{j}^{m} = \begin{bmatrix} \mathbf{u}_{i} \end{bmatrix}_{\mathcal{B}_{U}} \cdot \begin{bmatrix} \mathbf{u}_{j} \end{bmatrix}_{\mathcal{B}_{U}}$$

$$\stackrel{(1)}{=} \langle \mathbf{u}_{i}, \mathbf{u}_{j} \rangle_{U}$$

$$\mathbf{e}_{i} \cdot \mathbf{e}_{j} = \begin{bmatrix} \mathbf{u}_{i} \end{bmatrix}_{\mathcal{B}_{U}} \cdot \begin{bmatrix} \mathbf{u}_{j} \end{bmatrix}_{\mathcal{B}_{U}}$$

$$\stackrel{(1)}{=} \langle \mathbf{u}_{i}, \mathbf{u}_{j} \rangle_{U}$$

$$\stackrel{(ii)}{=} \langle f(\mathbf{u}_{i}), f(\mathbf{u}_{j}) \rangle_{V}$$

 $\stackrel{\text{(ii)}}{=} \langle f(\mathbf{u}_i), f(\mathbf{u}_j) \rangle_V$ 

 $\stackrel{(2)}{=} \left[ f(\mathbf{u}_i) \right]_{\mathcal{B}_{\mathcal{V}}} \cdot \left[ f(\mathbf{u}_j) \right]_{\mathcal{B}_{\mathcal{V}}}$  $= (_{\mathcal{B}_{\mathcal{V}}}[f]_{\mathcal{B}_{\mathcal{U}}}[\mathbf{u}_{i}]_{\mathcal{B}_{\mathcal{U}}}) \cdot (_{\mathcal{B}_{\mathcal{V}}}[f]_{\mathcal{B}_{\mathcal{U}}}[\mathbf{u}_{j}]_{\mathcal{B}_{\mathcal{U}}})$  $= \left( \begin{smallmatrix} B_{i,i} \end{smallmatrix} \right[ f \right]_{\mathcal{B}_{i,i}} \mathbf{e}_{i}^{m} \cdot \left( \begin{smallmatrix} B_{i,i} \end{smallmatrix} \right[ f \right]_{\mathcal{B}_{i,i}} \mathbf{e}_{i}^{m}$  $= \mathbf{c}_i \cdot \mathbf{c}_i$ .

So,  $\{\mathbf{c}_1,\ldots,\mathbf{c}_n\}$  is an orthonormal set of vectors in  $\mathbb{R}^n$ , that is, (i) holds. □

Let U and V be non-trivial, finite-dimensional **real** vector spaces. Assume that U is equipped with a scalar product  $\langle \cdot, \cdot \rangle_U$  and the induced norm  $||\cdot||_U$ , and that V is equipped with a scalar product  $\langle \cdot, \cdot \rangle_V$  and the induced norm  $||\cdot||_V$ . Let  $\mathcal{B}_U = \{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$  and  $\mathcal{B}_V = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$  be **orthonormal** bases of U and V, respectively, and let  $f: U \to V$  be a linear function. Then the

① the columns of the  $n \times m$  matrix  $_{\mathcal{B}_{\mathcal{V}}}[f]_{\mathcal{B}_{\mathcal{U}}}$  form an orthonormal set of vectors in  $\mathbb{R}^n$  (with respect to the standard scalar product  $\cdot$  and the induced norm  $||\cdot||$ );<sup>a</sup>

following two statements are equivalent:

① f preserves the scalar product, that is, for all vectors  $\mathbf{x}, \mathbf{y} \in U$ , we have that  $\langle f(\mathbf{x}), f(\mathbf{y}) \rangle_{V} = \langle \mathbf{x}, \mathbf{y} \rangle_{U}$ .

<sup>&</sup>lt;sup>a</sup>However, despite Theorem 6.8.1, this does not necessarily mean that the matrix  $_{\mathcal{B}_{V}}\left[\begin{array}{c}f\end{array}\right]_{\mathcal{B}_{U}}$  is orthogonal. This is because  $_{\mathcal{B}_{V}}\left[\begin{array}{c}f\end{array}\right]_{\mathcal{B}_{U}}$  is an  $n\times m$  matrix, and it is possible that  $m\neq n$ , in which case  $_{\mathcal{B}_{V}}\left[\begin{array}{c}f\end{array}\right]_{\mathcal{B}_{U}}$  is not a square matrix. Only square matrices can be orthogonal!